JP2002195540A - Heat storage type waste gas treatment device - Google Patents

Heat storage type waste gas treatment device

Info

Publication number
JP2002195540A
JP2002195540A JP2000396745A JP2000396745A JP2002195540A JP 2002195540 A JP2002195540 A JP 2002195540A JP 2000396745 A JP2000396745 A JP 2000396745A JP 2000396745 A JP2000396745 A JP 2000396745A JP 2002195540 A JP2002195540 A JP 2002195540A
Authority
JP
Japan
Prior art keywords
heat storage
exhaust gas
storage layer
heat
waste gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000396745A
Other languages
Japanese (ja)
Other versions
JP4085298B2 (en
Inventor
Kazuki Kobayashi
和樹 小林
Shigeru Tominaga
成 冨永
Toshifumi Mukai
利文 向井
Hiroshi Kawazoe
博 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000396745A priority Critical patent/JP4085298B2/en
Publication of JP2002195540A publication Critical patent/JP2002195540A/en
Application granted granted Critical
Publication of JP4085298B2 publication Critical patent/JP4085298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To perform a stable operation for a long period by preventing the closure of an opening part of a heat storage material through which untreated waste gas flows in a heat storage type waste gas treatment device. SOLUTION: The heat storage type waste gas treatment device comprises a furnace 4 for treating the untreated waste gas including VOC at high temperature, a heat storage layer 3 of honeycomb shape in section for preheating the untreated waste gas and removing heat of treated waste gas and a distributing valve 2 for distributing the untreated waste gas to the high temperature heat storage layer. A pressure loss part of a waste gas passage is detected in accordance with the differential pressure of the heat storage layer, and the rotation of the distributing valve 2 is controlled to adjust the flowing time of the high temperature treated waste gas flowing through the heat storage layer 3, so that the pressure loss part is heated to 450 to 500 deg.C. Thus, adhering silicone oil is rapidly oxidized to become silica particles. The silica particles can be simply removed by a blower to suppress the closure of the waste gas passage with a stable operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中に含まれ
る可燃性有害成分や可燃性悪臭成分を、触媒燃焼または
直接燃焼させて無害無臭な物質に変換させるとともに、
その際に生じる熱を回収して排ガス処理に再利用する蓄
熱型の排ガス処理装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for converting flammable harmful components and flammable odorous components contained in exhaust gas into harmless and odorless substances by catalytic combustion or direct combustion.
The present invention relates to a heat storage type exhaust gas treatment apparatus that recovers heat generated at that time and reuses it for exhaust gas treatment.

【0002】[0002]

【従来の技術】自動車などの塗装工場や、金属洗浄工
場、あるいは印刷工場などからは、トルエン、キシレ
ン、スチレン等の揮発性有機化合物(volatile
organic compound,: VOC)を
含んだ排ガスが発生する。このようなVOC含有ガス
は、せいぜい十数ppmから数%程度の濃度であるが、
環境や人体への影響がかなり大きいことが明らかになっ
てきた。
2. Description of the Related Art Volatile organic compounds such as toluene, xylene, styrene and the like are obtained from painting plants for automobiles, metal washing plants, printing plants and the like.
Exhaust gas containing organic compound (VOC) is generated. Such a VOC-containing gas has a concentration of at most ten and several ppm to several percent,
It has become clear that the impact on the environment and the human body is quite large.

【0003】例えば、NOxと反応して光化学スモッグ
を発生させたり、森林を枯れさせたり、さらには、光化
学オキシダントの主成分であるオゾンを対流圏内で増加
させ、地球を温暖化する。また、これらのVOC含有ガ
スは、発ガンの誘引となり、人体に健康障害を起こさせ
ることが知られている。
For example, it reacts with NOx to generate photochemical smog, kills forests, and increases ozone, which is a main component of photochemical oxidants, in the troposphere, thereby warming the earth. In addition, it is known that these VOC-containing gases induce cancer and cause health problems in human bodies.

【0004】このため、上記各種の工場などでは、VO
C含有ガスを無害化処理して大気中に排出している。V
OC含有ガスの無害化処理方法としては、直接燃焼方
式、触媒燃焼方式、蓄熱燃焼方式、触媒燃焼/蓄熱方
式、濃縮方式、生物処理方式などがある。
[0004] Therefore, in the above-mentioned various factories and the like, VO
The C-containing gas is detoxified and discharged into the atmosphere. V
As a method for detoxifying the OC-containing gas, there are a direct combustion method, a catalytic combustion method, a heat storage combustion method, a catalytic combustion / heat storage method, a concentration method, a biological treatment method, and the like.

【0005】このなかで、ランニングコストやメンテナ
ンスの容易さなどを考慮すると、有害成分の燃焼熱を回
収して未処理排ガスの熱源として再利用する蓄熱型排ガ
ス処理装置が有望である。蓄熱型排ガス処理装置は、蓄
熱室の数により、二塔式、三塔式、多塔式のものなどが
ある。
[0005] In view of the above, in consideration of running costs and ease of maintenance, a heat storage type exhaust gas treatment apparatus that recovers combustion heat of harmful components and reuses it as a heat source of untreated exhaust gas is promising. As the heat storage type exhaust gas treatment apparatus, there are a two-tower type, a three-tower type, a multi-tower type, and the like, depending on the number of heat storage chambers.

【0006】この蓄熱型排ガス処理方法は、未処理排ガ
スを蓄熱材に流通させて予熱した後、炉に導入してVO
Cを燃焼して無害化処理し、処理済の高温排ガスを再び
蓄熱材に流通させてその熱を蓄え、蓄えたその熱を低温
の未処理排ガスが流通するときに再び放出して熱交換を
行なうものである。
In this heat storage type exhaust gas treatment method, untreated exhaust gas is passed through a heat storage material, preheated, and then introduced into a furnace for VO
C is burned to make it harmless, the treated high-temperature exhaust gas is circulated again through the heat storage material to store the heat, and the stored heat is released again when the low-temperature untreated exhaust gas circulates to perform heat exchange. It is what you do.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
蓄熱型排ガス処理方法には次のような問題点があった。
すなわち、シリコーンオイルのように粘度の高い成分を
含むVOCガスを、蓄熱型排ガス処理装置で処理した場
合、未処理ガスの入口側に相当する蓄熱材低温部で、シ
リコーンオイルの付着により開口面積が狭められるとい
う問題が生じた。
However, the conventional heat storage type exhaust gas treatment method has the following problems.
That is, when a VOC gas containing a component having a high viscosity such as silicone oil is treated by a heat storage type exhaust gas treatment device, the opening area is reduced due to the adhesion of the silicone oil in the low temperature part of the heat storage material corresponding to the inlet side of the untreated gas. The problem of being narrowed has arisen.

【0008】これにより圧力損失が増加し、排ガス処理
量を一定に維持しようとすれば、送風機の負荷を増大さ
せなければならず、そのため、エネルギー消費量が増大
することになり、さらには、蓄熱材開口部が閉塞して装
置が運転不能に陥るという欠点があった。
As a result, the pressure loss increases, and in order to maintain a constant exhaust gas throughput, the load on the blower must be increased, which leads to an increase in energy consumption, and further, an increase in heat storage. There is a disadvantage that the material opening is closed and the device becomes inoperable.

【0009】本発明の課題は、上記従来技術の問題点を
解消し、蓄熱型排ガス処理装置において、未処理排ガス
が流通する蓄熱材開口部の閉塞を防止し、長期間の安定
した運転を可能にすることである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to prevent a heat storage material opening through which untreated exhaust gas circulates from being blocked in a heat storage type exhaust gas treatment apparatus, thereby enabling long-term stable operation. It is to be.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明の蓄熱型排ガス処理装置は、蓄熱材における
未処理排ガスの流入側と流出側との差圧から、圧力損失
部である蓄熱材低温部の付着を検知し、分配弁の回転速
度を制御して蓄熱材低温部の温度を450〜500℃に
上げ、付着したシリコーンオイルをシリカ粉末に変える
ことにより容易に除去可能とした。これにより、長期間
の安定した運転が可能になった。
In order to solve the above-mentioned problems, a heat storage type exhaust gas treatment apparatus according to the present invention is provided with a pressure loss section based on a differential pressure between an inflow side and an outflow side of untreated exhaust gas in a heat storage material. By detecting the adhesion of the heat storage material low temperature part, controlling the rotation speed of the distribution valve to raise the temperature of the heat storage material low temperature part to 450 to 500 ° C, and changing the attached silicone oil to silica powder makes it easy to remove. . As a result, long-term stable operation has become possible.

【0011】すなわち、蓄熱式の排ガス処理装置におい
て、未処理排ガスと処理済排ガスの熱交換を行なう蓄熱
層は、排ガスの流通方向と平行な細い流路を形成した、
断面ハニカム状の蓄熱材を複数段積層して形成され、蓄
熱層の差圧に基づいて蓄熱材ハニカムの圧力損失部を加
熱する機能を備えることで、安定な運転を可能としたも
のである。また、蓄熱材ハニカムの入口側および出口側
のセル径を、他の領域のそれよりも大きくすることで、
安定な運転を可能とすることもできる。
That is, in the heat storage type exhaust gas treatment apparatus, the heat storage layer for performing heat exchange between the untreated exhaust gas and the treated exhaust gas has formed a narrow flow path parallel to the flow direction of the exhaust gas.
The heat storage material having a honeycomb shape in cross section is formed by laminating a plurality of stages, and has a function of heating the pressure loss portion of the heat storage material honeycomb based on the differential pressure of the heat storage layer, thereby enabling stable operation. Also, by making the cell diameter on the inlet side and the outlet side of the heat storage material honeycomb larger than that of other areas,
It is also possible to enable stable operation.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1に本発明の蓄熱型排ガス処
理装置の主要部を示す。本例の蓄熱型排ガス処理装置
は、大きく分けて、VOCを含有する未処理排ガスを高
温で処理する炉4と、未処理排ガスを加熱し処理済排ガ
スを除熱する蓄熱層3と、未処理排ガスを高温の蓄熱層
に分配する分配弁2とから構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a main part of a heat storage type exhaust gas treatment apparatus of the present invention. The heat storage type exhaust gas treatment apparatus of this example is roughly divided into a furnace 4 for treating untreated exhaust gas containing VOC at a high temperature, a heat storage layer 3 for heating the untreated exhaust gas and removing heat from the treated exhaust gas, And a distribution valve 2 for distributing the exhaust gas to the high-temperature heat storage layer.

【0013】炉4は、熱源となるバーナ5を具備してい
る。蓄熱層3は、複数個の蓄熱材を備えており、これら
はガスの流れ方向に連結され、このガス流れを横断する
方向には、互いに隔離された複数の流路〜を形成し
ている。
The furnace 4 has a burner 5 serving as a heat source. The heat storage layer 3 includes a plurality of heat storage materials, which are connected in a gas flow direction, and form a plurality of flow paths isolated from each other in a direction crossing the gas flow.

【0014】図1を用いて、本実施形態をさらに詳述す
る。分配弁2の下部は、清浄ガス6、未処理排ガス1、
パージガス10なとが流通する3重管構造となってい
る。蓄熱層3は排ガスと熱交換を行なう8室に分かれて
おり、それぞれの蓄熱材の前後の差圧を測定する差圧検
知器7と、出口温度を測定する温度計8を備えている。
なお、符号11はマニホールド、符号12は固定弁であ
る。
This embodiment will be described in further detail with reference to FIG. The lower part of the distribution valve 2 has a clean gas 6, an untreated exhaust gas 1,
It has a triple pipe structure through which the purge gas 10 flows. The heat storage layer 3 is divided into eight chambers for performing heat exchange with exhaust gas, and includes a differential pressure detector 7 for measuring a differential pressure before and after each heat storage material, and a thermometer 8 for measuring an outlet temperature.
Reference numeral 11 denotes a manifold, and reference numeral 12 denotes a fixed valve.

【0015】また、蓄熱層3の構造は、排ガスの流通方
向と平行な細い流路を形成した断面がハニカム状の蓄熱
材を複数段積層して形成され、入口側および出口側の蓄
熱材ハニカムのセル径を、中間部のセル径よりも大きく
している。
The structure of the heat storage layer 3 is formed by stacking a plurality of stages of honeycomb-shaped heat storage materials each having a narrow flow path parallel to the exhaust gas flow direction, and the heat storage material honeycombs on the inlet and outlet sides. Is made larger than the cell diameter of the middle part.

【0016】シリコーンオイルを含む数百ppmのトル
エンを含有する未処理排ガス1は、図中右側より導入さ
れ、回転式の分配弁2を通過し、蓄熱層3を具備するガ
ス分解ゾーンに導入される。
An untreated exhaust gas 1 containing several hundred ppm of toluene containing silicone oil is introduced from the right side in the figure, passes through a rotary distribution valve 2, and is introduced into a gas decomposition zone having a heat storage layer 3. You.

【0017】このとき、分配弁の位置により、蓄熱層3
内の3〜4室を通過する。未処理排ガス1は蓄熱材層3
中で昇温され、未処理排ガス中のトルエンは、炉4に入
るとすぐに着火して燃焼する。トルエンやシリコーンは
共に800℃以上の高温で完全に分解する。
At this time, the heat storage layer 3 depends on the position of the distribution valve.
Pass three or four rooms. Untreated exhaust gas 1 is heat storage material layer 3
The toluene in the untreated exhaust gas is ignited and burns as soon as it enters the furnace 4. Both toluene and silicone are completely decomposed at a high temperature of 800 ° C. or higher.

【0018】シリコーンはSiを含むため、燃焼によっ
てシリカ粒子を生成する。高温でVOCを分解した処理
済排ガス9は、未処理排ガス導入時には通過しなかった
蓄熱材中の3〜4室を通過し、蓄熱層で熱交換して除熱
され、200℃以下の清浄ガス6として排出される。
Since silicone contains Si, it generates silica particles by combustion. The treated exhaust gas 9 that has decomposed VOCs at a high temperature passes through 3 to 4 chambers of the heat storage material that did not pass when the untreated exhaust gas was introduced, and exchanged heat in the heat storage layer to remove the heat. Discharged as 6.

【0019】分配弁2が回転することにより、導入また
は排出されるガスは順次、蓄熱層3中の8室を移動して
いくようになっている。こうして蓄熱層3は、未処理排
ガス1に対しては熱を与え、一方、高温の処理済排ガス
9を除熱して蓄熱する。
As the distribution valve 2 rotates, the gas to be introduced or discharged sequentially moves through eight chambers in the heat storage layer 3. Thus, the heat storage layer 3 applies heat to the untreated exhaust gas 1, while removing heat from the high-temperature treated exhaust gas 9 to store heat.

【0020】図2に、同じサイズの蓄熱材を6個充填し
た蓄熱層の蓄熱型排ガス処理装置を用い、1%シリコー
ンを含む700ppmのトルエン含有排ガスを数百時間
処理したときの、蓄熱材の位置A〜Fと蓄熱材1個当り
の差圧との関係を示す。
FIG. 2 shows that the heat storage material obtained when 700 ppm toluene-containing exhaust gas containing 1% silicone was treated for several hundred hours using a heat storage type waste gas treatment apparatus filled with six heat storage materials of the same size. The relationship between the positions A to F and the differential pressure per heat storage material is shown.

【0021】図からわかるように、低温側の蓄熱材の圧
力損失は、他のそれよりも数倍高かった。蓄熱材に付着
した堆積物は、500℃の高温空気に曝したところ、エ
アブローで簡単に除去できた。
As can be seen from the figure, the pressure loss of the heat storage material on the low temperature side was several times higher than the others. The deposits adhering to the heat storage material were easily removed by air blow when exposed to high-temperature air at 500 ° C.

【0022】なお、図6に示すように、示差熱天秤によ
る分析結果から、シリコーンオイルは、500℃までに
燃焼してシリカ粉末となることがわかっている。そのた
め、粘度の高いシリコーンオイルが高温空気により燃焼
してシリカ粉末になったために容易に除去できたもので
ある。
As shown in FIG. 6, it is known from the result of the analysis by the differential thermal balance that the silicone oil burns up to 500 ° C. to become silica powder. Therefore, the high-viscosity silicone oil was burned by high-temperature air to form silica powder, which was easily removed.

【0023】図3に、分配弁2の回転速度が一定時の炉
出口の温度変化を示す。温度は、8室のうち、分配弁上
で対向配置される第1室と第4室のものを示す。分配弁
を1rpmで回転した場合、第1室の出口温度は、1分
間に、最高値→最低値→最高値を繰り返し、一方、第4
室の出口温度は、1分間に、最低値→最高値→最低値を
繰り返す。
FIG. 3 shows the temperature change at the furnace outlet when the rotation speed of the distribution valve 2 is constant. The temperature indicates the temperature of the first chamber and the fourth chamber which are opposed to each other on the distribution valve among the eight chambers. When the distribution valve is rotated at 1 rpm, the outlet temperature of the first chamber repeats the highest value → the lowest value → the highest value in one minute, while the
The outlet temperature of the chamber repeats the lowest value → the highest value → the lowest value in one minute.

【0024】このとき、各室の差圧は時間とともに上昇
するので、差圧が上昇したところで分配弁の回転速度を
下げ、出口の温度を上昇させる。分配弁を1rpmから
2rpmに回転速度を下げたときの出口温度の挙動を図
4に示す。
At this time, since the differential pressure of each chamber increases with time, when the differential pressure rises, the rotational speed of the distribution valve is reduced, and the outlet temperature is increased. FIG. 4 shows the behavior of the outlet temperature when the rotation speed of the distribution valve is reduced from 1 rpm to 2 rpm.

【0025】第1室が排気になるときに回転速度を下げ
ると、排気側は高温ガスに曝される時間が長くなり出口
温度は上昇する。一方、吸気側の第4室は低温空気の吸
気時間が長くなり、出口温度はいったん下がるものの、
しばらくして切替前よりも高い温度で定常化する。
If the rotation speed is reduced when the first chamber is exhausted, the exhaust side is exposed to the high-temperature gas for a longer time and the outlet temperature rises. On the other hand, in the fourth chamber on the intake side, the intake time of low-temperature air becomes longer, and the outlet temperature temporarily drops,
After a while, the temperature becomes steady at a higher temperature than before switching.

【0026】しかし、この場合、このような制御によっ
て長時間燃焼させる必要があるが、シリコーンオイルの
場合は、短時間の高温暴露により、すぐに酸化されてシ
リカ粒子になる。
However, in this case, it is necessary to burn for a long time by such control, but in the case of silicone oil, it is immediately oxidized into silica particles by short-time high-temperature exposure.

【0027】そこで、熱交換率を極力低下させない制御
方法として、図5に示す制御を実施した。すなわち、第
一室が排気になるときに回転速度を下げ、排気側の最高
温度を450〜500℃とし、次に最低温度に戻った時
点で回転速度を元に戻す。次いで、吸気側の第4室が排
気側になるときに同様の操作を繰り返せば、出口温度は
初期と同じ温度で定常化し、蓄熱材の熱効率を下げずに
運転ができる。
Therefore, a control shown in FIG. 5 was carried out as a control method that does not lower the heat exchange rate as much as possible. That is, when the first chamber is exhausted, the rotation speed is reduced, the maximum temperature on the exhaust side is set to 450 to 500 ° C., and when the temperature returns to the lowest temperature, the rotation speed is restored. Next, when the same operation is repeated when the fourth chamber on the intake side is on the exhaust side, the outlet temperature is stabilized at the same temperature as the initial temperature, and operation can be performed without lowering the thermal efficiency of the heat storage material.

【0028】この操作により、概略100hの運転で、
初期から50mmAq上昇した差圧を元に戻すことがで
きた。この操作は、差圧検知により、差圧上昇時に実施
してもよいが、例えば1日1回のように、定期的に実施
してもよい。
With this operation, approximately 100 hours of operation can be performed.
The differential pressure increased by 50 mmAq from the initial stage could be restored. This operation may be performed when the differential pressure is increased by detecting the differential pressure, but may be performed periodically, for example, once a day.

【0029】なお、上記実施形態では、高温排ガスの流
通を制御して低温部の温度を上げていたが、例えば未処
理排ガスの入口側および出口側の蓄熱材ハニカムのセル
径を、中間部のセル径よりも大きくすることで、ヤニ成
分などが付着しても閉塞されずに排ガス流路径が保持さ
れ、さらに容易に安定運転が可能となる。
In the above-described embodiment, the flow of the high-temperature exhaust gas is controlled to increase the temperature of the low-temperature portion. For example, the cell diameter of the heat storage material honeycomb on the inlet side and the outlet side of the untreated exhaust gas is changed to the middle portion. By making the cell diameter larger than the cell diameter, the exhaust gas flow path diameter is maintained without being clogged even if the tar component adheres, and the stable operation can be more easily performed.

【0030】以上のように、本例では、排ガスの流通方
向と平行な細い流路を形成した断面ハニカム状の蓄熱材
を複数段積層して蓄熱層を形成し、蓄熱層の差圧から排
ガス流路の圧力損失部を検知し、分配弁2の回転を制御
して蓄熱層3内を流れる高温の処理済排ガスの流通時間
を調整することにより、圧力損失部を加熱するようにし
た。
As described above, in the present embodiment, a heat storage layer is formed by laminating a plurality of stages of honeycomb-shaped heat storage materials having a narrow flow path parallel to the flow direction of the exhaust gas, and the exhaust gas is determined based on the differential pressure of the heat storage layer. The pressure loss part is heated by detecting the pressure loss part of the flow path and controlling the rotation of the distribution valve 2 to adjust the flow time of the high-temperature treated exhaust gas flowing in the heat storage layer 3.

【0031】この場合、シリコーンオイルが付着して圧
力損失が発生する未処理排ガスの蓄熱材ハニカム入口、
すなわち、処理済排ガスの出口の温度を450〜500
℃に上げることにより、付着したシリコーンオイルはす
ぐに酸化されてシリカ粒子となり、ブロアーにより簡単
に除去でき、排ガス流路の閉塞が抑制され安定運転が可
能となる。
In this case, the inlet of the heat storage material honeycomb of the untreated exhaust gas in which the pressure loss occurs due to the adhesion of the silicone oil,
That is, the temperature of the outlet of the treated exhaust gas is set to 450 to 500
By raising the temperature to ° C., the attached silicone oil is immediately oxidized into silica particles, which can be easily removed by a blower, and the clogging of the exhaust gas passage is suppressed, thereby enabling a stable operation.

【0032】[0032]

【発明の効果】上述のとおり、本発明によれば、蓄熱型
排ガス処理装置において、蓄熱層の差圧により低温部の
圧力損失を検知し、低温部を加熱する機能を備えること
で安定な運転ができた。また、分配弁の回転速度制御に
より、蓄熱層の所定の部分を定期的に上昇させることに
よっても安定な運転が可能になった。
As described above, according to the present invention, the heat storage type exhaust gas treatment apparatus has a function of detecting the pressure loss in the low temperature section by the differential pressure of the heat storage layer and providing the function of heating the low temperature section, thereby achieving stable operation. Was completed. In addition, stable operation can be achieved by periodically raising a predetermined portion of the heat storage layer by controlling the rotation speed of the distribution valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄熱型排ガス処理装置の一実施形態の
主要部を示す図である。
FIG. 1 is a diagram showing a main part of an embodiment of a heat storage type exhaust gas treatment apparatus of the present invention.

【図2】本発明において、蓄熱材の各位置と蓄熱材1個
当りの差圧との関係を示す図である。
FIG. 2 is a diagram showing a relationship between each position of a heat storage material and a differential pressure per heat storage material in the present invention.

【図3】分配弁の回転速度が一定時の炉出口の温度変化
を示す図である。
FIG. 3 is a diagram showing a temperature change at a furnace outlet when a rotation speed of a distribution valve is constant.

【図4】分配弁の回転速度を下げたときの出口温度の挙
動を示す図である。
FIG. 4 is a diagram showing the behavior of the outlet temperature when the rotation speed of the distribution valve is reduced.

【図5】本発明における熱交換率を極力低下させない制
御方法の一例を示す図である。
FIG. 5 is a diagram illustrating an example of a control method according to the present invention in which the heat exchange rate is not reduced as much as possible.

【図6】示差熱天秤による分析結果を示す図である。FIG. 6 is a diagram showing an analysis result by a differential thermal balance.

【符号の説明】[Explanation of symbols]

1 未処理排ガス 2 分配弁 3 蓄熱層 4 炉 5 助燃バーナ 6 清浄ガス 7 差圧検知器 8 温度計 9 処理済排ガス 10 パージガス 11 マニホールド 12 固定弁 DESCRIPTION OF SYMBOLS 1 Unprocessed exhaust gas 2 Distribution valve 3 Thermal storage layer 4 Furnace 5 Burning burner 6 Clean gas 7 Differential pressure detector 8 Thermometer 9 Treated exhaust gas 10 Purge gas 11 Manifold 12 Fixed valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 向井 利文 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 川添 博 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3K023 QA12 QB02 QB20 QC12 SA01 3K062 AA18 AB01 AC19 BA02 BB02 CA01 CB09 DA01 DA12 3K078 AA03 AA08 BA05 BA17 BA21 CA03 CA07 CA22 EA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshifumi Mukai 6-9 Takaracho, Kure-shi, Hiroshima Prefecture Inside the Babcock Hitachi Co., Ltd. (72) Inventor Hiroshi Kawazoe 6-9 Takaracho, Kure-shi, Hiroshima Prefecture Babcock Hitachi, Ltd. F-term in Kure Plant (reference) 3K023 QA12 QB02 QB20 QC12 SA01 3K062 AA18 AB01 AC19 BA02 BB02 CA01 CB09 DA01 DA12 3K078 AA03 AA08 BA05 BA17 BA21 CA03 CA07 CA22 EA08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 未処理排ガス中の揮発性有機化合物を燃
焼処理する燃焼炉と、前記燃焼処理した高温の処理済排
ガスと熱交換して蓄熱した後、前記蓄熱した熱によって
低温の未処理排ガスを加熱する複数の排ガス流路を有す
る蓄熱層と、前記蓄熱層に未処理排ガスを供給し、前記
蓄熱層から処理済排ガスを排出する回転式の分配弁とか
ら構成され、前記分配弁の回転を制御することにより、
前記蓄熱層内を流れる高温の処理済排ガスの流通時間を
調整して、前記蓄熱層の低温部を加熱するようにした蓄
熱型排ガス処理装置。
1. A combustion furnace for burning and treating volatile organic compounds in untreated exhaust gas, and after storing heat by exchanging heat with the high-temperature treated exhaust gas after the burning treatment, a low-temperature untreated exhaust gas is stored by the stored heat. A heat storage layer having a plurality of exhaust gas passages for heating the heat storage layer, and a rotary distribution valve that supplies untreated exhaust gas to the heat storage layer and discharges treated exhaust gas from the heat storage layer. By controlling the
A heat-storage type exhaust gas treatment apparatus wherein a circulation time of a high-temperature treated exhaust gas flowing in the heat storage layer is adjusted to heat a low-temperature portion of the heat storage layer.
【請求項2】 前記蓄熱層の差圧から排ガス流路の圧力
損失部を検知し、前記圧力損失部を加熱するようにした
請求項1に記載の蓄熱型排ガス処理装置。
2. The heat storage type exhaust gas treatment apparatus according to claim 1, wherein a pressure loss portion of the exhaust gas passage is detected from the pressure difference of the heat storage layer, and the pressure loss portion is heated.
【請求項3】 前記蓄熱層は、排ガスの流通方向と平行
な細い流路を形成した断面ハニカム状の蓄熱材を複数段
積層して形成されたものである請求項1または2に記載
の蓄熱型排ガス処理装置。
3. The heat storage device according to claim 1, wherein the heat storage layer is formed by stacking a plurality of stages of honeycomb-shaped heat storage materials each having a narrow flow path parallel to a flow direction of the exhaust gas. Type exhaust gas treatment equipment.
【請求項4】 前記蓄熱層は、蓄熱材ハニカムの入口側
および出口側のセル径を、中間のセル径よりも大きくし
たものである請求項1、2または3に記載の蓄熱型排ガ
ス処理装置。
4. The heat storage type exhaust gas treatment apparatus according to claim 1, wherein the heat storage layer has a cell diameter on the inlet side and the outlet side of the heat storage material honeycomb larger than an intermediate cell diameter. .
【請求項5】 未処理排ガス中の揮発性有機化合物を燃
焼処理する燃焼炉と、前記燃焼処理した高温の処理済排
ガスと熱交換して蓄熱した後、前記蓄熱した熱によって
低温の未処理排ガスを加熱する複数の排ガス流路を有す
る蓄熱層と、前記蓄熱層に未処理排ガスを分配する分配
弁とから構成された蓄熱型排ガス処理装置において、前
記蓄熱層は、排ガスの流通方向と平行な細い流路を形成
した断面ハニカム状の蓄熱材を複数段積層して形成さ
れ、前記分配弁の回転を制御して蓄熱層内を流れる高温
の処理済排ガスの流通時間を調整することにより、前記
蓄熱層の差圧から排ガス流路の圧力損失部を検知して加
熱するようにしたことを特徴とする蓄熱型排ガス処理装
置。
5. A combustion furnace for burning and treating volatile organic compounds in untreated exhaust gas, and after storing heat by exchanging heat with the high-temperature treated exhaust gas subjected to the burning treatment, a low-temperature untreated exhaust gas is stored by the stored heat. A heat storage layer having a plurality of exhaust gas channels for heating the heat storage layer, and a distribution valve configured to distribute the untreated exhaust gas to the heat storage layer, wherein the heat storage layer is parallel to the flow direction of the exhaust gas. It is formed by laminating a plurality of stages of heat storage materials having a honeycomb cross section having a narrow flow path, and by controlling the rotation of the distribution valve to adjust the flow time of the high-temperature treated exhaust gas flowing in the heat storage layer, A heat storage type exhaust gas treatment apparatus characterized in that a pressure loss portion of an exhaust gas passage is detected and heated based on a differential pressure of a heat storage layer.
【請求項6】 請求項1〜5のうちいずれか1項に記載
の蓄熱型排ガス処理装置を運転する運転方法において、
前記蓄熱層の加熱方法は、前記分配弁の切替速度を制御
して低温部を450〜500℃に上げることを特徴とす
る蓄熱型排ガス処理装置の運転方法。
6. An operating method for operating a heat storage type exhaust gas treatment apparatus according to claim 1, wherein
The method of operating a heat storage type exhaust gas treatment apparatus, wherein the method of heating the heat storage layer controls a switching speed of the distribution valve to raise a low temperature part to 450 to 500 ° C.
【請求項7】 前記蓄熱層の低温部に付着したヤニ成分
を除去するために、回転式分配弁の回転速度を間欠的に
所定時間遅くする請求項6に記載の蓄熱型排ガス処理装
置の運転方法。
7. The operation of the heat-storage type exhaust gas treatment apparatus according to claim 6, wherein the rotational speed of the rotary distribution valve is intermittently reduced for a predetermined time in order to remove a tar component adhering to the low-temperature portion of the heat storage layer. Method.
【請求項8】 前記回転速度を遅くする所定時間が、1
分〜3分である請求項7に記載の蓄熱型排ガス処理装置
の運転方法。
8. The method according to claim 1, wherein the predetermined time for decreasing the rotation speed is one.
The method for operating the heat storage type exhaust gas treatment apparatus according to claim 7, wherein the time is from 3 minutes to 3 minutes.
JP2000396745A 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment Expired - Fee Related JP4085298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396745A JP4085298B2 (en) 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396745A JP4085298B2 (en) 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JP2002195540A true JP2002195540A (en) 2002-07-10
JP4085298B2 JP4085298B2 (en) 2008-05-14

Family

ID=18861983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396745A Expired - Fee Related JP4085298B2 (en) 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP4085298B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219523A (en) * 2010-04-05 2011-11-04 Mitsubishi Heavy Ind Ltd Boiler facility
JP2012026818A (en) * 2010-07-22 2012-02-09 Ngk Insulators Ltd Radioactive silicone oil processing method
US10299642B2 (en) 2015-06-05 2019-05-28 Mtd Products Inc Blower with intake closure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219523A (en) * 2010-04-05 2011-11-04 Mitsubishi Heavy Ind Ltd Boiler facility
JP2012026818A (en) * 2010-07-22 2012-02-09 Ngk Insulators Ltd Radioactive silicone oil processing method
US10299642B2 (en) 2015-06-05 2019-05-28 Mtd Products Inc Blower with intake closure

Also Published As

Publication number Publication date
JP4085298B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
KR100993563B1 (en) VOC oxidizing and decomposing apparatus with preheating function
JP5744488B2 (en) Exhaust gas treatment equipment
US4280416A (en) Rotary valve for a regenerative thermal reactor
WO2017208502A1 (en) Exhaust gas denitration device, incinerator and exhaust gas denitration method
KR100784409B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor
US4089088A (en) Thermal regeneration and decontamination apparatus and industrial oven
EP1029200B1 (en) Rotary oxidizer systems for control of restaurant emissions
KR20060051724A (en) System and methods for removing materials from flue gas via regenerative selective catalytic reduction
JPH10267248A (en) Catalyst type exhaust gas processor
KR100597695B1 (en) A Selective Catalyst And Non-Catalyst Reduction System Using Regenerative Heat Recovery
KR20070016450A (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor
US6193504B1 (en) Portable rotary catalytic oxidizer systems
JP2002195540A (en) Heat storage type waste gas treatment device
KR100734918B1 (en) Steam producing system using waste heat of regenerative thermal oxidizer
JP3940832B2 (en) Thermal storage type exhaust gas treatment equipment
KR101209257B1 (en) Boiler type regenerative thermal oxidizer using VOCs absorber as a fuel
GB1602812A (en) Industrial oven
JP3917403B2 (en) Rotary distribution type heat storage combustion equipment
TWI363853B (en)
KR20010097924A (en) Air cleaner by using catalyst
KR200349267Y1 (en) VOCs MIST COMBUSTION SYSTEM FOR REGENERATIVE THERMAL OXIDIZER SYSTEM
JP2003139316A (en) Heat storage type volatile organic compound treatment device and treatment method
KR20140137920A (en) Decomposition method for contaminant and Contaminant decomposition apparatus for the same
JP7158095B2 (en) Thermal storage combustion deodorizer
JP2002048325A (en) Control method for volatile organic compound processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees