JPH1177782A - Estimation of weld of molded product - Google Patents

Estimation of weld of molded product

Info

Publication number
JPH1177782A
JPH1177782A JP23797297A JP23797297A JPH1177782A JP H1177782 A JPH1177782 A JP H1177782A JP 23797297 A JP23797297 A JP 23797297A JP 23797297 A JP23797297 A JP 23797297A JP H1177782 A JPH1177782 A JP H1177782A
Authority
JP
Japan
Prior art keywords
weld
molding material
molded product
elements
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23797297A
Other languages
Japanese (ja)
Inventor
Yoshitoku Inoue
良徳 井上
Takaaki Matsuoka
孝明 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP23797297A priority Critical patent/JPH1177782A/en
Publication of JPH1177782A publication Critical patent/JPH1177782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate a weld with high accuracy even with respect not only to a part where a molding material flows parallel within the cavity of a mold but also to a three-dimensional molded product having a thick-walled shape. SOLUTION: A method for estimating the weld of a molded product consists of a process for analyzing the flow of a molding material, a marker particle moving process, a process for determining the attribute of an element and a process for detecting the weld of the molded product (1). In the process for analyzing the flow of the molding material, the cavity of the mold is divided into a large number of elements and the speed vectors of molding material in the respective elements are calculated (2). In the marker particle moving process, marker particles arranged to the respective elements are moved in the direction reverse to the flow direction of the molding material on the basis of the speed vectors of the process (1) (3). In the process for determining the attributes of the elements to which the respective marker particles belong at first are determined based on whether the marker particles pass through a specific gate or the specific part of the cavity (3). In the process for detecting the weld of the molded product, the interface of the elements changed in attributes is detected as the weld of the molded product (4).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂の射出成
形品、金属のダイカスト品や鋳造品などの成形品におい
て、成形型内で成形材料の複数の流れが接合して発生す
るウェルドの位置と形状を予測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position of a weld formed by joining a plurality of flows of a molding material in a molding die in a molded product such as a synthetic resin injection molded product, a metal die cast product or a cast product. And a method for predicting the shape.

【0002】[0002]

【従来の技術】[Prior art]

<第1従来例(特開平7−1529号公報)>合成樹脂
の射出成形品におけるウェルドラインの外観上の強弱を
予測する方法である。
<First Conventional Example (Japanese Unexamined Patent Application Publication No. 7-1529)> This is a method for predicting the strength of the appearance of a weld line in an injection molded product of a synthetic resin.

【0003】 成形型のキャビティを多数の要素に分
割して各要素における溶融樹脂の速度ベクトルを流動解
析により求める。
A cavity of a mold is divided into a number of elements, and a velocity vector of a molten resin in each element is obtained by flow analysis.

【0004】 隣接する二つの要素において速度ベク
トルが同一平面にあって交差すれば、両要素の界面がウ
ェルドラインになるとして、そのような要素を、全要素
の中から、ウェルドラインを構成するウェルド要素とし
て選択する。
If the velocity vectors of two adjacent elements intersect on the same plane and intersect, the interface between the two elements is regarded as a weld line, and such elements are selected from all elements to form a weld line. Select as element.

【0005】 隣接する複数のウェルド要素の速度ベ
クトルがなす角度を、キャビティ内で溶融樹脂の複数の
流れが合流する合流角度として求める。
An angle formed by the velocity vectors of a plurality of adjacent weld elements is determined as a merging angle at which a plurality of flows of the molten resin merge in the cavity.

【0006】 全ての合流角度を比較し、合流角度が
大きい程ウェルドラインが強く現れ、合流角度が小さい
程ウェルドラインが弱く現れると予測する。
[0006] All merging angles are compared, and it is predicted that the weld line appears stronger as the merging angle becomes larger, and the weld line becomes weaker as the merging angle becomes smaller.

【0007】<第2従来例(特開平4−361379号
公報)>合成樹脂の射出成形型におけるゲートの位置を
設定する装置である。
<Second Conventional Example (Japanese Patent Laid-Open No. 4-361379)> This is an apparatus for setting the position of a gate in a synthetic resin injection mold.

【0008】 成形品の形状から、多数の基本面で構
成されたモデルを作成し、成形品のエッジ部分に相当す
るモデルの基本面のエッジ部分に可能な数のゲートを設
定する。
A model composed of a number of basic surfaces is created from the shape of the molded product, and a possible number of gates are set at the edge of the basic surface of the model corresponding to the edge of the molded product.

【0009】 各ゲートについて、そのゲートを含む
基本面上に複数方向へ分離する樹脂流路を設定して各樹
脂流路の流動長を算出し、ゲートを含む基本面上での各
樹脂流路の先端位置から次に連続する基本面上に更に複
数方向へ分離する樹脂流路を設定して各樹脂流路の流動
長を算出して、ゲートから連続する各樹脂流路の流動長
の合計を算出する。この操作を、連続する基本面がなく
なるまで、または、樹脂流路の流動長の合計が、樹脂の
流動限界として予め設定された流動長を越えるまで行な
う。
[0009] For each gate, a resin flow path that separates in a plurality of directions is set on a basic surface including the gate, a flow length of each resin flow path is calculated, and each resin flow path on the basic surface including the gate is calculated. Set the resin flow path to be further separated in a plurality of directions from the tip position of the next continuous basic surface, calculate the flow length of each resin flow path, and sum the flow length of each continuous resin flow path from the gate Is calculated. This operation is performed until there is no continuous basic surface, or until the total flow length of the resin flow path exceeds a flow length preset as a flow limit of the resin.

【0010】ここで、流動長とは、その基本面上の樹脂
流路の長さを、その基本面が対応する成形品の板部の厚
さで割った値である。
Here, the flow length is a value obtained by dividing the length of the resin flow path on the basic surface by the thickness of the plate portion of the molded product corresponding to the basic surface.

【0011】 複数のゲートを設定する場合、一つの
ゲートから連続する一つの樹脂流路と、他の一つのゲー
トから連続する一つの樹脂流路とが出会う基本面の接続
辺において、両ゲートからの樹脂流路の流動長を比較
し、両流動長の差が予め設定された小さい範囲内にある
ときには、その出会う接続辺の位置を近似的にウェルド
ラインとする。
In the case where a plurality of gates are set, at the connection side of the basic surface where one resin flow path continuous from one gate and one resin flow path continuous from another gate meet, both gates are connected. The flow lengths of the resin flow paths are compared, and when the difference between the two flow lengths is within a small range set in advance, the position of the connecting side where the flow lengths meet is approximately set as a weld line.

【0012】 複数のゲートを設定する場合、成形品
に応じて予め設定された基本面の外観属性と負荷属性、
及び、ウェルドラインの位置からゲートの適正な個数と
位置を決定する。
When setting a plurality of gates, an appearance attribute and a load attribute of a basic surface set in advance according to a molded product,
Then, the appropriate number and position of gates are determined from the position of the weld line.

【0013】[0013]

【発明が解決しようとする課題】ところが、上記のよう
な第1従来例においては、成形型のキャビティを分割し
た多数の要素中の、隣接する二つの要素において溶融樹
脂の速度ベクトルが同一平面にあって交差すれば、両要
素の界面がウェルドラインになるとしているので、隣接
する二つの要素において溶融樹脂の速度ベクトルが平行
する部分ではウェルドラインを予測することができな
い。
However, in the above-mentioned first conventional example, the velocity vector of the molten resin is on the same plane in two adjacent elements among a large number of elements obtained by dividing the cavity of the molding die. If they intersect, the interface between the two elements becomes a weld line. Therefore, it is impossible to predict a weld line in a portion where the velocity vectors of the molten resin are parallel in two adjacent elements.

【0014】例えば、成形型の複数のゲートに色違いの
溶融樹脂を同時に注入して、複数色の成形品を製作する
場合、色違いの溶融樹脂が平行して流れる部分では色の
境界を予測することができない。
For example, in a case where a molten resin of a different color is simultaneously injected into a plurality of gates of a molding die to produce a molded product of a plurality of colors, a boundary of a color is predicted in a portion where the molten resin of a different color flows in parallel. Can not do it.

【0015】上記のような第2従来例においては、実際
の成形型内での溶融樹脂の流れは、成形型のキャビティ
の形状即ち成形品の形状のみならず、溶融樹脂の物性値
やその他の条件によっても変化するにも拘らず、成形品
の形状のみに基づいて樹脂流路とその流動長を求めてい
るので、予測精度が低い。
In the second conventional example as described above, the flow of the molten resin in the actual molding die is not only the shape of the cavity of the molding die, that is, the shape of the molded product, but also the physical properties of the molten resin and other factors. Since the resin flow path and its flow length are obtained based only on the shape of the molded product, the prediction accuracy is low despite the fact that the flow path varies depending on the conditions.

【0016】また、多数の基本面のみからなるモデルを
用い、成形品の肉厚を基準にした流動長を使用するの
で、板を組み合わせて構成されるような薄肉形状の成形
品にしか適用されない。厚肉形状の成形品には使用する
ことができない。
Further, since the flow length based on the wall thickness of the molded product is used using a model consisting of a large number of basic surfaces only, it is applied only to a thin molded product constituted by combining plates. . It cannot be used for thick-walled molded products.

【0017】[0017]

【課題を解決するための手段】本発明は、次の工程を有
することを特徴とする成形品のウェルドの予測方法。
According to the present invention, there is provided a method for predicting weld of a molded article, comprising the following steps.

【0018】 成形材料の流動解析工程:成形型のキ
ャビティを多数の要素に分割し、各要素における成形材
料の速度ベクトルを求める。
Molding material flow analysis step: The cavity of the mold is divided into a number of elements, and the velocity vector of the molding material in each element is determined.

【0019】 マーカ粒子の移動工程:上記の速度ベ
クトルに基づいて、各要素に配置したマーカ粒子を成形
材料の流動方向と逆向きに移動させる。
Movement step of marker particles: The marker particles arranged in each element are moved in the direction opposite to the flowing direction of the molding material based on the above velocity vector.

【0020】 要素の属性の決定工程:各マーカ粒子
が最初に所属していた要素の属性を、マーカ粒子が特定
のゲートまたはキャビティの特定の部分を通過したか否
かにより決定する。
Determining the attribute of the element: The attribute of the element to which each marker particle originally belonged is determined by whether the marker particle has passed a specific gate or a specific portion of a cavity.

【0021】 成形品のウェルドの検出工程:属性が
変化する要素界面を成形品のウェルドとして検出する。
Step of detecting weld of molded article: detecting an element interface whose attribute changes as a weld of the molded article.

【0022】[0022]

【発明の効果】成形型のキャビティの各要素に配置した
マーカ粒子の移動軌跡、即ち、各要素に充填された成形
材料の流動軌跡に基づいて成形品のウェルドを検出する
ので、第1従来例とは異なり、キャビティ内で成形材料
が平行して流れる部分でも、ウェルドを検出することが
できる。
As described above, the weld of the molded article is detected based on the movement trajectory of the marker particles disposed in each element of the mold cavity, that is, the flow trajectory of the molding material filled in each element. In contrast, the weld can be detected even in the part where the molding material flows in parallel in the cavity.

【0023】成形材料の流動解析において成形型のキャ
ビティの形状のみならず、成形材料の物性値やその他の
条件も考慮することができるので、第2従来例に比較し
て、予測精度が高い。
In the flow analysis of the molding material, not only the shape of the cavity of the molding die but also the physical properties of the molding material and other conditions can be taken into consideration, so that the prediction accuracy is higher than in the second conventional example.

【0024】また、成形材料の流動解析は、3次元で行
なうこともできるので、厚肉形状の3次元成形品にも使
用することができる。
Further, since the flow analysis of the molding material can be performed in three dimensions, it can be used for a thick three-dimensional molded product.

【0025】[0025]

【発明の実施の形態】成形品のウェルドの予測方法は、
図1に示すように、成形材料の流動解析工程、マー
カ粒子の移動工程、要素の属性の決定工程と、成形
品のウェルドの検出工程からなる。
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the method includes a flow analysis step of a molding material, a step of moving marker particles, a step of determining an attribute of an element, and a step of detecting a weld of a molded article.

【0026】 成形材料の流動解析工程においては、
成形型のキャビティ(とランナ)を多数の微少な要素に
分割して、キャビティとランナの接続位置にゲートを設
定した形状モデルを用い、形状モデルの各要素における
成形材料の各時刻の速度ベクトルを数値解析法により求
める。
In the flow analysis process of the molding material,
The cavity (and runner) of the mold is divided into a number of small elements, and a velocity model at each time of the molding material in each element of the geometry model is calculated using a shape model in which a gate is set at the connection position between the cavity and the runner. Determined by numerical analysis.

【0027】成形材料の流動解析には、有限体積法、有
限要素法、境界要素法、差分法やFAN法などの各種の
数値解析法が使用される。1次元解析法、2次元解析法
と3次元解析法のいずれでも使用される。1次元要素に
は円管や矩形管などが、2次元要素には3角形や4角形
などが、3次元要素には4面体、5面体や6面体などが
使用される。
Various numerical analysis methods such as a finite volume method, a finite element method, a boundary element method, a difference method and a FAN method are used for the flow analysis of the molding material. The one-dimensional analysis method, the two-dimensional analysis method, and the three-dimensional analysis method are used. For a one-dimensional element, a circular tube, a rectangular tube or the like is used, for a two-dimensional element, a triangle or a quadrangle is used, and for a three-dimensional element, a tetrahedron, a pentahedron, a hexahedron, or the like is used.

【0028】模式的に例示すると、長方形の平板を一方
の短辺側の両端の隅角部から成形材料を注入して成形す
る場合、図2に示すように、成形型のキャビティを多数
の正方形の2次元要素1〜8に分割して、キャビティの
一方の短辺側の両端の隅角部にゲートAとゲートBを設
定した形状モデルを用い、形状モデルの各要素1〜8に
おける成形材料の各時刻の速度ベクトルV1〜V8を2次
元の数値解析法により求める。
To illustrate schematically, when a rectangular flat plate is molded by injecting molding material from the corners at both ends on one short side, as shown in FIG. Is divided into two-dimensional elements 1 to 8 and a molding material is used in each of the elements 1 to 8 of the shape model using a shape model in which gates A and B are set at the corners at both ends on one short side of the cavity. the velocity vector V 1 ~V 8 at each time of obtaining the two-dimensional numerical methods.

【0029】 マーカ粒子の移動工程においては、各
要素の中心にマーカ粒子を配置し、上記の速度ベクトル
に基づいて、各マーカ粒子を時間に対して逆向きに、即
ち、成形材料の流動方向と逆向きにゲートに向かって移
動させる。
In the marker particle moving step, the marker particles are arranged at the center of each element, and based on the velocity vector, each marker particle is oriented in a direction opposite to time, that is, in a direction in which the molding material flows. Move toward the gate in the opposite direction.

【0030】この際、マーカ粒子の移動に使用する速度
ベクトルは、その時刻に対応するものに順次置き換える
が、速度ベクトルの時刻による変化が小さいときには、
特定時刻の速度ベクトルを継続して使用してもよい。
At this time, the velocity vector used for moving the marker particles is sequentially replaced with the one corresponding to the time.
The speed vector at the specific time may be continuously used.

【0031】マーカ粒子を逆流させるのには、例えば、
次の式が使用される。
To make the marker particles flow backward, for example,
The following formula is used:

【0032】X2 = X1 − V・Δt ここで、X2:マーカ粒子の移動後の位置ベクトル X1:マーカ粒子の移動前の位置ベクトル V:マーカ粒子が移動前に存在した要素の速度ベクトル Δt:マーカ粒子の移動計算の時間間隔 である。X 2 = X 1 −V · Δt where X 2 : position vector after movement of the marker particle X 1 : position vector before movement of the marker particle V: velocity of the element where the marker particle existed before the movement Vector Δt: time interval for calculation of marker particle movement.

【0033】図2に示した模式例においては、形状モデ
ルの第1要素1と第5要素5の中心に配置したマーカ粒
子m1,m5は、それぞれ、図3に示すように、軌跡
1,t5を経て、ゲートAとゲートBを通過する。同様
に、第2要素2〜第4要素4の中心に配置したマーカ粒
子は、ゲートAを通過する。第6要素6〜第8要素8の
中心に配置したマーカ粒子は、ゲートBを通過する。
In the schematic example shown in FIG. 2, the marker particles m 1 and m 5 arranged at the centers of the first element 1 and the fifth element 5 of the shape model respectively have the locus t 1 as shown in FIG. through 1, t 5, passes through the gate a and gate B. Similarly, the marker particles arranged at the centers of the second element 4 to the fourth element 4 pass through the gate A. The marker particles arranged at the centers of the sixth element 6 to the eighth element 8 pass through the gate B.

【0034】 要素の属性の決定工程においては、各
マーカ粒子が最初に所属していた要素の属性を、マーカ
粒子が特定のゲート(またはキャビティの特定の部分)
を通過したか否かにより決定する。
In the step of determining the attribute of the element, the attribute of the element to which each marker particle originally belongs is determined by the marker particle by a specific gate (or a specific portion of the cavity).
Is determined by whether or not the vehicle has passed.

【0035】図2と図3に示した模式例においては、形
状モデルの第1要素1〜第4要素4に配置したマーカ粒
子は、ゲートAを通過するので、図4に示すように、第
1要素1〜第4要素4は、属性をaとする。第5要素5
〜第8要素8に配置したマーカ粒子は、ゲートBを通過
するので、図4に示すように、第5要素5〜第8要素8
は、属性をbとする。
In the schematic examples shown in FIGS. 2 and 3, since the marker particles arranged on the first to fourth elements 4 of the shape model pass through the gate A, as shown in FIG. The first element to the fourth element 4 have an attribute a. Fifth element 5
Since the marker particles arranged in the eighth to eighth elements 8 pass through the gate B, as shown in FIG.
Has an attribute b.

【0036】 成形品のウェルドの検出工程において
は、形状モデルの各要素の属性をグラフイック画面など
に表示し、属性が変化する要素界面を成形品のウェルド
として検出する。
In the process of detecting the weld of the molded article, the attributes of each element of the shape model are displayed on a graphic screen or the like, and the element interface where the attribute changes is detected as the weld of the molded article.

【0037】図2〜図4に示した模式例においては、第
1要素1〜第4要素4の属性がaであり、第5要素5〜
第8要素8の属性がbであるので、図4に示すように、
第1要素1〜第4要素4と第5要素5〜第8要素8の界
面X−Yが成形品のウェルドとして検出される。
In the schematic examples shown in FIGS. 2 to 4, the attribute of the first element 1 to the fourth element 4 is a, and the fifth element 5 to
Since the attribute of the eighth element 8 is b, as shown in FIG.
The interface XY between the first to fourth elements 4 and the fifth to eighth elements 8 is detected as a weld of the molded product.

【0038】[0038]

【実施例】本例は、図5に示すように、100×50×
2mmの長方形の平板11の上面に20×10mmの長方形
断面のリブ12が十文字形状に接合した形状の合成樹脂
部品を、一方の短辺側の平板11とリブ12の接合部の
中央位置13と、一方の長辺側の平板11とリブ12の
接合部の中央位置14から溶融樹脂を注入して成形する
場合、成形品のウェルドの位置と形状を予測する例であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG.
A synthetic resin part in which a rib 12 having a rectangular cross section of 20 × 10 mm is joined in a cross shape on the upper surface of a rectangular flat plate 11 of 2 mm, is joined to the central position 13 of the joint between the flat plate 11 on one short side and the rib 12. This is an example of predicting the weld position and shape of a molded product when molding is performed by injecting molten resin from the central position 14 of the joint between the flat plate 11 and the rib 12 on one long side.

【0039】 形状モデルは、図6に示すように、成
形型のキャビティの平板成形部21を4角形の2次元要
素に分割し、キャビティのリブ成形部22を6面体の3
次元要素に分割し、成形型の2本のランナ23,24を
円管の1次元要素に分割し、キャビティと両ランナ2
3,24の接続位置にゲートAとゲートBを設定した。
要素数は、1116個である。
As shown in FIG. 6, the shape model divides the flat plate forming portion 21 of the cavity of the forming die into quadrangular two-dimensional elements and converts the rib forming portion 22 of the cavity into a hexahedral three-dimensional element.
The mold is divided into two-dimensional elements, and the two runners 23 and 24 of the molding die are divided into one-dimensional elements of a circular tube.
Gates A and B were set at connection positions 3 and 24.
The number of elements is 1116.

【0040】溶融樹脂の流動解析は、電子計算機におい
て、自社製の3次元樹脂流動解析プログラムを用い、上
記の形状モデルの外に、溶融樹脂の注入速度と温度、成
形型の温度と、溶融樹脂の密度、熱伝導率、比熱や粘性
係数などの物性値を入力し、形状モデルの各要素におけ
る溶融樹脂の速度ベクトルを2.0秒の充填時間の10
0分の1の間隔で求めた。
The flow analysis of the molten resin is performed by using a three-dimensional resin flow analysis program made in-house by an electronic computer. In addition to the above-mentioned shape model, the injection speed and temperature of the molten resin, the temperature of the molding die, The physical properties such as density, thermal conductivity, specific heat and viscosity coefficient of the molten resin are input, and the velocity vector of the molten resin in each element of the shape model is set to 10 seconds for a filling time of 2.0 seconds.
It was determined at 1/0 intervals.

【0041】 マーカ粒子を逆流させる前記の式を利
用した自作のマーカ粒子移動プログラムを用い、形状モ
デルの各要素の中心にマーカ粒子を配置し、上記の速度
ベクトルに基づいて、各マーカ粒子を時間に対して逆向
きに、即ち、溶融樹脂の流動方向と逆向きにゲートに向
かって移動させた。
Using a self-made marker particle moving program using the above formula for causing the marker particles to flow backward, the marker particles are arranged at the center of each element of the shape model, and each marker particle is timed based on the above velocity vector. , Ie, in the direction opposite to the flow direction of the molten resin toward the gate.

【0042】 マーカ粒子がゲートAを通過したとき
には、そのマーカ粒子が最初に所属していた要素の属性
をaとし、マーカ粒子がゲートBを通過したときには、
そのマーカ粒子が最初に所属していた要素の属性をbと
し、形状モデルの各要素についてaかbかの属性を決定
した。
When the marker particle passes through the gate A, the attribute of the element to which the marker particle first belongs is a, and when the marker particle passes through the gate B,
The attribute of the element to which the marker particle first belonged was set to b, and the attribute of a or b was determined for each element of the shape model.

【0043】 形状モデルの各要素は、図7に示すよ
うに、属性aの要素31をハッチング付きで、属性bの
要素32をハッチングなしで、電子計算機の表示画面に
表示し、属性が変化する要素界面を成形品のウェルドと
して検出し、図8に示すように、成形品のウェルドwの
位置と形状を予測する。
As shown in FIG. 7, each element of the shape model is displayed on the display screen of the computer with the element 31 of the attribute a being hatched and the element 32 of the attribute b being not hatched, and the attribute is changed. The element interface is detected as the weld of the molded article, and the position and shape of the weld w of the molded article are predicted as shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態のウェルド予測方法のフロー
チャート。
FIG. 1 is a flowchart of a weld prediction method according to an embodiment of the present invention.

【図2】同形態のウェルド予測方法における形状モデル
の要素分割、ゲート設定と各要素の速度ベクトルを示す
模式図。
FIG. 2 is a schematic diagram showing element division and gate setting of a shape model and a velocity vector of each element in a weld prediction method of the same embodiment.

【図3】同形態のウェルド予測方法における形状モデル
の第1要素と第5要素に配置したマーカ粒子の軌跡を示
す模式図。
FIG. 3 is a schematic diagram showing trajectories of marker particles arranged on a first element and a fifth element of a shape model in the weld prediction method of the embodiment.

【図4】同形態のウェルド予測方法における形状モデル
の各要素に属性を表示してウェルドを示す模式図。
FIG. 4 is a schematic diagram showing a weld by displaying an attribute on each element of a shape model in the weld prediction method of the same embodiment.

【図5】本発明の実施例のウェルド予測方法における成
形品の斜視図。
FIG. 5 is a perspective view of a molded product in a weld prediction method according to the embodiment of the present invention.

【図6】同例のウェルド予測方法における形状モデルの
斜視図。
FIG. 6 is a perspective view of a shape model in the weld prediction method of the same example.

【図7】同例のウェルド予測方法における形状モデルの
各要素に属性を表示した状態の斜視図。
FIG. 7 is a perspective view showing a state in which attributes are displayed on each element of the shape model in the weld prediction method of the same example.

【図8】同例のウェルド予測方法における成形品にウェ
ルドを示した状態の斜視図。
FIG. 8 is a perspective view of a state in which a weld is shown on a molded article in the weld prediction method of the same example.

【符号の説明】[Explanation of symbols]

1〜8 形状モデルの要素 A ゲートA B ゲートB V1〜V8 要素1〜8における成形材料の速度ベクトル m1,m5 第1,第5要素に配置したマーカ粒子 t1,t5 マーカ粒子の移動軌跡 X−Y 成形品のウェルド 31 属性aの要素 32 属性bの要素 w 成形品のウェルド1 to 8 Elements of shape model A Gate AB Gate B V 1 to V 8 Velocity vector m 1 , m 5 of molding material in elements 1 to 8 Marker particles t 1 , t 5 marker arranged in first and fifth elements Particle movement trajectory XY Weld of molded article 31 Element of attribute a 32 Element of attribute b w Weld of molded article

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次の工程を有することを特徴とする成形
品のウェルドの予測方法。成形材料の流動解析工程:成
形型のキャビティを多数の要素に分割し、各要素におけ
る成形材料の速度ベクトルを求める。 マーカ粒子の移動工程:上記の速度ベクトルに基づい
て、各要素に配置したマーカ粒子を成形材料の流動方向
と逆向きに移動させる。 要素の属性の決定工程:各マーカ粒子が最初に所属して
いた要素の属性を、マーカ粒子が特定のゲートまたはキ
ャビティの特定の部分を通過したか否かにより決定す
る。 成形品のウェルドの検出工程:属性が変化する要素界面
を成形品のウェルドとして検出する。
1. A method for predicting weld of a molded article, comprising the following steps. Molding material flow analysis step: The mold cavity is divided into a number of elements, and the velocity vector of the molding material in each element is determined. Marker particle moving step: The marker particles arranged in each element are moved in the direction opposite to the flowing direction of the molding material based on the above velocity vector. Determining the attribute of the element: The attribute of the element to which each marker particle originally belonged is determined by whether or not the marker particle has passed a specific gate or a specific portion of a cavity. Step of detecting weld of molded article: detecting an element interface whose attribute changes as a weld of the molded article.
JP23797297A 1997-09-03 1997-09-03 Estimation of weld of molded product Pending JPH1177782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23797297A JPH1177782A (en) 1997-09-03 1997-09-03 Estimation of weld of molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23797297A JPH1177782A (en) 1997-09-03 1997-09-03 Estimation of weld of molded product

Publications (1)

Publication Number Publication Date
JPH1177782A true JPH1177782A (en) 1999-03-23

Family

ID=17023209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23797297A Pending JPH1177782A (en) 1997-09-03 1997-09-03 Estimation of weld of molded product

Country Status (1)

Country Link
JP (1) JPH1177782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200662A (en) * 2000-12-28 2002-07-16 Toray Ind Inc Method and apparatus for predicting weld line
US11375276B2 (en) 2017-03-30 2022-06-28 Rovi Guides, Inc. Methods and systems for recommending media assets based on the geographic location at which the media assets are frequently consumed

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200662A (en) * 2000-12-28 2002-07-16 Toray Ind Inc Method and apparatus for predicting weld line
JP4603153B2 (en) * 2000-12-28 2010-12-22 東レエンジニアリング株式会社 Weld line prediction method and apparatus
US11375276B2 (en) 2017-03-30 2022-06-28 Rovi Guides, Inc. Methods and systems for recommending media assets based on the geographic location at which the media assets are frequently consumed
US11622151B2 (en) 2017-03-30 2023-04-04 Rovi Guides, Inc. Methods and systems for recommending media assets based on the geographic location at which the media assets are frequently consumed

Similar Documents

Publication Publication Date Title
KR970000929B1 (en) Molten injection-molding method
Hétu et al. 3D finite element method for the simulation of the filling stage in injection molding
JP2003510202A (en) Method and apparatus for modeling fluid injection in a mold cavity
KR970000928B1 (en) Molten injection-molding method
KR970000927B1 (en) Evaluation method of flow analysis on molding of a molten material
KR960007146A (en) Analysis apparatus for fluid flow process, analysis method, analysis apparatus for injection molding process, analysis method, injection molded product and manufacturing method of injection molded product
Chen et al. Simulation of injection-compression mold-filling process
Ilinca et al. Three-dimensional filling and post-filling simulation of polymer injection molding
JPH1177782A (en) Estimation of weld of molded product
JP3721765B2 (en) Three-dimensional flow finite element analysis method, analysis apparatus, manufacturing method for manufacturing a molded product, and medium for recording analysis method program
Nguyen-Chung et al. Non-isothermal transient flow and molecular orientation during injection mold filling
JPH09150443A (en) Apparatus for analyzing fluid-flow process and manufacture of injection molding
Chen et al. Study of polymer melt flow in sequential injection molding process
JP2998596B2 (en) Fluid flow process analysis device, analysis method, injection molding process analysis device, analysis method, injection molded product, and method for manufacturing injection molded product
JP6639899B2 (en) Molded article design support method, molded article design support apparatus, computer software, storage medium
JP3255758B2 (en) Prediction method of flow mark generation in injection molded products
JP2003271678A (en) Numerical analysis method and device
JP3870766B2 (en) Injection molding method of molded product, weld line prediction method of molded product, and molding condition setting method of molded product
JPH071529A (en) Estimating method of strength of weld line of injection molded product
WO2018047809A1 (en) Curvature deformation prevention design method for resin molded article, program, recording medium, and curvature deformation prevention design apparatus for resin molded article
JP2001341169A (en) Molding and manufacturing method therefor
JPH09314307A (en) Production of injection formed product
KR970000926B1 (en) Molten injection-molding method
JP2011201108A (en) Flow analyzing method, flow analyzer and flow analysis program of resin molding
JP3574272B2 (en) Method and apparatus for predicting occurrence of boundary defect in injection material