JP2002197951A - Non-contact alignment jig for reflection sensor - Google Patents

Non-contact alignment jig for reflection sensor

Info

Publication number
JP2002197951A
JP2002197951A JP2000392033A JP2000392033A JP2002197951A JP 2002197951 A JP2002197951 A JP 2002197951A JP 2000392033 A JP2000392033 A JP 2000392033A JP 2000392033 A JP2000392033 A JP 2000392033A JP 2002197951 A JP2002197951 A JP 2002197951A
Authority
JP
Japan
Prior art keywords
reflection sensor
reflection
sensor
contact alignment
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000392033A
Other languages
Japanese (ja)
Inventor
Tadao Kusumoto
忠男 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000392033A priority Critical patent/JP2002197951A/en
Publication of JP2002197951A publication Critical patent/JP2002197951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform non-contact alignment of a reflection sensor and a reflector with high precision when inspecting electrical characteristics of the reflection sensor. SOLUTION: For a driving system, a micrometer and a precision stage are used, and fine adjustment on the order of μm is possible. For the measuring system, a laser discrimination sensor is used, fine adjustment on the order of μm is possible, and the discrimination is shown by lamp indication. By combining the above systems in the jig, non-contact alignment of the reflection sensor and the reflector can be performed easily with high precision.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】反射センサーとは、発光素子
(例えば、LED)、受光素子(例えばフォトTr)と
からなり反射光を検出し、物体の有無を調べるものであ
る。
BACKGROUND OF THE INVENTION A reflection sensor is a light-emitting element.
(For example, an LED) and a light receiving element (for example, a photo Tr), which detects reflected light and checks for the presence or absence of an object.

【0002】上記、反射センサーの特性を検査する上
で、センサーと物体間の距離を精度良く合せることが重
要となる。図2参照。
In inspecting the characteristics of the reflection sensor, it is important to accurately adjust the distance between the sensor and the object. See FIG.

【0003】[0003]

【従来の技術】反射センサー1と反射物2との距離を精
度良く合せるには、どちらか一方を固定し、他方をX軸
方向に移動可能なマイクロメーター付き精密ステージに
置く。図3−1参照。例として、距離を1mmに合せる
場合で説明する。
2. Description of the Related Art To accurately match the distance between a reflection sensor 1 and a reflection object 2, one of them is fixed and the other is placed on a precision stage with a micrometer movable in the X-axis direction. See FIG. As an example, a case where the distance is set to 1 mm will be described.

【0004】図3−2の様に、反射センサー1と反射物
2を接触するまで近づけマイクロメーターの値5を読
む。
As shown in FIG. 3B, the reflection sensor 1 and the reflection object 2 are brought close to each other until they come into contact with each other, and the value 5 of the micrometer is read.

【0005】次に、図3−3の様に、マイクロメーター
の値6が5より1mmだけ小さい値になるまで、値を見
ながら間隔を広げる。
Next, as shown in FIG. 3C, the interval is increased while observing the value 6 of the micrometer until the value 6 becomes smaller than 5 by 1 mm.

【0006】[0006]

【発明が解決しようとする課題】従来の反射センサーと
反射物の位置合せ方法は、図3−2の様に以下の課題が
あった。
The conventional method of aligning a reflection sensor with a reflection object has the following problems as shown in FIG.

【0007】1.反射センサーと反射物を1度接触する
ため、反射センサーや反射物の表面に傷がつき劣化して
しまう。
[0007] 1. Since the reflection sensor and the reflection object are in contact once, the surface of the reflection sensor and the reflection object are damaged and deteriorated.

【0008】従って、特性データが変化して、再現性の
あるデータが得られない。
[0008] Therefore, the characteristic data changes, and reproducible data cannot be obtained.

【0009】2.マイクロメーターの値を読みながら、
位置合せを調整するため調整に手間どる。また、ミスも
発生し易い。
[0009] 2. While reading the value of the micrometer,
It takes time to adjust the alignment. In addition, mistakes are likely to occur.

【0010】[0010]

【課題を解決するための手段】従来のように、反射セン
サーと反射物を接触させて位置合せするのではなく、非
接触で行なえるようにする。
SUMMARY OF THE INVENTION As in the prior art, a reflection sensor and a reflection object are not brought into contact with each other and aligned, but can be performed in a non-contact manner.

【0011】その手段として、レーザー光を利用したレ
ーザー判別方式を採用した。レーザー判別方式を説明す
る。
As the means, a laser discrimination system using laser light is adopted. The laser discrimination method will be described.

【0012】図4−1の様に、レーザーの発光部1と受
光部2の間にレーザー光をある幅をもって発光させる。
As shown in FIG. 4A, a laser beam is emitted with a certain width between a light emitting section 1 and a light receiving section 2 of the laser.

【0013】その間へ、障害物4を入れていくと、遮光
量lと出力は図4−2のようになる。この特性を利用し
て障害物の位置を精度良く(約10μm)計測できる。
When the obstacle 4 is inserted in the meantime, the light shielding amount 1 and the output become as shown in FIG. By utilizing this characteristic, the position of the obstacle can be accurately measured (about 10 μm).

【0014】計測結果は、LEDランプで表示され、容
易にわかる。
The measurement result is displayed on an LED lamp and is easily understood.

【0015】[0015]

【発明の実施の形態】図1は本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

【0016】実際に反射センサー3と反射物6との距離
を1mmにしたときの場合で説明する。まず、粗調と微
調の2段階に分けて操作性を向上させた。反射センサー
3の交換を容易にするために反射物6を約50mm程度
後退させる。反射センサー3をソケット4に入れ、反射
物6を約50mm前進させ、反射センサー3と反射物6
との距離を約1.3mm程度に近づける。…粗調。
The case where the distance between the reflection sensor 3 and the reflection object 6 is actually set to 1 mm will be described. First, the operability was improved in two stages of coarse adjustment and fine adjustment. The reflector 6 is retracted by about 50 mm to facilitate replacement of the reflection sensor 3. The reflection sensor 3 is put into the socket 4, the reflection object 6 is advanced by about 50 mm, and the reflection sensor 3 and the reflection object 6 are moved.
To a distance of about 1.3 mm. ... Coarse.

【0017】次に、精密ステージ5に取付られた反射セ
ンサー3の位置を、マイクロメーターを利用して反射物
6に近づけて行く。この時、マイクロメーターの値を読
む必要はなくマイクロメーターの移動機構だけを利用す
る。
Next, the position of the reflection sensor 3 attached to the precision stage 5 is brought closer to the reflection object 6 using a micrometer. At this time, there is no need to read the value of the micrometer, and only the moving mechanism of the micrometer is used.

【0018】約300μm近づけるときに、レーザーの
アンプユニットに付いている表示器8の点灯を確認する
だけで良い。…微調。
When the distance is approximately 300 μm, it is only necessary to confirm the lighting of the indicator 8 attached to the laser amplifier unit. … Fine adjustment.

【0019】このLEDランプ8のスレッショルドは、
前もって図4−2にある出力特性を用いて、距離を校正
しておく必要がある。
The threshold of this LED lamp 8 is
It is necessary to calibrate the distance in advance using the output characteristics shown in FIG.

【0020】位置合せ後、反射センサーの電気的特性を
測定する際にレーザーの発光を停止させておくことも必
要である。
After the alignment, it is necessary to stop the laser emission when measuring the electrical characteristics of the reflection sensor.

【0021】[0021]

【発明の効果】イ.反射センサーと反射物との位置合せ
が非接触で行なうことができた。
Advantages of the invention The alignment between the reflection sensor and the reflection object could be performed without contact.

【0022】ロ.レーザー判別法とマイクロメーター付
精密ステージを使うことで位置合せ精度が約50μmと
良くできた。
B. By using the laser discrimination method and the precision stage with a micrometer, the alignment accuracy was improved to about 50 μm.

【0023】ハ.電気的特性を測定する際に、位置合せ
作業がランプの点灯を確認するだけで良く作業能率が向
上した。
C. When measuring the electrical characteristics, the alignment work only required to confirm the lighting of the lamp, and the work efficiency was improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の反射センサー非接触位置合せ治具図
である。
FIG. 1 is a view showing a reflection sensor non-contact positioning jig of the present invention.

【図2】 反射センサーの特性例の図。FIG. 2 is a diagram of a characteristic example of a reflection sensor.

【図3】 反射センサーの従来の位置合せ方法の1例の
図。
FIG. 3 is a diagram of an example of a conventional alignment method of a reflection sensor.

【図4】 レーザー判別方法の説明図FIG. 4 is an explanatory diagram of a laser discrimination method.

【符号の説明】[Explanation of symbols]

1.レーザー発光部 2.レーザー受光部 3.反射センサー 4.ソケット 5.精密ステージ 6.反射物 7.レーザーのコントローラー 8.LED表示器 1. Laser emitting part 2. Laser receiver 3. Reflection sensor 4. Socket 5. Precision stage 6. Reflector 7. 7. Laser controller LED display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反射センサーと反射物の位置合せを、レ
ーザー判別法とマイクロメーター付精密ステージを用い
て非接触で行なえるようにしたことを特徴とする治具。
1. A jig characterized in that alignment of a reflection sensor and a reflection object can be performed in a non-contact manner using a laser discrimination method and a precision stage with a micrometer.
JP2000392033A 2000-12-25 2000-12-25 Non-contact alignment jig for reflection sensor Pending JP2002197951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392033A JP2002197951A (en) 2000-12-25 2000-12-25 Non-contact alignment jig for reflection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392033A JP2002197951A (en) 2000-12-25 2000-12-25 Non-contact alignment jig for reflection sensor

Publications (1)

Publication Number Publication Date
JP2002197951A true JP2002197951A (en) 2002-07-12

Family

ID=18858085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392033A Pending JP2002197951A (en) 2000-12-25 2000-12-25 Non-contact alignment jig for reflection sensor

Country Status (1)

Country Link
JP (1) JP2002197951A (en)

Similar Documents

Publication Publication Date Title
US7880902B2 (en) Contactless optical probe and device and method making use thereof
CN111788465B (en) Temperature measurement sensor, temperature measurement system, and temperature measurement method
JP2002197951A (en) Non-contact alignment jig for reflection sensor
US4914290A (en) Method and apparatus for measuring of microdistances
US6881587B2 (en) Liquid-containing substance analyzing device and liquid-containing substance analyzing method
JP2003035510A (en) Position detector
JP2002005631A (en) Method and apparatus for measuring characteristics of plate
JPH04260108A (en) Optical sensor
JP2009098003A (en) Vibration displacement detecting device and method of detecting displacement and vibration
US11885950B2 (en) Light source module for a microscope
JP2004233089A (en) Device and method for judging size of object to be inspected
JP2007212171A (en) Fluorescence detector
CN104991421A (en) Drawing apparatus
JP3122190B2 (en) Voltage detector
US5497228A (en) Laser bevel meter
JPH01143906A (en) Measuring instrument for parallelism between front and rear surfaces of opaque body
JP2003097924A (en) Shape measuring system and method using the same
JP2859655B2 (en) Wafer detector
KR930008564B1 (en) Angle measuring divice
JPH04115109A (en) Surface-roughness measuring apparatus
CN116224608A (en) Camera testing environment auxiliary calibration device and method
KR20050043164A (en) Oct(optical coherence tomography) system using a ccd(charge coupled device) camera
JP3271221B2 (en) Method of detecting light emission position of light emitter and method of assembling optical parts using the same
JPH1125821A (en) Optical sensor device
SU1029002A2 (en) Method of gauging layer thickness