JP2002192517A - Apparatus for supplying fiber and thermoplastic resin material - Google Patents

Apparatus for supplying fiber and thermoplastic resin material

Info

Publication number
JP2002192517A
JP2002192517A JP2001340935A JP2001340935A JP2002192517A JP 2002192517 A JP2002192517 A JP 2002192517A JP 2001340935 A JP2001340935 A JP 2001340935A JP 2001340935 A JP2001340935 A JP 2001340935A JP 2002192517 A JP2002192517 A JP 2002192517A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin material
fiber
fibers
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001340935A
Other languages
Japanese (ja)
Inventor
Masato Matsumoto
正人 松本
Takeo Kitayama
威夫 北山
Shigeyoshi Matsubara
重義 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001340935A priority Critical patent/JP2002192517A/en
Publication of JP2002192517A publication Critical patent/JP2002192517A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/905Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/421Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/287Raw material pre-treatment while feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/78Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant by gravity, e.g. falling particle mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material

Abstract

PROBLEM TO BE SOLVED: To contribute to the structural simplification of a plasticator equipped with the screw type transfer means of a resin injection machine or resin extruder and to smoothly and stably supply a thermoplastic resin material or fibers to the plasticator. SOLUTION: In a fiber and thermoplastic resin material supply apparatus equipped with a cylindrical supply passage of which the lower end open part becomes a discharge port (45) and supplying the fibers (L1), (L1) with a mean fiber length of 3-50 mm and a granular or powdery thermoplastic resin material (P) charged in the material supply passage to the plasticator from the discharge port (45), the angle of the crossing line, which is formed by crossing the vertical surface including the center part of the discharge port (45) and the inner wall surface of the material supply passage, to a vertical line is set to 0-30 deg. over the entire region of the inner wall surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維と熱可塑性樹
脂材料の供給装置及びこれを具備する可塑化装置に関す
るもので、例えば、繊維強化樹脂製の成形品の成形に使
用される可塑化装置、例えば射出機や押出機等に適用す
ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying fibers and a thermoplastic resin material and a plasticizing apparatus having the same. For example, the present invention relates to a plasticizing apparatus used for molding a fiber-reinforced resin molded article. For example, the present invention can be applied to an injection machine or an extruder.

【0002】[0002]

【従来の技術】従来、繊維強化樹脂製の成形品を射出成
形する場合、押出機によって、熱可塑性樹脂材料の溶融
とこれと繊維との混練を行い、これによって、熱可塑性
樹脂中に強化繊維が含まれた繊維強化樹脂ペレットをつ
くり、これを射出機に供給して再び溶融と混練を行った
後に金型内に供給し、その後、前記金型内の繊維強化樹
脂を冷却硬化させて成形品を成形するものが知られてい
る。
2. Description of the Related Art Conventionally, when a molded article made of a fiber-reinforced resin is injection-molded, a thermoplastic resin material is melted and kneaded with the fiber by an extruder. Is made into a fiber-reinforced resin pellet, supplied to an injection machine, melted and kneaded again, and then supplied into a mold. Thereafter, the fiber-reinforced resin in the mold is cooled and cured to be molded. Molding articles are known.

【0003】そして、繊維と熱可塑性樹脂とを混練する
押出機を具備する射出成形装置としては特開平4−28
6617号公報に開示されたものが知られている。この
ものでは、押出機のシリンダに熱可塑性樹脂供給口とそ
の下流側の繊維供給口とが設けられており、熱可塑性樹
脂供給口から供給された熱可塑性樹脂材料をシリンダに
具備させたヒータで加熱しながらスクリュー式の移送手
段により前記繊維供給口側に移送させ、これによって加
熱溶融された樹脂に繊維供給口から供給した繊維を添加
し、更にその下流側で前記繊維と溶融した樹脂を混練す
る。そして、これによって得られた繊維強化樹脂を用い
て射出成形する。
As an injection molding apparatus having an extruder for kneading a fiber and a thermoplastic resin, Japanese Patent Application Laid-Open No. 4-28 is disclosed.
The one disclosed in No. 6617 is known. In this apparatus, a thermoplastic resin supply port and a fiber supply port on the downstream side thereof are provided in a cylinder of an extruder, and the cylinder is provided with a thermoplastic resin material supplied from the thermoplastic resin supply port. It is transferred to the fiber supply port side by a screw-type transfer means while heating, the fiber supplied from the fiber supply port is added to the resin melted by heating, and the fiber and the molten resin are further kneaded downstream thereof. I do. Then, injection molding is performed using the fiber reinforced resin obtained as described above.

【0004】この方法による場合には、押出機のシリン
ダに設けられた繊維供給口から繊維を供給するだけで繊
維強化樹脂製の成形品が出来るから、繊維を含有しない
樹脂を用いた通常の射出成形とほぼ同様な作業で射出成
形できる利点がある。ところが、このものでは、押出機
のシリンダには熱可塑性樹脂供給口と繊維供給口とを各
別に設ける必要があり、又、繊維供給口からの繊維がシ
リンダ内のスクリューに円滑に食い込むようにする為
に、スクリューを深溝にする等のスクリュー設計も必要
である等の欠点を有していた。
According to this method, a molded article made of a fiber-reinforced resin can be formed only by supplying fibers from a fiber supply port provided in a cylinder of an extruder. There is an advantage that the injection molding can be performed by substantially the same operation as the molding. However, in this case, it is necessary to provide a thermoplastic resin supply port and a fiber supply port separately in the cylinder of the extruder, and to ensure that the fiber from the fiber supply port bites into the screw in the cylinder smoothly. For this reason, it has a drawback that a screw design such as making the screw a deep groove is necessary.

【0005】又、繊維強化樹脂製の成形品を射出成形す
る他の装置として、特開平2−153714号の発明が
提案されている。これは、射出機のシリンダに熱可塑性
樹脂材料と繊維を直接供給するものであるが、このもの
でも、前記シリンダに熱可塑性樹脂供給口と繊維供給口
を各別に形成する必要があり、かつ繊維供給口には、繊
維をシリンダ内に押し込む為の押込み装置を設ける必要
がある。
As another apparatus for injection molding a molded article made of fiber reinforced resin, the invention of Japanese Patent Application Laid-Open No. 2-153714 has been proposed. This is to supply the thermoplastic resin material and the fiber directly to the cylinder of the injection machine, but also in this case, it is necessary to separately form the thermoplastic resin supply port and the fiber supply port in the cylinder, and At the supply port, it is necessary to provide a pushing device for pushing the fibers into the cylinder.

【0006】[0006]

【発明が解決しようとする課題】本願は、かかる点に鑑
みてなされたものであり、樹脂の射出機や押出機のスク
リュー式移送手段を備えた可塑化装置の構造の簡略化に
貢献できるるとともに、該可塑化装置に、熱可塑性樹脂
材料や繊維を円滑に、安定して供給できるようにするこ
とをその課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can contribute to the simplification of the structure of a plasticizing apparatus provided with a screw type transfer means of a resin injection machine or an extruder. It is another object of the present invention to be able to smoothly and stably supply a thermoplastic resin material and fibers to the plasticizing device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する為の
請求項1の発明の技術的手段は、『下端開放部が吐出口
となった筒状の材料供給路を具備し、前記材料供給路に
それぞれ別個に直接投入された平均繊維長が3mm〜5
0mmの繊維と粒状又は粉末状の熱可塑性樹脂材料を前
記吐出口から可塑化装置に供給する繊維と熱可塑性樹脂
材料の供給装置であって、前記吐出口の中心部を含む鉛
直面と前記材料供給路の内壁面が交わってできる交差線
の鉛直線に対する角度が、前記内壁面全域に於いて、0
°以上で且つ30°以下の範囲に設定されている』こと
である。
According to a first aspect of the present invention, there is provided a technique for providing a cylindrical material supply path having a discharge opening at a lower end opening. The average fiber length directly injected into the road separately is 3 mm to 5 mm.
A fiber and thermoplastic resin material supply device for supplying 0 mm of fiber and granular or powdery thermoplastic resin material from the discharge port to the plasticizing device, wherein a vertical plane including a central portion of the discharge port and the material are provided. The angle of the intersection line formed by the inner wall surfaces of the supply path with respect to the vertical line is 0 in the entire inner wall surface.
The angle is set in the range of not less than 30 ° and not more than 30 ° ”.

【0008】上記技術的手段によれば、繊維と熱可塑性
樹脂材料を、共通の材料供給路から同時に、円滑に、且
つ安定して射出機や押出機等の可塑化装置に供給するこ
とができる。請求項1の発明において、『前記材料供給
路の壁面を振動させる振動発生装置を具備』させた請求
項2の発明では、材料供給路の壁面が振動するから、該
壁面に繊維が静電気等で付着する現象が生じにくくなる
と共に、繊維等の移動が促進される。
According to the above technical means, the fiber and the thermoplastic resin material can be simultaneously and smoothly and stably supplied from a common material supply path to a plasticizing device such as an injection machine or an extruder. . According to the first aspect of the present invention, in the second aspect of the present invention, "the apparatus includes a vibration generating device for vibrating the wall surface of the material supply path". The adhesion phenomenon is less likely to occur, and the movement of fibers and the like is promoted.

【0009】請求項1又は請求項2の発明において、
『前記材料供給路内の繊維と熱可塑性樹脂材料を攪拌す
る攪拌装置を具備』する請求項3の発明では、攪拌装置
によって繊維と熱可塑性樹脂材料が確実に混合され、均
一性の改善を図ることができる。請求項4の発明は、請
求項1の発明の繊維と熱可塑性樹脂材料の供給装置を具
備し、該供給装置から供給される繊維と熱可塑性樹脂材
料を材料受容口より同時に取り入れて可塑化しながらス
クリューで下流側に移送する移送手段からなる可塑化装
置であって、『前記スクリュー(31)の外径をa,該スク
リュー(31)の溝部(38)の溝底部の直径をb,前記溝部(3
8)の溝幅をc、とした場合、前記cが前記材料受容口(3
7)の口径以下の寸法条件下においては、前記溝部(38)に
於ける前記材料受容口(37)に対応する部分が、
In the invention of claim 1 or claim 2,
According to the invention of claim 3, which comprises "a stirrer for stirring the fiber and the thermoplastic resin material in the material supply path", the fiber and the thermoplastic resin material are surely mixed by the stirrer, and the uniformity is improved. be able to. According to a fourth aspect of the present invention, there is provided the fiber and thermoplastic resin material supply device according to the first aspect of the present invention, wherein the fiber and the thermoplastic resin material supplied from the supply device are simultaneously taken in from the material receiving port and plasticized. A plasticizing apparatus comprising a transfer means for transferring a screw to a downstream side by a screw, wherein “a is an outer diameter of the screw (31), b is a diameter of a groove bottom of a groove (38) of the screw (31), b is a groove, (3
Assuming that the groove width of 8) is c, c is the material receiving port (3
Under the size condition of the diameter of 7) or less, the portion corresponding to the material receiving port (37) in the groove (38) is

【0010】[0010]

【数2】 (Equation 2)

【0011】を満たしている』ものであり、繊維強化熱
可塑性樹脂成形品を製造するための射出機や押出機とし
て有効に利用することができる。
[0011] The present invention can be effectively used as an injection machine or an extruder for producing a fiber-reinforced thermoplastic resin molded product.

【0012】[0012]

【発明の効果】以上説明したように、請求項1の発明で
は、繊維と熱可塑性樹脂材料を吐出口から可塑化装置に
供給するための供給装置において、前記吐出口の中心部
を含む鉛直面と材料供給路の内壁面が交わってできる交
差線と鉛直線の成す角の大きさが前記値に設定されてい
るから、実施の形態で説明する後述のテスト結果から明
らかなように、繊維や熱可塑性樹脂材料が、円滑に、安
定して可塑化装置に供給できる。
As described above, according to the first aspect of the present invention, in a supply device for supplying fibers and a thermoplastic resin material from a discharge port to a plasticizing device, a vertical surface including a central portion of the discharge port is provided. Since the size of the angle formed by the intersection line and the vertical line formed by the intersection of the inner wall surface of the material supply path and the vertical line is set to the above value, as apparent from the test results described later in the embodiment, the fibers and The thermoplastic resin material can be smoothly and stably supplied to the plasticizing device.

【0013】又、繊維と熱可塑性樹脂材料を共通の吐出
口から可塑化装置に供給できるから、これら繊維と熱可
塑性樹脂材料の供給口を各別に形成する必要がなく、可
塑化装置の構造の簡略化に貢献することができる。請求
項2の発明では、材料供給路の壁面の振動によって繊維
と熱可塑性樹脂材料の移動が助長されるからこれらが一
層円滑に可塑化装置へ供給される。
Further, since the fibers and the thermoplastic resin material can be supplied to the plasticizing apparatus from a common discharge port, it is not necessary to separately form supply ports for these fibers and the thermoplastic resin material, and the structure of the plasticizing apparatus can be reduced. It can contribute to simplification. According to the second aspect of the present invention, the movement of the fiber and the thermoplastic resin material is promoted by the vibration of the wall surface of the material supply path, so that they are more smoothly supplied to the plasticizing device.

【0014】請求項3の発明では、繊維と熱可塑性樹脂
材料が攪拌混合されるから、可塑化装置に供給される繊
維等の混合割合が安定する。請求項4の発明によれば、
スクリュー(31)の溝部(38)であって材料受容口(37)に対
応する部分が上記演算式で規定される寸法になっている
から、実施の形態で説明する後述のテスト結果から明ら
かなように、繊維と熱可塑性樹脂材料がスクリュー(31)
に円滑に供給される。
According to the third aspect of the present invention, since the fibers and the thermoplastic resin material are stirred and mixed, the mixing ratio of the fibers and the like supplied to the plasticizer is stabilized. According to the invention of claim 4,
Since the groove (38) of the screw (31) and the portion corresponding to the material receiving port (37) have the dimensions defined by the above arithmetic expression, it is clear from the test results described later in the embodiment that will be described later. As the fiber and thermoplastic material are screwed (31)
Supplied smoothly.

【0015】[0015]

【発明の実施の形態】次に、上記発明の実施の形態を図
面に従って説明する。図1は、本発明の実施の形態に係
る繊維と熱可塑性樹脂材料の供給装置を具備し且つ該供
給装置から供給される繊維と熱可塑性樹脂材料を材料受
容口より同時に取り入れて可塑化しながらスクリューで
下流側に移送する移送手段からなる可塑化装置の例を示
す断面図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a fiber and thermoplastic resin material supply device according to an embodiment of the present invention, and a fiber and a thermoplastic resin material supplied from the supply device are simultaneously taken in from a material receiving port and plasticized. FIG. 4 is a cross-sectional view showing an example of a plasticizing device including a transfer unit that transfers the material to a downstream side.

【0016】この図において、繊維と熱可塑性樹脂材料
の供給装置は、下端が開放部となった筒状の材料供給路
であるホッパ(4) から構成されており、該ホッパ(4) の
上部には、所定の長さの繊維を供給するための手段、た
とえば繊維を所定の長さに切断して供給するためのロー
ビングカッタ(1) や所定の長さに切断されたチョップド
ストランド繊維を定量的に供給するための定量フィーダ
が配設されているが、この例ではロービングカッタ(1)
が配設されている。
In this figure, the fiber and thermoplastic resin material supply device is composed of a hopper (4) which is a cylindrical material supply passage having an open lower end, and an upper portion of the hopper (4). Means for feeding fibers of a predetermined length, for example, a roving cutter (1) for cutting the fibers to a predetermined length and feeding them, or measuring a chopped strand fiber cut to a predetermined length. A fixed quantity feeder is provided to supply the raw material, but in this example, the roving cutter (1)
Are arranged.

【0017】ホッパ(4) には、定量フィーダ(2) などの
熱可塑性樹脂材料を定量的に供給するための手段が設け
られており、この例では、定量フィーダ(2) からの粒状
または粉末状の熱可塑性樹脂材料は、該熱可塑性樹脂材
料を自然に流動落下させ得る角度に傾斜させたシュート
(6) を介してホッパ(4) 内に供給されるようになってい
る。
The hopper (4) is provided with means for quantitatively supplying a thermoplastic resin material such as a fixed-quantity feeder (2). In this example, the hopper (4) is provided with granular or powdery material from the fixed-quantity feeder (2). The thermoplastic resin material is a chute inclined at an angle that allows the thermoplastic resin material to flow and fall naturally.
It is supplied to the hopper (4) via (6).

【0018】又、可塑化装置、例えば射出機は、前記ホ
ッパ(4) から供給される繊維と熱可塑性樹脂材料を受け
入れるための材料受容口(37)および供給された繊維と熱
可塑性樹脂材料を可塑化しながら下流側に移送するため
の移送手段であるスクリュー(31)及びシリンダ(39)とか
ら構成されており、繊維と熱可塑性樹脂材料の供給装置
である前記ホッパ(4) の下端開放部である吐出口(45)は
前記シリンダ(39)の材料受容口(37)に接続されている。
Further, a plasticizing device, for example, an injection machine, is provided with a material receiving port (37) for receiving the fiber supplied from the hopper (4) and the thermoplastic resin material, and for supplying the supplied fiber and the thermoplastic resin material. A screw (31) and a cylinder (39) as transfer means for transferring to the downstream side while plasticizing, and a lower end open portion of the hopper (4) as a supply device of a fiber and a thermoplastic resin material. The discharge port (45) is connected to the material receiving port (37) of the cylinder (39).

【0019】以下、このような図1で例示された装置の
各部について詳述する。 [ロービングカッタ(1) について]ロービングカッタ
(1) は、図1,図2に示すように、リール(19)に巻き取
られた多数本の長尺強化繊維(L) (L) を扁平に広げた状
態で送り出すフィードロール(11)(11)と、これの出口側
に設けられ且つ前記長尺強化繊維(L) (L) の移送幅より
も長いカッティングロール(12)とから成り、該カッティ
ングロール(12)は下方のフィードロール(11)に対して回
転状態で対接する複数の刃(121) (121) を具備してい
る。従って、前記刃(121) (121) とフィードロール(11)
(11)によって長尺強化繊維(L) が一定長さの繊維(L1)(L
1)に切断される。
Hereinafter, each part of the apparatus illustrated in FIG. 1 will be described in detail. [About roving cutter (1)] Roving cutter
(1) As shown in FIGS. 1 and 2, a feed roll (11) for feeding a large number of long reinforcing fibers (L) (L) wound up on a reel (19) in a flattened state. (11) and a cutting roll (12) provided on the outlet side thereof and longer than the transfer width of the long reinforcing fibers (L) (L), wherein the cutting roll (12) is a lower feed roll. It is provided with a plurality of blades (121) (121) that are in rotation with respect to (11). Therefore, the blade (121) (121) and the feed roll (11)
According to (11), the long reinforcing fiber (L) is a fixed length fiber (L1) (L
Cut to 1).

【0020】又、カッティングロール(12)は、図1に於
いて時計方向に回転するようになっており、これによ
り、繊維(L1)(L1)が確実に内筒(5) 内に落下するように
構成されている。この実施の形態では、長尺強化繊維
(L) としての4本の2400texのロービングガラス
繊維を、フィードロール(11)(11)に送り込み、これによ
って14mmの長さの繊維(L1)(L1)が得られるようにな
っている。又、ロービングカッタ(1) からの繊維(L1)(L
1)の落下量は2.2Kg/minに設定されている。
The cutting roll (12) is adapted to rotate clockwise in FIG. 1, whereby the fibers (L1) and (L1) are surely dropped into the inner cylinder (5). It is configured as follows. In this embodiment, a long reinforcing fiber
Four 2400 tex roving glass fibers as (L) are fed to feed rolls (11) and (11), whereby fibers (L1) and (L1) having a length of 14 mm are obtained. The fibers (L1) (L1) from the roving cutter (1)
The drop amount in 1) is set to 2.2 kg / min.

【0021】尚、前記カッティングロール(12)による長
尺強化繊維(L) の切断長さは該カッティングロール(12)
に植設した刃(121) (121) のピッチによって決定され、
それぞれの目的に応じて適宜設定されるが、あまり繊維
が短いと最終成形品の強度が低下するため、この例では
該切断によって形成される繊維(L1)(L1)の長さは3mm
〜50mmの範囲に設定できるようになっている。この
範囲にある場合には、ホッパ(4) 及びスクリュー(31)に
より円滑に下流側に供給することができる。尚、実際に
切断される繊維(L1)(L1)の長さは多少の誤差を有するか
ら前記3mm〜50mmの範囲を若干越えることがある
が、請求項1及び請求項4の発明の発明特定事項として
記載したように、平均繊維長さが当該範囲に収まってい
ればよい。 [定量フィーダ(2) について]熱可塑性樹脂材料をホッ
パ(4) に投入する定量フィーダ(2) は、図3に示すよう
に、ペレット状(粉末状であってもよい)の熱可塑性樹
脂材料を溜めておく樹脂ホッパ(21)と、該樹脂ホッパ(2
1)からの熱可塑性樹脂材料をシュート(6) へ定量的に供
給するコンベア(22)とから構成されており、前記シュー
ト(6) の下流端はホッパ(4) 内に侵入している(図1参
照)。
The cutting length of the long reinforcing fiber (L) by the cutting roll (12) is determined by the cutting roll (12).
Is determined by the pitch of the blade (121) (121)
It is set appropriately according to each purpose, but if the fiber is too short, the strength of the final molded product decreases. In this example, the length of the fiber (L1) (L1) formed by the cutting is 3 mm.
It can be set in the range of 5050 mm. In this range, it can be smoothly supplied to the downstream side by the hopper (4) and the screw (31). The lengths of the fibers (L1) and (L1) actually cut may slightly exceed the range of 3 mm to 50 mm because there is some error, but the invention of claim 1 and claim 4 is specified. As described above, the average fiber length may be within the range. [About quantitative feeder (2)] As shown in FIG. 3, the quantitative feeder (2) for putting the thermoplastic resin material into the hopper (4) is a pellet-like (powder-like) thermoplastic resin material. And a resin hopper (21) for storing
And a conveyor (22) for quantitatively supplying the thermoplastic resin material from (1) to the chute (6). The downstream end of the chute (6) enters the hopper (4) ( (See FIG. 1).

【0022】尚、コンベア(22)の速度は、これを駆動す
るモータ(23)の回転数によって決まり、従って、モータ
(23)の単位時間の回転数によって、単位時間当たりの熱
可塑性樹脂材料の投入量が決定される。この実施の形態
では、熱可塑性樹脂材料の投入量は5.1Kg/min
に設定されている。尚、熱可塑性樹脂材料と、その物性
を向上させる為の変性剤や他の充填材を同時にホッパ
(4) 側に供給してもよい。 [射出機(3) について]熱可塑性樹脂材料を溶融させこ
れと繊維を混練する可塑化装置としての射出機(3) は、
図4に示すように、公知の一般的なスクリュー式の射出
機と基本的には同じであり、後述するようにスクリュー
(31)は回転に伴って軸線方向に後退移動するが、前記溝
部(38)に於ける材料受容口(37)に対応する領域は、前記
後退移動中常に、次の式を満足する寸法に設定されるの
が好ましい。
The speed of the conveyor (22) is determined by the number of revolutions of the motor (23) for driving the conveyor (22).
The input amount of the thermoplastic resin material per unit time is determined by the number of rotations per unit time in (23). In this embodiment, the input amount of the thermoplastic resin material is 5.1 kg / min.
Is set to In addition, a thermoplastic resin material and a modifier or other filler for improving the
(4) It may be supplied to the side. [About the injection machine (3)] The injection machine (3) as a plasticizing apparatus for melting a thermoplastic resin material and kneading it with a fiber is:
As shown in FIG. 4, it is basically the same as a known general screw type injection machine,
(31) retreats in the axial direction with rotation, but the area corresponding to the material receiving port (37) in the groove (38) always has a dimension satisfying the following expression during the retreat movement. Preferably, it is set.

【0023】即ち、材料受容口(37)の口径d(cm)が
スクリュー(31)の溝幅c(cm)と同じであるかそれよ
り大きい通常の場合には、フライトを含めたスクリュー
(31)の外径をa(cm),溝底部の直径をb(cm)と
すると、上記溝部(38)に於ける材料受容口(37)に対応す
る領域の寸法は、
That is, when the diameter d (cm) of the material receiving port (37) is equal to or larger than the groove width c (cm) of the screw (31), the screw including the flight is usually used.
Assuming that the outer diameter of (31) is a (cm) and the diameter of the groove bottom is b (cm), the dimension of the area corresponding to the material receiving port (37) in the groove (38) is:

【0024】[0024]

【数3】 (Equation 3)

【0025】・・・・ に設定されていることが好ましい。上記式を満足する
ように外径a等を設定すると、スクリュー(31)に材料が
円滑に食い込むことが確認できる。尚、フライトの根元
と溝底の境界部は、通常は円弧状に形成されているが、
上記式の溝部径bの値は、フライト間で最も小さい部
分の値を選択する。
.. Is preferably set to: When the outer diameter a and the like are set so as to satisfy the above equation, it can be confirmed that the material smoothly penetrates the screw (31). The boundary between the root of the flight and the bottom of the groove is usually formed in an arc shape,
As the value of the groove diameter b in the above equation, the value of the smallest portion between flights is selected.

【0026】尚、材料受容口(37)が溝幅cよりも小さい
時は、該溝幅cに代えて材料受容口(37)の口径dを式
の左辺に代入し、該式を満足するようにスクリュー(3
1)の外径a及び溝部の直径bを設定すればよい。又、射
出機の場合は、スクリュー(31)が回転に伴って軸線方向
に後退移動するため、材料受容口(37)の下方の溝部(38)
も前記軸線方向に移動するが、上記したように、材料受
容口(37)の下にくる全ての溝部(38)が上記式を満たす
ようにする。
When the material receiving port (37) is smaller than the groove width c, the diameter d of the material receiving port (37) is substituted into the left side of the equation instead of the groove width c to satisfy the equation. Screw (3
What is necessary is just to set the outer diameter a and the groove diameter b of 1). In the case of an injection machine, since the screw (31) retreats in the axial direction with rotation, the groove (38) below the material receiving port (37) is used.
Also moves in the axial direction, but as described above, all the grooves (38) below the material receiving port (37) satisfy the above expression.

【0027】上記スクリュー径a,溝部径b,溝幅cの
具体的な寸法は、本実施の形態ではスクリュー径a=1
2cm,溝部径b=8.7cm,溝幅c=10.8cm
に設定されており、従って、このものでは前記式の右
辺の値が、579cm3 に設定されている。尚、材料受
容口(37)の口径は12cmに設定した。更に、射出機
(3) 内での溶融、混練過程で、繊維の切断を抑制する為
に、スクリュー(31)としてフルフライトスクリューが採
用されており、その先端には、射出時に溶融樹脂がシリ
ンダ(39)の上流側に逆流するのを防止するチェックリン
グ機構を具備するミキシングヘッド(32)が取付けられて
いる。このスクリュー(31)はその基端部から先端部にか
けて、フィードゾーン(311) 、コンプレションゾーン(3
12) 、及びメータリングゾーン(313) の3つのゾーンに
この順序で3分割されている。前記フィードゾーン(31
1) の溝深さは16.5mmに、コンプレションゾーン
(312) の溝深さは16.5mmから5.25mmに順次
変化する寸法に、更に、メータリングゾーン(313) の溝
深さは5.25mmに夫々設定されている。又、スクリ
ュー(31)の上記フィードゾーン(311) ,コンプレション
ゾーン(312) 及びメータリングゾーン(313) の距離の比
率は、2:1:1に設定されている。又、スクリュー(3
1)のフライトピッチは120mmに設定されており、更
に、溝幅cは上記したように10.8cmに設定されて
いる。
The specific dimensions of the screw diameter a, the groove diameter b, and the groove width c are as follows.
2cm, groove diameter b = 8.7cm, groove width c = 10.8cm
Therefore, in this case, the value on the right side of the above equation is set to 579 cm 3 . The diameter of the material receiving port (37) was set to 12 cm. In addition, injection machines
In the melting and kneading process in (3), a full flight screw is adopted as the screw (31) to suppress fiber cutting during the kneading process. A mixing head (32) having a check ring mechanism for preventing backflow to the upstream side is mounted. The screw (31) extends from its proximal end to its distal end in a feed zone (311), a compression zone (3
12) and a metering zone (313). The feed zone (31
1) Groove depth is 16.5mm, compression zone
The groove depth of (312) is set to a dimension that sequentially changes from 16.5 mm to 5.25 mm, and the groove depth of the metering zone (313) is set to 5.25 mm. The ratio of the distance between the feed zone (311), the compression zone (312) and the metering zone (313) of the screw (31) is set to 2: 1: 1. Also, screw (3
The flight pitch in 1) is set to 120 mm, and the groove width c is set to 10.8 cm as described above.

【0028】尚、このスクリュー(31)の圧縮比は4以下
に、みかけのせんだん速度は100sec-1に設定され
ることが望ましい。ここで、上記圧縮比は次の式で与え
られる。圧縮比=フィードゾーン(311) の溝深さ/メー
タリングゾーン(313) の溝深さ又、みかけのせんだん速
度は次の式で与えられる。
It is desirable that the compression ratio of the screw (31) is set to 4 or less and the apparent speed is set to 100 sec-1. Here, the compression ratio is given by the following equation. Compression ratio = groove depth of feed zone (311) / groove depth of metering zone (313) Also, apparent shear speed is given by the following equation.

【0029】みかけのせんだん速度=πDn/60H ただし、D:スクリュー(31)の直径(mm) n:スクリュー(31)の回転数(r.p.m) H:溝深さ(mm) 本実施の形態では、圧縮比が3.14のものを使用して
た。又、スクリュー(31)の回転数を60r.p.mとす
ることによって、みかけのせんだん速度を71.8se
c-1に設定した。
Apparent shear rate = πDn / 60H, where D: diameter of screw (31) (mm) n: number of rotations of screw (31) (rpm) H: groove depth (mm) In the embodiment, a compression ratio of 3.14 is used. Further, the rotation speed of the screw (31) is set to 60 r. p. m, the apparent speed is 71.8 sec.
It was set to c-1.

【0030】又、前記スクリュー(31)はスクリュー駆動
装置(33)によって回転駆動されると共に、軸線方向に往
復移動される。 [ホッパ(4) について]繊維と熱可塑性樹脂材料の供給
装置であり、材料供給路となるホッパ(4) は、ロービン
グカッタ(1) より投入される繊維と定量フィーダ(2) よ
り投入される熱可塑性樹脂材料を射出機(3) に供給する
ものである。
The screw (31) is driven to rotate by a screw driving device (33) and reciprocates in the axial direction. [Regarding hopper (4)] This is a supply device for fibers and thermoplastic resin material, and a hopper (4) serving as a material supply path is supplied from fibers fed from a roving cutter (1) and from a fixed amount feeder (2). The thermoplastic resin material is supplied to the injection machine (3).

【0031】ホッパ(4) の材質は特に限定されるもので
はないが、静電気が発生しにくいものを使用するのが望
ましい。また、必要に応じて、静電気によって繊維が付
着する場所に静電気除去エアーを吹きかける静電気除去
装置を設けてもよい。さらに、ホッパ(4) 内に於ける繊
維及び熱可塑性樹脂材料の貯留量が一定範囲におさまる
ようにすることが、熱可塑性樹脂材料を溶融させるまで
の所要時間等の安定性に繋がることから、この実施の形
態では上記ホッパ(4) の側部に上部近接スイッチ(41)と
その下方に位置する下部近接スイッチ(42)が設けられて
いる。そして、繊維及び熱可塑性樹脂材料の貯留量が下
部近接スイッチ(42)以下になると、ロービングカッタ
(1) 及び定量フィーダ(2) の作動が開始して、繊維及び
熱可塑性樹脂材料をホッパ(4) 内に投入し始め、これら
の貯留量が(41)まで増加すると、ロービングカッタ(1)
及び定量フィーダ(2) の作動が停止するようになってお
り、その具体的な制御は後述する。
The material of the hopper (4) is not particularly limited, but it is preferable to use a material that does not easily generate static electricity. Further, if necessary, a static electricity removing device that blows static electricity removing air to a place where the fibers adhere due to static electricity may be provided. Furthermore, keeping the amount of fibers and thermoplastic resin material within the hopper (4) within a certain range leads to stability such as the time required to melt the thermoplastic resin material, and so on. In this embodiment, an upper proximity switch (41) and a lower proximity switch (42) located below the upper proximity switch (41) are provided on the side of the hopper (4). When the storage amount of the fiber and the thermoplastic resin material becomes equal to or less than the lower proximity switch (42), the roving cutter is turned off.
(1) and the operation of the fixed-quantity feeder (2) start, and the fibers and the thermoplastic resin material start to be injected into the hopper (4).
The operation of the fixed-quantity feeder (2) is stopped, and the specific control thereof will be described later.

【0032】次に、前記吐出口(45)の中心部を含む鉛直
面と材料供給路の内壁面が交わってできる交差線と鉛直
線との成す角の大きさ、即ち、傾斜角度θ(図4参照)
について説明する。この傾斜角度θは、45°以下、望
ましくは30°以下、更に望ましくは15°以下に設定
するのが良い。そして、このような角度に設定すること
によって繊維等を吐出口(45)及び材料受容口(37)側に円
滑に供給できることが確認できた。従って、ホッパ(4)
が円錐形状になっている本実施の形態では、前記傾斜角
θは前記円錐の母線と鉛直線のなす角、即ち、前記円錐
の半頂角となり、具体的には、前記傾斜角度θとして1
0°に設定されたホッパ(4) を採用した。
Next, the magnitude of the angle between the vertical line including the center of the discharge port (45) and the inner wall surface of the material supply path and the vertical line, that is, the inclination angle θ (FIG. 4)
Will be described. Is preferably set to 45 ° or less, preferably 30 ° or less, and more preferably 15 ° or less. Then, it was confirmed that by setting such an angle, fibers and the like could be smoothly supplied to the discharge port (45) and the material receiving port (37). Therefore, the hopper (4)
Has a conical shape, the inclination angle θ is an angle formed by the generatrix of the cone and a vertical line, that is, a half vertex angle of the cone. Specifically, the inclination angle θ is 1
A hopper (4) set at 0 ° was employed.

【0033】尚、ホッパ(4) が円錐ではなく、横断面が
楕円形や多角形になったものでは、その内壁面の勾配
(水平に対する勾配)の内、最も緩やかな部分が前記傾
斜角度θの以下になるように設定する必要がある。即
ち、ホッパ(4) の内壁面全域に於ける前記角を前記傾斜
角度θ以下の範囲に設定する必要がある。最も緩やかな
勾配の領域でも繊維の付着防止が図れるようにするため
である。
If the hopper (4) is not conical but has an elliptical or polygonal cross section, the gentlest part of the slope of the inner wall surface (gradient with respect to the horizontal) is the inclination angle θ. Needs to be set to That is, it is necessary to set the angle over the entire inner wall surface of the hopper (4) within the range of the inclination angle θ or less. This is to prevent the adhesion of the fibers even in the region having the gentlest gradient.

【0034】尚、本実施の形態では、ホッパ(4) は、ポ
リエチレンテレフタートのフィルム(厚みは0.4m
m)の外面に補強用のステンレスを重ねた材料で形成し
ている。又、上部近接スイッチ(41)と下部近接スイッチ
(42)は150mmの間隔でホッパ(4) の壁面に沿って配
設している。又、この実施の形態では、ホッパ(4) の内
壁面に繊維等が付着するのを一層確実に防止する為に、
該ホッパ(4) の外面に振動発生装置(43)を設けて該ホッ
パ(4) を振動させるようにしている。 [攪拌装置(60)について]供給された熱可塑性樹脂材料
及び繊維をホッパ(4) 内で均一に混合せしめるために
は、供給された両者をホッパ(4) 内で攪拌することが好
ましく、そのための攪拌装置(60)としては種々の形態を
とりうるが、該攪拌装置(60)は、この例では図1,図6
に示すように、ホッパ(4) の内部に於いて上部近接スイ
ッチ(41)より高位に設けられた攪拌羽根(61)と、これを
回転させるモータ(62)から構成されている。
In this embodiment, the hopper (4) is a polyethylene terephthalate film (having a thickness of 0.4 m).
m) is formed of a material in which stainless steel for reinforcement is layered on the outer surface. Also, the upper proximity switch (41) and the lower proximity switch
(42) are arranged at 150 mm intervals along the wall surface of the hopper (4). Further, in this embodiment, in order to more reliably prevent fibers and the like from adhering to the inner wall surface of the hopper (4),
A vibration generator (43) is provided on the outer surface of the hopper (4) to vibrate the hopper (4). [Regarding the stirrer (60)] In order to uniformly mix the supplied thermoplastic resin material and fiber in the hopper (4), it is preferable to stir the supplied two in the hopper (4). The stirrer (60) can take various forms, and in this example, the stirrer (60)
As shown in FIG. 7, the hopper (4) includes a stirring blade (61) provided at a position higher than the upper proximity switch (41), and a motor (62) for rotating the stirring blade.

【0035】上記攪拌羽根(61)は、ロービングカッタ
(1) からの繊維(L1)(L1)とシュート(6) からの熱可塑性
樹脂材料の合流点の下流側に位置し、合流後の繊維と熱
可塑性樹脂材料を攪拌・混合する。この場合、繊維(L1)
(L1)の解繊を回避する為に、強い剪断を掛けずに攪拌す
るのが好ましい。この為、本実施の形態では、上記のよ
うに攪拌羽根(61)をモータ(62)で回転させる形式の攪拌
装置(60)を用いており、その回転速度を600r.p.
mに設定している。
The stirring blade (61) is a roving cutter.
The fibers (L1) and (L1) from (1) and the thermoplastic resin material from the chute (6) are located downstream of the junction of the thermoplastic resin material, and the combined fibers and the thermoplastic resin material are stirred and mixed. In this case, fiber (L1)
In order to avoid the fibrillation of (L1), it is preferable to stir without applying strong shearing. For this reason, in the present embodiment, a stirring device (60) of a type in which the stirring blade (61) is rotated by the motor (62) as described above is used, and the rotation speed is set to 600 rpm. p.
m.

【0036】尚、ホッパ(4) 内に攪拌羽根(61)を挿入配
設する為に必要な間隙がホッパ(4)の上端開口周縁部と
ロービングカッタ(1) 等の間に確保するのが困難な構造
となっている場合は、図7に示すように、ホッパ(4) の
側壁にモータ(64)の回転軸(640) を水平方向に貫通させ
てその端部を軸受(69)で支持し、該回転軸(640) に攪拌
羽根(63)を取付けてもよい。このものでも、熱可塑性樹
脂材料と繊維(L1)(L1)が攪拌羽根(63)に衝突して攪拌さ
れる。
It is to be noted that a gap required for inserting and disposing the stirring blade (61) in the hopper (4) is to be secured between the periphery of the upper end opening of the hopper (4) and the roving cutter (1). In the case of a difficult structure, as shown in FIG. 7, the rotating shaft (640) of the motor (64) is passed through the side wall of the hopper (4) in the horizontal direction, and the end thereof is fixed by a bearing (69). The rotating shaft (640) may be supported and a stirring blade (63) may be attached to the rotating shaft (640). Also in this case, the thermoplastic resin material and the fibers (L1) (L1) collide with the stirring blade (63) and are stirred.

【0037】尚、攪拌装置(60)は、上記攪拌羽根(61)で
攪拌する形式のものに限定されず、合流後の繊維と熱可
塑性樹脂材料が衝突してその流れをランダムに変えるこ
とができる拡散部材でもよく、これらの混合割合を均一
化する機能を具備するものであればよい。 [成形動作について]上記装置は、図5に示すフローチ
ャートに基づいた制御動作を行う制御装置によって制御
されようになっており、該制御装置には、同図の(イ)
のフローチャートに従って動作する第1コンピュータ
と、(ロ)のフローチャートに従って動作する第2コン
ピュータの2つコンピュータが組み込まれている。
The stirrer (60) is not limited to the type in which the stirring is performed by the stirring blade (61). The stirrer (60) is capable of randomly changing the flow by the collision of the fibers after the merger and the thermoplastic resin material. Any diffusion member may be used as long as it has a function of making the mixing ratio of these components uniform. [Regarding the molding operation] The above device is controlled by a control device which performs a control operation based on the flowchart shown in FIG. 5, and the control device includes (a) in FIG.
And a second computer that operates according to the flowchart in (b).

【0038】上記装置の動作を同図のフローチャートに
基づいて説明する。定量フィーダ(2) の樹脂ホッパ(21)
にペレット状の熱可塑性樹脂材料(例えばポリプロピレ
ン樹脂)を投入すると共に、リール(19)から引き出した
長尺強化繊維(L) の先端をフィードロール(11)(11)間に
挿入した状態で装置を動作させると、第1,第2コンピ
ュータが作動し始める。
The operation of the above device will be described with reference to the flowchart of FIG. Resin hopper for metering feeder (2) (21)
A thermoplastic resin material (for example, polypropylene resin) in the form of a pellet is charged into the apparatus, and the end of the long reinforcing fiber (L) drawn from the reel (19) is inserted between the feed rolls (11) and (11). Is operated, the first and second computers start operating.

【0039】第1コンピュータが始動すると、ステップ
(ST1) でロービングカッタ(1) と定量フィーダ(2) と更
に攪拌装置(60)が駆動させられる。尚、定量フィーダ
(2) とロービングカッタ(1) は同時に駆動させてもよい
し異なるタイミングで駆動させてもよいが、熱可塑性樹
脂材料と繊維が同時にホッパ(4) に供給できるタイミン
グで上記定量フィーダ(2) 等を駆動させる。
When the first computer starts, the steps
In (ST1), the roving cutter (1), the fixed amount feeder (2), and the stirring device (60) are driven. In addition, quantitative feeder
(2) and the roving cutter (1) may be driven at the same time or at different timings, but at the timing when the thermoplastic resin material and the fiber can be supplied to the hopper (4) at the same time, the above-mentioned fixed-quantity feeder (2) And so on.

【0040】上記ロービングカッタ(1) と定量フィーダ
(2) が始動すると、ロービングカッタ(1) の作動によっ
て繊維(L1)(L1)が形成されてこれが内筒(5) の繊維排出
口(52)からホッパ(4) 内に落下する。一方、定量フィー
ダ(2) から供給される熱可塑性樹脂材料(P) はシュート
(6) を経て、その先端からホッパ(4) 内に投入される。
すると、これら繊維(L1)(L1)と熱可塑性樹脂材料(P)
が、攪拌装置(60)の攪拌羽根(61)に当たると共にこれで
攪拌混合され、この混合物がホッパ(4) に貯留される。
The above roving cutter (1) and the fixed-quantity feeder
When (2) starts, the fibers (L1) and (L1) are formed by the operation of the roving cutter (1), and the fibers fall from the fiber discharge port (52) of the inner cylinder (5) into the hopper (4). On the other hand, the thermoplastic resin material (P) supplied from the fixed-quantity feeder (2)
After (6), it is thrown into the hopper (4) from its tip.
Then, these fibers (L1) (L1) and thermoplastic resin material (P)
This strikes the stirring blades (61) of the stirring device (60) and is stirred and mixed by this, and the mixture is stored in the hopper (4).

【0041】次に、ホッパ(4) 内に供給された上記熱可
塑性樹脂材料(P) 等の貯留量が増加してその上面が上部
近接スイッチ(41)部分まで上昇すると、該上部近接スイ
ッチ(41)が検知信号を出力し、該検知信号によってロー
ビングカッタ(1) と定量フィーダ(2) と更に攪拌装置(6
0)が停止される(ステップ(ST2) (ST3) )。一方、上記
上部近接スイッチ(41)から検知信号が出力されると、第
2コンピュータが図5の(ロ)に示すステップ(ST11)か
らステップ(ST12)を実行して射出機(3) を駆動させる。
即ち、スクリュー駆動装置(33)でスクリュー(31)を回転
させながら軸線方向に後退させる共に、シリンダ(39)の
外面に添設された図示しないヒータを発熱させる。する
と、ホッパ(4) の下端から材料受容口(37)を介してシリ
ンダ(39)内に熱可塑性樹脂材料(P) 等が供給され、これ
がスクリュー(31)の先端側に移送されると共にこれが上
記ヒータで加熱されて次第に溶融して行く。やがてスク
リュー(31)の先端部に於ける溶融樹脂の貯留量が設定値
に達すると、スクリュー(31)の回転を停止させ(ステッ
プ(ST13)(ST14))、その後、スクリュー(31)をスクリュ
ー駆動装置(33)で軸線方向に進出させる。すると、チェ
ックリング機構を有するミキシングヘッド(32)がシリン
ダ(39)先端の吐出口(36)から前記溶融樹脂を吐出させ、
これが図示しない金型に注入されて成形品が作られる。
Next, when the storage amount of the thermoplastic resin material (P) and the like supplied into the hopper (4) increases and the upper surface thereof rises to the upper proximity switch (41), the upper proximity switch (41) 41) outputs a detection signal, and the roving cutter (1), the fixed-quantity feeder (2) and the stirring device (6)
0) is stopped (steps (ST2) and (ST3)). On the other hand, when the detection signal is output from the upper proximity switch (41), the second computer drives the injection machine (3) by executing the steps (ST11) to (ST12) shown in FIG. Let it.
That is, while the screw (31) is rotated by the screw driving device (33), the screw (31) is retracted in the axial direction, and a heater (not shown) attached to the outer surface of the cylinder (39) generates heat. Then, a thermoplastic resin material (P) or the like is supplied from the lower end of the hopper (4) into the cylinder (39) through the material receiving port (37), and is transferred to the tip side of the screw (31) and is also transferred. It is gradually heated and melted by the heater. When the accumulated amount of the molten resin at the tip of the screw (31) reaches the set value, the rotation of the screw (31) is stopped (steps (ST13) and (ST14)), and then the screw (31) is screwed. It is advanced in the axial direction by the driving device (33). Then, the mixing head (32) having a check ring mechanism discharges the molten resin from the discharge port (36) at the tip of the cylinder (39),
This is injected into a mold (not shown) to form a molded product.

【0042】尚、上記動作の途中で、ホッパ(4) 内の熱
可塑性樹脂材料(P) 等の貯留量が下部近接スイッチ(42)
以下に減少すると、第1コンピュータが図5の(イ)に
示すステップ(ST4) を実行し、再びステップ(ST1) でロ
ービングカッタ(1) 等を作動させる。これにより、ホッ
パ(4) 内に於ける熱可塑性樹脂材料(P) 等の貯留量が常
に上部近接スイッチ(41)と下部近接スイッチ(42)の間に
保たれる。
During the above operation, the storage amount of the thermoplastic resin material (P) in the hopper (4) is reduced by the lower proximity switch (42).
When it decreases below, the first computer executes the step (ST4) shown in FIG. 5A, and again operates the roving cutter (1) in the step (ST1). As a result, the storage amount of the thermoplastic resin material (P) and the like in the hopper (4) is always maintained between the upper proximity switch (41) and the lower proximity switch (42).

【0043】上記実施の形態の射出機を用いて、既述し
たポリプロピレン樹脂とロービングガラス繊維を溶融混
合して繊維強化樹脂製の成形品を製造する場合、ロービ
ングカッタ(1) から繊維長14mmの繊維(L1)(L1)を
2.2Kg/minの速度で供給し、定量フィーダ(2)
から上記樹脂のペレットを5.1Kg/minで供給し
た。その結果、2Kgのガラス繊維強化ポリプロピレン
樹脂を溶融状態にするのに約18secの時間を要した
が、この時間は常に安定しており、ホッパ(4) での繊維
及び熱可塑性樹脂材料の詰まりもなく、円滑に射出機
(3) に供給された。
When a molded article made of fiber reinforced resin is manufactured by melting and mixing the above-described polypropylene resin and roving glass fiber using the injection machine of the above embodiment, a fiber length of 14 mm is obtained from the roving cutter (1). The fiber (L1) (L1) is supplied at a rate of 2.2 kg / min, and a fixed amount feeder (2)
Supplied pellets of the above resin at 5.1 kg / min. As a result, it took about 18 seconds to melt the 2 kg glass fiber reinforced polypropylene resin, but this time was always stable, and the clogging of the fiber and thermoplastic resin material in the hopper (4) was No injection machine
Supplied to (3).

【0044】尚、上記ホッパ(4) の内面の既述傾斜角度
θを既述したように0°以上で30°以下に設定してい
ると、ホッパ(4) の内壁に繊維等が殆ど付着しないこと
は既述した通りであるが、上記傾斜角度θが50°のホ
ッパ(4) を使用した場合には上記と同じ条件であって
も、繊維がホッパ(4) の内壁面に付着することが確認さ
れた。
If the above-described inclination angle θ of the inner surface of the hopper (4) is set to 0 ° or more and 30 ° or less as described above, fibers and the like hardly adhere to the inner wall of the hopper (4). As described above, when the hopper (4) having the inclination angle θ of 50 ° is used, the fibers adhere to the inner wall surface of the hopper (4) even under the same conditions as described above. It was confirmed that.

【0045】尚、上記実施の形態では、式の右辺の値
が579cm3 に設定されたスクリュー(31)を使用した
が、該値が350cm3 であても、繊維等が円滑にスク
リュー(31)に供給された。 [その他、各部の変形例等] .熱可塑性樹脂材料(P) の投入に関して 上記実施の形態では、落下途中の繊維(L1)(L1)に対して
シュート(6) からの熱可塑性樹脂材料(P) を横方向から
合流させるものを提示的に開示したが、図8に示したよ
うに、定量フィーダ(2) をロービングカッタ(1) の上方
に配設し、内筒(80)とホッパ(4) の間隙に熱可塑性樹脂
材料(P) を自由落下させる態様で投入しても良い。この
ものでは、繊維(L1)(L1)が熱可塑性樹脂材料(P) で包囲
される態様で攪拌羽根(63)部分まで流下して該部分で攪
拌混合される。この方法では、図1に於けるシュート
(6) が不要となる。 .繊維の投入に関して 本発明の、ホッパ(4) からなる繊維と熱可塑性樹脂材料
の供給装置において、繊維及び熱可塑性樹脂材料は直接
ホッパ(4) に供給されてもよいが、図9に示すように、
ホッパ(4) 内に少なくとも下端が開放されている内筒
(5) を設け、繊維をこの内筒(5) を経由してホッパ(4)
内に供給し、熱可塑性樹脂材料はこの内筒(5) の外周と
ホッパ(4) の内周面との間に供給することが、両者をよ
り均一に混合し、円滑に可塑化装置に導くことができる
点で好ましい。
[0045] In the above embodiment, although the value of the expression on the right side was used screw (31) which is set to 579cm 3, also addressed in the said value is 350 cm 3, the fiber or the like smoothly screws (31) Supplied to [Other modified examples of each part] In the above embodiment, the thermoplastic resin material (P) from the chute (6) joins the fibers (L1) and (L1) in the middle of falling from the lateral direction. As shown in FIG. 8, a fixed-quantity feeder (2) is disposed above the roving cutter (1), and a thermoplastic resin material is provided in a gap between the inner cylinder (80) and the hopper (4). (P) may be thrown in a free-fall mode. In this apparatus, the fibers (L1) (L1) are flowed down to the stirring blade (63) in a mode of being surrounded by the thermoplastic resin material (P), and are stirred and mixed at the portion. In this method, the shoot in FIG.
(6) becomes unnecessary. . Regarding the introduction of the fibers In the fiber and thermoplastic resin material supply device of the present invention comprising the hopper (4), the fibers and the thermoplastic resin material may be directly supplied to the hopper (4), as shown in FIG. To
Inner cylinder with at least lower end open in hopper (4)
(5), and the fibers are transferred to the hopper (4) via this inner cylinder (5).
The thermoplastic resin material is supplied between the outer periphery of the inner cylinder (5) and the inner peripheral surface of the hopper (4), so that the two are more uniformly mixed and smoothly supplied to the plasticizer. It is preferable because it can be guided.

【0046】この場合、内筒(5) の材質は既述ホッパ
(4) と同様に、静電気が発生しにくい材質で構成するの
が望ましい。又、前記内筒(5) の形状は、その上下両端
の繊維投入口(51)と繊維排出口(52)の大きさを同じにし
てもよく、又、何れが大きくてもよいが、図示したもの
のように、逆円錐形のものを使用する場合は、鉛直線に
対する内壁面の傾斜角度θ'は30°以下にするのが良
く、望ましくは15°以下にするのが良い。この角度に
設定すると、繊維(L1)(L1)の付着防止効果を顕著に発揮
するからである。又、内筒(5) の内壁面に繊維(L1)(L1)
が付着するのを一層確実に防止する為に該内筒(5) を振
動させるバイブレータ等の振動発生装置を設けても良
い。又、シュート(6) から供給される熱可塑性樹脂材料
(P) を内筒(5) に衝突させることによって、該内筒(5)
を振動させてもよい。更に、内筒(5)の下方で合流する
熱可塑性樹脂材料(P) と繊維(L1)(L1)を攪拌混合する攪
拌羽根を設けても良い。
In this case, the material of the inner cylinder (5) is the hopper described above.
As in (4), it is desirable to use a material that does not easily generate static electricity. The shape of the inner cylinder (5) may be such that the size of the fiber inlet (51) and the fiber outlet (52) at the upper and lower ends thereof may be the same, or either may be larger. When an inverted conical shape is used, the inclination angle θ ′ of the inner wall surface with respect to the vertical line is preferably 30 ° or less, and more preferably 15 ° or less. This is because if the angle is set to this angle, the effect of preventing the adhesion of the fibers (L1) and (L1) is remarkably exhibited. Also, fibers (L1) (L1) on the inner wall surface of the inner cylinder (5)
A vibration generator such as a vibrator for vibrating the inner cylinder (5) may be provided in order to more reliably prevent the adherence of the inner cylinder. The thermoplastic resin material supplied from the chute (6)
By colliding (P) with the inner cylinder (5), the inner cylinder (5)
May be vibrated. Further, a stirring blade may be provided for stirring and mixing the thermoplastic resin material (P) and the fibers (L1) (L1) which merge below the inner cylinder (5).

【0047】又、既述した図1のものではロービングカ
ッタで繊維(L1)(L1)を形成するようにしたものを例示し
たが、図9に示すように、予め所定長さにカットされた
チョップドストランドを定量的に投入できる定量フィー
ダ(7) からの繊維(L1)(L1)を上記内筒(5) 内に投入する
ようにしてもよい。 .攪拌装置(60)に関して 既述各実施の形態では、モータで回転される攪拌羽根を
具備する攪拌装置で熱可塑性樹脂材料(P) と繊維を攪拌
混合する構成としたが、図10に示すように、定量フィ
ーダ(2) (7) からの熱可塑性樹脂材料(P) と繊維(L1)(L
1)が投入される内筒(5) の下端開口部に下方から臨むよ
うにワイヤ(67)で吊された円錐状の拡散部材(66)を設け
てもよい。このものでは、内筒(5) の下端から落下する
熱可塑性樹脂材料(P) と繊維(L1)(L1)が前記拡散部材(6
6)に衝突して流れの方向がランダムに変更せしめられ、
これにより、熱可塑性樹脂材料(P) と繊維(L1)(L1)が攪
拌混合される。 .上記実施の形態は可塑化装置として射出機を例示し
て説明したが、可塑化装置が樹脂の押出機である場合で
も本発明を適用することができる。
In FIG. 1 described above, the fiber (L1) (L1) is formed by using a roving cutter. However, as shown in FIG. 9, the fiber (L1) (L1) is cut into a predetermined length in advance. The fibers (L1) (L1) from the quantitative feeder (7), which can quantitatively supply the chopped strands, may be supplied into the inner cylinder (5). . Regarding the Stirrer (60) In each of the embodiments described above, the thermoplastic resin material (P) and the fiber are stirred and mixed by the stirrer provided with the stirring blade rotated by the motor, as shown in FIG. Next, the thermoplastic resin material (P) and fiber (L1) (L
A conical diffusion member (66) suspended by a wire (67) may be provided so as to face the lower end opening of the inner cylinder (5) into which 1) is charged, from below. In this device, the thermoplastic resin material (P) and the fibers (L1) (L1) that fall from the lower end of the inner cylinder (5) are mixed with the diffusion member (6).
6) The direction of the flow is randomly changed by collision,
As a result, the thermoplastic resin material (P) and the fibers (L1) (L1) are stirred and mixed. . In the above embodiment, an injection machine has been described as an example of a plasticizing device. However, the present invention can be applied to a case where the plasticizing device is a resin extruder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を説明する射出機の全体図FIG. 1 is an overall view of an injection machine illustrating an embodiment of the present invention.

【図2】図1に於けるロービングカッタ(1) と内筒(5)
の関係説明図
FIG. 2 shows the roving cutter (1) and the inner cylinder (5) in FIG.
Illustration of the relationship

【図3】図1に現れる定量フィーダ(2) の詳細図FIG. 3 is a detailed view of the quantitative feeder (2) shown in FIG.

【図4】図1の射出機に於けるホッパ(4) と内筒(5) の
内壁面の傾斜角度θの説明と、スクリュー(31)の各ゾー
ンを説明する図
FIG. 4 is a view for explaining the inclination angle θ of the inner wall surfaces of the hopper (4) and the inner cylinder (5) in the injection machine of FIG. 1, and explaining each zone of the screw (31).

【図5】図1の射出機の制御動作を説明するフローチャ
ート
FIG. 5 is a flowchart illustrating a control operation of the injection machine in FIG. 1;

【図6】攪拌装置(60)の配設部の説明図FIG. 6 is an explanatory view of an arrangement portion of the stirring device (60).

【図7】攪拌装置(60)の変形例の説明図FIG. 7 is an explanatory view of a modification of the stirring device (60).

【図8】内筒(80)の上方から熱可塑性樹脂材料を供給す
る変形例を説明する図
FIG. 8 is a view for explaining a modification in which a thermoplastic resin material is supplied from above the inner cylinder (80).

【図9】内筒(5) を介して供給する繊維(L1)(L1)の下方
で熱可塑性樹脂材料(P) を合流させる変形例の説明図
FIG. 9 is an explanatory view of a modification in which a thermoplastic resin material (P) is merged below fibers (L1) (L1) supplied via an inner cylinder (5).

【図10】攪拌装置の変形例の説明図FIG. 10 is an explanatory view of a modification of the stirring device.

【符号の説明】 (1) ・・・ロービングカッタ (2) ・・・定量フィーダ (3) ・・・射出機 (4) ・・・ホッパ (6) ・・・シュート (31)・・・スクリュー (37)・・・材料受容口 (39)・・・シリンダ (45)・・・吐出口 (60)・・・攪拌装置 (L1)・・・繊維 (P) ・・・熱可塑性樹脂材料[Explanation of symbols] (1) ・ ・ ・ Roving cutter (2) ・ ・ ・ Quantitative feeder (3) ・ ・ ・ Injector (4) ・ ・ ・ Hopper (6) ・ ・ ・ Chute (31) ・ ・ ・ Screw (37) ・ ・ ・ Material receiving port (39) ・ ・ ・ Cylinder (45) ・ ・ ・ Discharge port (60) ・ ・ ・ Stirring device (L1) ・ ・ ・ Fiber (P) ・ ・ ・ Thermoplastic resin material

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年11月7日(2001.11.
7)
[Submission date] November 7, 2001 (2001.11.
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 繊維と熱可塑性樹脂材料の供給装置[Title of the Invention] Supply device of fiber and thermoplastic resin material

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維と熱可塑性樹
脂材料の供給装置に関するもので、例えば、繊維強化樹
脂製の成形品の成形に使用される可塑化装置、例えば射
出機や押出機等に適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying fibers and a thermoplastic resin material, for example, a plasticizing apparatus used for molding a fiber-reinforced resin molded article, such as an injection machine or an extruder. Can be applied to

【0002】[0002]

【従来の技術】従来、繊維強化樹脂製の成形品を射出成
形する場合、押出機によって、熱可塑性樹脂材料の溶融
とこれと繊維との混練を行い、これによって、熱可塑性
樹脂中に強化繊維が含まれた繊維強化樹脂ペレットをつ
くり、これを射出機に供給して再び溶融と混練を行った
後に金型内に供給し、その後、前記金型内の繊維強化樹
脂を冷却硬化させて成形品を成形するものが知られてい
る。
2. Description of the Related Art Conventionally, when a molded article made of a fiber-reinforced resin is injection-molded, a thermoplastic resin material is melted and kneaded with the fiber by an extruder. Is made into a fiber-reinforced resin pellet, supplied to an injection machine, melted and kneaded again, and then supplied into a mold. Thereafter, the fiber-reinforced resin in the mold is cooled and cured to be molded. Molding articles are known.

【0003】そして、繊維と熱可塑性樹脂とを混練する
押出機を具備する射出成形装置としては特開平4−28
6617号公報に開示されたものが知られている。この
ものでは、押出機のシリンダに熱可塑性樹脂供給口とそ
の下流側の繊維供給口とが設けられており、熱可塑性樹
脂供給口から供給された熱可塑性樹脂材料をシリンダに
具備させたヒータで加熱しながらスクリュー式の移送手
段により前記繊維供給口側に移送させ、これによって加
熱溶融された樹脂に繊維供給口から供給した繊維を添加
し、更にその下流側で前記繊維と溶融した樹脂を混練す
る。そして、これによって得られた繊維強化樹脂を用い
て射出成形する。
As an injection molding apparatus having an extruder for kneading a fiber and a thermoplastic resin, Japanese Patent Application Laid-Open No. 4-28 is disclosed.
The one disclosed in No. 6617 is known. In this apparatus, a thermoplastic resin supply port and a fiber supply port on the downstream side thereof are provided in a cylinder of an extruder, and the cylinder is provided with a thermoplastic resin material supplied from the thermoplastic resin supply port. It is transferred to the fiber supply port side by a screw-type transfer means while heating, the fiber supplied from the fiber supply port is added to the resin melted by heating, and the fiber and the molten resin are further kneaded downstream thereof. I do. Then, injection molding is performed using the fiber reinforced resin obtained as described above.

【0004】この方法による場合には、押出機のシリン
ダに設けられた繊維供給口から繊維を供給するだけで繊
維強化樹脂製の成形品が出来るから、繊維を含有しない
樹脂を用いた通常の射出成形とほぼ同様な作業で射出成
形できる利点がある。ところが、このものでは、押出機
のシリンダには熱可塑性樹脂供給口と繊維供給口とを各
別に設ける必要があり、又、繊維供給口からの繊維がシ
リンダ内のスクリューに円滑に食い込むようにする為
に、スクリューを深溝にする等のスクリュー設計も必要
である等の欠点を有していた。
According to this method, a molded article made of a fiber-reinforced resin can be formed only by supplying fibers from a fiber supply port provided in a cylinder of an extruder. There is an advantage that the injection molding can be performed by substantially the same operation as the molding. However, in this case, it is necessary to provide a thermoplastic resin supply port and a fiber supply port separately in the cylinder of the extruder, and to ensure that the fiber from the fiber supply port bites into the screw in the cylinder smoothly. For this reason, it has a drawback that a screw design such as making the screw a deep groove is necessary.

【0005】又、繊維強化樹脂製の成形品を射出成形す
る他の装置として、特開平2−153714号の発明が
提案されている。これは、射出機のシリンダに熱可塑性
樹脂材料と繊維を直接供給するものであるが、このもの
でも、前記シリンダに熱可塑性樹脂供給口と繊維供給口
を各別に形成する必要があり、かつ繊維供給口には、繊
維をシリンダ内に押し込む為の押込み装置を設ける必要
がある。
As another apparatus for injection molding a molded article made of fiber reinforced resin, the invention of Japanese Patent Application Laid-Open No. 2-153714 has been proposed. This is to supply the thermoplastic resin material and the fiber directly to the cylinder of the injection machine, but also in this case, it is necessary to separately form the thermoplastic resin supply port and the fiber supply port in the cylinder, and At the supply port, it is necessary to provide a pushing device for pushing the fibers into the cylinder.

【0006】[0006]

【発明が解決しようとする課題】本願発明の供給装置
は、かかる点に鑑みてなされたものであり、樹脂の射出
機や押出機のスクリュー式移送手段を備えた可塑化装置
の構造の簡略化に貢献できるとともに、該可塑化装置
に、熱可塑性樹脂材料や繊維を円滑に、安定して供給で
きるようにすることをその課題とする。
SUMMARY OF THE INVENTION The supply apparatus of the present invention has been made in view of the above points, and simplifies the structure of a plasticizing apparatus provided with a screw type transfer means for a resin injection machine or an extruder. Another object of the present invention is to make it possible to smoothly and stably supply a thermoplastic resin material and fibers to the plasticizer.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する為の
請求項1の発明の技術的手段は、『下端開放部が吐出口
となった筒状の材料供給路を具備し、前記材料供給路に
それぞれ別個に直接投入された平均繊維長が3mm〜5
0mmの繊維と粒状又は粉末状の熱可塑性樹脂材料を前
記吐出口から可塑化装置に供給する繊維と熱可塑性樹脂
材料の供給装置であって、前記吐出口の中心部を含む鉛
直面と前記材料供給路の内壁面が交わってできる交差線
の鉛直線に対する角度が、前記内壁面全域に於いて、0
°以上で且つ30°以下の範囲に設定されている』こと
である。
According to a first aspect of the present invention, there is provided a technique for providing a cylindrical material supply path having a discharge opening at a lower end opening. The average fiber length directly injected into the road separately is 3 mm to 5 mm.
A fiber and thermoplastic resin material supply device for supplying 0 mm of fiber and granular or powdery thermoplastic resin material from the discharge port to the plasticizing device, wherein a vertical plane including a central portion of the discharge port and the material are provided. The angle of the intersection line formed by the inner wall surfaces of the supply path with respect to the vertical line is 0 in the entire inner wall surface.
The angle is set in the range of not less than 30 ° and not more than 30 ° ”.

【0008】上記技術的手段によれば、繊維と熱可塑性
樹脂材料を、共通の材料供給路から同時に、円滑に、且
つ安定して射出機や押出機等の可塑化装置に供給するこ
とができる。請求項1の発明において、『前記材料供給
路の壁面を振動させる振動発生装置を具備』させた請求
項2の発明では、材料供給路の壁面が振動するから、該
壁面に繊維が静電気等で付着する現象が生じにくくなる
と共に、繊維等の移動が促進される。
According to the above technical means, the fiber and the thermoplastic resin material can be simultaneously and smoothly and stably supplied from a common material supply path to a plasticizing device such as an injection machine or an extruder. . According to the first aspect of the present invention, in the second aspect of the present invention, "the apparatus includes a vibration generating device for vibrating the wall surface of the material supply path". The adhesion phenomenon is less likely to occur, and the movement of fibers and the like is promoted.

【0009】請求項1又は請求項2の発明において、
『前記材料供給路内の繊維と熱可塑性樹脂材料を攪拌す
る攪拌装置を具備』する請求項3の発明では、攪拌装置
によって繊維と熱可塑性樹脂材料が確実に混合され、均
一性の改善を図ることができる。
In the invention of claim 1 or claim 2,
According to the invention of claim 3, which comprises "a stirrer for stirring the fiber and the thermoplastic resin material in the material supply path", the fiber and the thermoplastic resin material are surely mixed by the stirrer, and the uniformity is improved. be able to.

【0010】[0010]

【0011】[0011]

【0012】[0012]

【発明の効果】以上説明したように、請求項1の発明で
は、繊維と熱可塑性樹脂材料を吐出口から可塑化装置に
供給するための供給装置において、前記吐出口の中心部
を含む鉛直面と材料供給路の内壁面が交わってできる交
差線と鉛直線の成す角の大きさが前記値に設定されてい
るから、実施の形態で説明する後述のテスト結果から明
らかなように、繊維や熱可塑性樹脂材料が、円滑に、安
定して可塑化装置に供給できる。
As described above, according to the first aspect of the present invention, in a supply device for supplying fibers and a thermoplastic resin material from a discharge port to a plasticizing device, a vertical surface including a central portion of the discharge port is provided. Since the size of the angle formed by the intersection line and the vertical line formed by the intersection of the inner wall surface of the material supply path and the vertical line is set to the above value, as apparent from the test results described later in the embodiment, the fibers and The thermoplastic resin material can be smoothly and stably supplied to the plasticizing device.

【0013】又、繊維と熱可塑性樹脂材料を共通の吐出
口から可塑化装置に供給できるから、これら繊維と熱可
塑性樹脂材料の供給口を各別に形成する必要がなく、可
塑化装置の構造の簡略化に貢献することができる。請求
項2の発明では、材料供給路の壁面の振動によって繊維
と熱可塑性樹脂材料の移動が助長されるからこれらが一
層円滑に可塑化装置へ供給される。
Further, since the fibers and the thermoplastic resin material can be supplied to the plasticizing apparatus from a common discharge port, it is not necessary to separately form supply ports for these fibers and the thermoplastic resin material, and the structure of the plasticizing apparatus can be reduced. It can contribute to simplification. According to the second aspect of the present invention, the movement of the fiber and the thermoplastic resin material is promoted by the vibration of the wall surface of the material supply path, so that they are more smoothly supplied to the plasticizing device.

【0014】請求項3の発明では、繊維と熱可塑性樹脂
材料が攪拌混合されるから、可塑化装置に供給される繊
維等の混合割合が安定する。
According to the third aspect of the present invention, since the fibers and the thermoplastic resin material are stirred and mixed, the mixing ratio of the fibers and the like supplied to the plasticizer is stabilized.

【0015】[0015]

【発明の実施の形態】次に、上記発明の実施の形態を図
面に従って説明する。図1は、本発明の実施の形態に係
る繊維と熱可塑性樹脂材料の供給装置を具備し且つ該供
給装置から供給される繊維と熱可塑性樹脂材料を材料受
容口より同時に取り入れて可塑化しながらスクリューで
下流側に移送する移送手段からなる可塑化装置の例を示
す断面図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a fiber and thermoplastic resin material supply device according to an embodiment of the present invention, and a fiber and a thermoplastic resin material supplied from the supply device are simultaneously taken in from a material receiving port and plasticized. FIG. 4 is a cross-sectional view showing an example of a plasticizing device including a transfer unit that transfers the material to a downstream side.

【0016】この図において、繊維と熱可塑性樹脂材料
の供給装置は、下端が開放部となった筒状の材料供給路
であるホッパ(4) から構成されており、該ホッパ(4) の
上部には、所定の長さの繊維を供給するための手段、た
とえば繊維を所定の長さに切断して供給するためのロー
ビングカッタ(1) や所定の長さに切断されたチョップド
ストランド繊維を定量的に供給するための定量フィーダ
が配設されているが、この例ではロービングカッタ(1)
が配設されている。
In this figure, the fiber and thermoplastic resin material supply device is composed of a hopper (4) which is a cylindrical material supply passage having an open lower end, and an upper portion of the hopper (4). Means for feeding fibers of a predetermined length, for example, a roving cutter (1) for cutting the fibers to a predetermined length and feeding them, or measuring a chopped strand fiber cut to a predetermined length. A fixed quantity feeder is provided to supply the raw material, but in this example, the roving cutter (1)
Are arranged.

【0017】ホッパ(4) には、定量フィーダ(2) などの
熱可塑性樹脂材料を定量的に供給するための手段が設け
られており、この例では、定量フィーダ(2) からの粒状
または粉末状の熱可塑性樹脂材料は、該熱可塑性樹脂材
料を自然に流動落下させ得る角度に傾斜させたシュート
(6) を介してホッパ(4) 内に供給されるようになってい
る。
The hopper (4) is provided with means for quantitatively supplying a thermoplastic resin material such as a fixed-quantity feeder (2). In this example, the hopper (4) is provided with granular or powdery material from the fixed-quantity feeder (2). The thermoplastic resin material is a chute inclined at an angle that allows the thermoplastic resin material to flow and fall naturally.
It is supplied to the hopper (4) via (6).

【0018】又、可塑化装置、例えば射出機は、前記ホ
ッパ(4) から供給される繊維と熱可塑性樹脂材料を受け
入れるための材料受容口(37)および供給された繊維と熱
可塑性樹脂材料を可塑化しながら下流側に移送するため
の移送手段であるスクリュー(31)及びシリンダ(39)とか
ら構成されており、繊維と熱可塑性樹脂材料の供給装置
である前記ホッパ(4) の下端開放部である吐出口(45)は
前記シリンダ(39)の材料受容口(37)に接続されている。
Further, a plasticizing device, for example, an injection machine, is provided with a material receiving port (37) for receiving the fiber supplied from the hopper (4) and the thermoplastic resin material, and for supplying the supplied fiber and the thermoplastic resin material. A screw (31) and a cylinder (39) as transfer means for transferring to the downstream side while plasticizing, and a lower end open portion of the hopper (4) as a supply device of a fiber and a thermoplastic resin material. The discharge port (45) is connected to the material receiving port (37) of the cylinder (39).

【0019】以下、このような図1で例示された装置の
各部について詳述する。 [ロービングカッタ(1) について]ロービングカッタ
(1) は、図1,図2に示すように、リール(19)に巻き取
られた多数本の長尺強化繊維(L) (L) を扁平に広げた状
態で送り出すフィードロール(11)(11)と、これの出口側
に設けられ且つ前記長尺強化繊維(L) (L) の移送幅より
も長いカッティングロール(12)とから成り、該カッティ
ングロール(12)は下方のフィードロール(11)に対して回
転状態で対接する複数の刃(121) (121) を具備してい
る。従って、前記刃(121) (121) とフィードロール(11)
(11)によって長尺強化繊維(L) が一定長さの繊維(L1)(L
1)に切断される。
Hereinafter, each part of the apparatus illustrated in FIG. 1 will be described in detail. [About roving cutter (1)] Roving cutter
(1) As shown in FIGS. 1 and 2, a feed roll (11) for feeding a large number of long reinforcing fibers (L) (L) wound up on a reel (19) in a flattened state. (11) and a cutting roll (12) provided on the outlet side thereof and longer than the transfer width of the long reinforcing fibers (L) (L), wherein the cutting roll (12) is a lower feed roll. It is provided with a plurality of blades (121) (121) that are in rotation with respect to (11). Therefore, the blade (121) (121) and the feed roll (11)
According to (11), the long reinforcing fiber (L) is a fixed length fiber (L1) (L
Cut to 1).

【0020】又、カッティングロール(12)は、図1に於
いて時計方向に回転するようになっており、これによ
り、繊維(L1)(L1)が確実に内筒(5) 内に落下するように
構成されている。この実施の形態では、長尺強化繊維
(L) としての4本の2400texのロービングガラス
繊維を、フィードロール(11)(11)に送り込み、これによ
って14mmの長さの繊維(L1)(L1)が得られるようにな
っている。又、ロービングカッタ(1) からの繊維(L1)(L
1)の落下量は2.2Kg/minに設定されている。
The cutting roll (12) is adapted to rotate clockwise in FIG. 1, whereby the fibers (L1) and (L1) are surely dropped into the inner cylinder (5). It is configured as follows. In this embodiment, a long reinforcing fiber
Four 2400 tex roving glass fibers as (L) are fed to feed rolls (11) and (11), whereby fibers (L1) and (L1) having a length of 14 mm are obtained. The fibers (L1) (L1) from the roving cutter (1)
The drop amount in 1) is set to 2.2 kg / min.

【0021】尚、前記カッティングロール(12)による長
尺強化繊維(L) の切断長さは該カッティングロール(12)
に植設した刃(121) (121) のピッチによって決定され、
それぞれの目的に応じて適宜設定されるが、あまり繊維
が短いと最終成形品の強度が低下するため、この例では
該切断によって形成される繊維(L1)(L1)の長さは3mm
〜50mmの範囲に設定できるようになっている。この
範囲にある場合には、ホッパ(4) 及びスクリュー(31)に
より円滑に下流側に供給することができる。尚、実際に
切断される繊維(L1)(L1)の長さは多少の誤差を有するか
ら前記3mm〜50mmの範囲を若干越えることがある
が、請求項1の発明の発明特定事項として記載したよう
に、平均繊維長さが当該範囲に収まっていればよい。 [定量フィーダ(2) について]熱可塑性樹脂材料をホッ
パ(4) に投入する定量フィーダ(2) は、図3に示すよう
に、ペレット状(粉末状であってもよい)の熱可塑性樹
脂材料を溜めておく樹脂ホッパ(21)と、該樹脂ホッパ(2
1)からの熱可塑性樹脂材料をシュート(6) へ定量的に供
給するコンベア(22)とから構成されており、前記シュー
ト(6) の下流端はホッパ(4) 内に侵入している(図1参
照)。
The cutting length of the long reinforcing fiber (L) by the cutting roll (12) is determined by the cutting roll (12).
Is determined by the pitch of the blade (121) (121)
It is set appropriately according to each purpose, but if the fiber is too short, the strength of the final molded product decreases. In this example, the length of the fiber (L1) (L1) formed by the cutting is 3 mm.
It can be set in the range of 5050 mm. In this range, it can be smoothly supplied to the downstream side by the hopper (4) and the screw (31). The length of the actually cut fibers (L1) and (L1) may slightly exceed the range of 3 mm to 50 mm because there is some error, but the length is described as the invention specific matter of the invention of claim 1. Thus, the average fiber length may be within the range. [About quantitative feeder (2)] As shown in FIG. 3, the quantitative feeder (2) for putting the thermoplastic resin material into the hopper (4) is a pellet-like (powder-like) thermoplastic resin material. And a resin hopper (21) for storing
And a conveyor (22) for quantitatively supplying the thermoplastic resin material from (1) to the chute (6). The downstream end of the chute (6) enters the hopper (4) ( (See FIG. 1).

【0022】尚、コンベア(22)の速度は、これを駆動す
るモータ(23)の回転数によって決まり、従って、モータ
(23)の単位時間の回転数によって、単位時間当たりの熱
可塑性樹脂材料の投入量が決定される。この実施の形態
では、熱可塑性樹脂材料の投入量は5.1Kg/min
に設定されている。尚、熱可塑性樹脂材料と、その物性
を向上させる為の変性剤や他の充填材を同時にホッパ
(4) 側に供給してもよい。 [射出機(3) について]熱可塑性樹脂材料を溶融させこ
れと繊維を混練する可塑化装置としての射出機(3) は、
図4に示すように、公知の一般的なスクリュー式の射出
機と基本的には同じであり、後述するようにスクリュー
(31)は回転に伴って軸線方向に後退移動するが、前記溝
部(38)に於ける材料受容口(37)に対応する領域は、前記
後退移動中常に、次の式を満足する寸法に設定されるの
が好ましい。
The speed of the conveyor (22) is determined by the number of revolutions of the motor (23) for driving the conveyor (22).
The input amount of the thermoplastic resin material per unit time is determined by the number of rotations per unit time in (23). In this embodiment, the input amount of the thermoplastic resin material is 5.1 kg / min.
Is set to In addition, a thermoplastic resin material and a modifier or other filler for improving the
(4) It may be supplied to the side. [About the injection machine (3)] The injection machine (3) as a plasticizing apparatus for melting a thermoplastic resin material and kneading it with a fiber is:
As shown in FIG. 4, it is basically the same as a known general screw type injection machine,
(31) retreats in the axial direction with rotation, but the area corresponding to the material receiving port (37) in the groove (38) always has a dimension satisfying the following expression during the retreat movement. Preferably, it is set.

【0023】即ち、材料受容口(37)の口径d(cm)が
スクリュー(31)の溝幅c(cm)と同じであるかそれよ
り大きい通常の場合には、フライトを含めたスクリュー
(31)の外径をa(cm),溝底部の直径をb(cm)と
すると、上記溝部(38)に於ける材料受容口(37)に対応す
る領域の寸法は、
That is, when the diameter d (cm) of the material receiving port (37) is equal to or larger than the groove width c (cm) of the screw (31), the screw including the flight is usually used.
Assuming that the outer diameter of (31) is a (cm) and the diameter of the groove bottom is b (cm), the dimension of the area corresponding to the material receiving port (37) in the groove (38) is:

【0024】[0024]

【数1】 (Equation 1)

【0025】・・・・ に設定されていることが好ましい。上記式を満足する
ように外径a等を設定すると、スクリュー(31)に材料が
円滑に食い込むことが確認できる。尚、フライトの根元
と溝底の境界部は、通常は円弧状に形成されているが、
上記式の溝部径bの値は、フライト間で最も小さい部
分の値を選択する。
.. Is preferably set to: When the outer diameter a and the like are set so as to satisfy the above equation, it can be confirmed that the material smoothly penetrates the screw (31). The boundary between the root of the flight and the bottom of the groove is usually formed in an arc shape,
As the value of the groove diameter b in the above equation, the value of the smallest portion between flights is selected.

【0026】尚、材料受容口(37)が溝幅cよりも小さい
時は、該溝幅cに代えて材料受容口(37)の口径dを式
の左辺に代入し、該式を満足するようにスクリュー(3
1)の外径a及び溝部の直径bを設定すればよい。又、射
出機の場合は、スクリュー(31)が回転に伴って軸線方向
に後退移動するため、材料受容口(37)の下方の溝部(38)
も前記軸線方向に移動するが、上記したように、材料受
容口(37)の下にくる全ての溝部(38)が上記式を満たす
ようにする。
When the material receiving port (37) is smaller than the groove width c, the diameter d of the material receiving port (37) is substituted into the left side of the equation instead of the groove width c to satisfy the equation. Screw (3
What is necessary is just to set the outer diameter a and the groove diameter b of 1). In the case of an injection machine, since the screw (31) retreats in the axial direction with rotation, the groove (38) below the material receiving port (37) is used.
Also moves in the axial direction, but as described above, all the grooves (38) below the material receiving port (37) satisfy the above expression.

【0027】上記スクリュー径a,溝部径b,溝幅cの
具体的な寸法は、本実施の形態ではスクリュー径a=1
2cm,溝部径b=8.7cm,溝幅c=10.8cm
に設定されており、従って、このものでは前記式の右
辺の値が、579cm3 に設定されている。尚、材料受
容口(37)の口径は12cmに設定した。更に、射出機
(3) 内での溶融、混練過程で、繊維の切断を抑制する為
に、スクリュー(31)としてフルフライトスクリューが採
用されており、その先端には、射出時に溶融樹脂がシリ
ンダ(39)の上流側に逆流するのを防止するチェックリン
グ機構を具備するミキシングヘッド(32)が取付けられて
いる。このスクリュー(31)はその基端部から先端部にか
けて、フィードゾーン(311) 、コンプレションゾーン(3
12) 、及びメータリングゾーン(313) の3つのゾーンに
この順序で3分割されている。前記フィードゾーン(31
1) の溝深さは16.5mmに、コンプレションゾーン
(312) の溝深さは16.5mmから5.25mmに順次
変化する寸法に、更に、メータリングゾーン(313) の溝
深さは5.25mmに夫々設定されている。又、スクリ
ュー(31)の上記フィードゾーン(311) ,コンプレション
ゾーン(312) 及びメータリングゾーン(313) の距離の比
率は、2:1:1に設定されている。又、スクリュー(3
1)のフライトピッチは120mmに設定されており、更
に、溝幅cは上記したように10.8cmに設定されて
いる。
The specific dimensions of the screw diameter a, the groove diameter b, and the groove width c are as follows.
2cm, groove diameter b = 8.7cm, groove width c = 10.8cm
Therefore, in this case, the value on the right side of the above equation is set to 579 cm 3 . The diameter of the material receiving port (37) was set to 12 cm. In addition, injection machines
In the melting and kneading process in (3), a full flight screw is adopted as the screw (31) to suppress fiber cutting during the kneading process. A mixing head (32) having a check ring mechanism for preventing backflow to the upstream side is mounted. The screw (31) extends from its proximal end to its distal end in a feed zone (311), a compression zone (3
12) and a metering zone (313). The feed zone (31
1) Groove depth is 16.5mm, compression zone
The groove depth of (312) is set to a dimension that sequentially changes from 16.5 mm to 5.25 mm, and the groove depth of the metering zone (313) is set to 5.25 mm. The ratio of the distance between the feed zone (311), the compression zone (312) and the metering zone (313) of the screw (31) is set to 2: 1: 1. Also, screw (3
The flight pitch in 1) is set to 120 mm, and the groove width c is set to 10.8 cm as described above.

【0028】尚、このスクリュー(31)の圧縮比は4以下
に、みかけのせんだん速度は100sec-1に設定され
ることが望ましい。ここで、上記圧縮比は次の式で与え
られる。圧縮比=フィードゾーン(311) の溝深さ/メー
タリングゾーン(313) の溝深さ又、みかけのせんだん速
度は次の式で与えられる。
It is desirable that the compression ratio of the screw (31) is set to 4 or less and the apparent speed is set to 100 sec-1. Here, the compression ratio is given by the following equation. Compression ratio = groove depth of feed zone (311) / groove depth of metering zone (313) Also, apparent shear speed is given by the following equation.

【0029】みかけのせんだん速度=πDn/60H ただし、D:スクリュー(31)の直径(mm) n:スクリュー(31)の回転数(r.p.m) H:溝深さ(mm) 本実施の形態では、圧縮比が3.14のものを使用して
た。又、スクリュー(31)の回転数を60r.p.mとす
ることによって、みかけのせんだん速度を71.8se
c-1に設定した。
Apparent shear rate = πDn / 60H, where D: diameter of screw (31) (mm) n: number of rotations of screw (31) (rpm) H: groove depth (mm) In the embodiment, a compression ratio of 3.14 is used. Further, the rotation speed of the screw (31) is set to 60 r. p. m, the apparent speed is 71.8 sec.
It was set to c-1.

【0030】又、前記スクリュー(31)はスクリュー駆動
装置(33)によって回転駆動されると共に、軸線方向に往
復移動される。 [ホッパ(4) について]繊維と熱可塑性樹脂材料の供給
装置であり、材料供給路となるホッパ(4) は、ロービン
グカッタ(1) より投入される繊維と定量フィーダ(2) よ
り投入される熱可塑性樹脂材料を射出機(3) に供給する
ものである。
The screw (31) is driven to rotate by a screw driving device (33) and reciprocates in the axial direction. [Regarding hopper (4)] This is a supply device for fibers and thermoplastic resin material, and a hopper (4) serving as a material supply path is supplied from fibers fed from a roving cutter (1) and from a fixed amount feeder (2). The thermoplastic resin material is supplied to the injection machine (3).

【0031】ホッパ(4) の材質は特に限定されるもので
はないが、静電気が発生しにくいものを使用するのが望
ましい。また、必要に応じて、静電気によって繊維が付
着する場所に静電気除去エアーを吹きかける静電気除去
装置を設けてもよい。さらに、ホッパ(4) 内に於ける繊
維及び熱可塑性樹脂材料の貯留量が一定範囲におさまる
ようにすることが、熱可塑性樹脂材料を溶融させるまで
の所要時間等の安定性に繋がることから、この実施の形
態では上記ホッパ(4) の側部に上部近接スイッチ(41)と
その下方に位置する下部近接スイッチ(42)が設けられて
いる。そして、繊維及び熱可塑性樹脂材料の貯留量が下
部近接スイッチ(42)以下になると、ロービングカッタ
(1) 及び定量フィーダ(2) の作動が開始して、繊維及び
熱可塑性樹脂材料をホッパ(4) 内に投入し始め、これら
の貯留量が(41)まで増加すると、ロービングカッタ(1)
及び定量フィーダ(2) の作動が停止するようになってお
り、その具体的な制御は後述する。
The material of the hopper (4) is not particularly limited, but it is preferable to use a material that does not easily generate static electricity. Further, if necessary, a static electricity removing device that blows static electricity removing air to a place where the fibers adhere due to static electricity may be provided. Furthermore, keeping the amount of fibers and thermoplastic resin material within the hopper (4) within a certain range leads to stability such as the time required to melt the thermoplastic resin material, and so on. In this embodiment, an upper proximity switch (41) and a lower proximity switch (42) located below the upper proximity switch (41) are provided on the side of the hopper (4). When the storage amount of the fiber and the thermoplastic resin material becomes equal to or less than the lower proximity switch (42), the roving cutter is turned off.
(1) and the operation of the fixed-quantity feeder (2) start, and the fibers and the thermoplastic resin material start to be injected into the hopper (4).
The operation of the fixed-quantity feeder (2) is stopped, and the specific control thereof will be described later.

【0032】次に、前記吐出口(45)の中心部を含む鉛直
面と材料供給路の内壁面が交わってできる交差線と鉛直
線との成す角の大きさ、即ち、傾斜角度θ(図4参照)
について説明する。この傾斜角度θは、45°以下、望
ましくは30°以下、更に望ましくは15°以下に設定
するのが良い。そして、このような角度に設定すること
によって繊維等を吐出口(45)及び材料受容口(37)側に円
滑に供給できることが確認できた。従って、ホッパ(4)
が円錐形状になっている本実施の形態では、前記傾斜角
θは前記円錐の母線と鉛直線のなす角、即ち、前記円錐
の半頂角となり、具体的には、前記傾斜角度θとして1
0°に設定されたホッパ(4) を採用した。
Next, the magnitude of the angle between the vertical line including the center of the discharge port (45) and the inner wall surface of the material supply path and the vertical line, that is, the inclination angle θ (FIG. 4)
Will be described. Is preferably set to 45 ° or less, preferably 30 ° or less, and more preferably 15 ° or less. Then, it was confirmed that by setting such an angle, fibers and the like could be smoothly supplied to the discharge port (45) and the material receiving port (37). Therefore, the hopper (4)
Has a conical shape, the inclination angle θ is an angle formed by the generatrix of the cone and a vertical line, that is, a half vertex angle of the cone. Specifically, the inclination angle θ is 1
A hopper (4) set at 0 ° was employed.

【0033】尚、ホッパ(4) が円錐ではなく、横断面が
楕円形や多角形になったものでは、その内壁面の勾配
(水平に対する勾配)の内、最も緩やかな部分が前記傾
斜角度θの以下になるように設定する必要がある。即
ち、ホッパ(4) の内壁面全域に於ける前記角を前記傾斜
角度θ以下の範囲に設定する必要がある。最も緩やかな
勾配の領域でも繊維の付着防止が図れるようにするため
である。
If the hopper (4) is not conical but has an elliptical or polygonal cross section, the gentlest part of the slope of the inner wall surface (gradient with respect to the horizontal) is the inclination angle θ. Needs to be set to That is, it is necessary to set the angle over the entire inner wall surface of the hopper (4) within the range of the inclination angle θ or less. This is to prevent the adhesion of the fibers even in the region having the gentlest gradient.

【0034】尚、本実施の形態では、ホッパ(4) は、ポ
リエチレンテレフタートのフィルム(厚みは0.4m
m)の外面に補強用のステンレスを重ねた材料で形成し
ている。又、上部近接スイッチ(41)と下部近接スイッチ
(42)は150mmの間隔でホッパ(4) の壁面に沿って配
設している。又、この実施の形態では、ホッパ(4) の内
壁面に繊維等が付着するのを一層確実に防止する為に、
該ホッパ(4) の外面に振動発生装置(43)を設けて該ホッ
パ(4) を振動させるようにしている。 [攪拌装置(60)について]供給された熱可塑性樹脂材料
及び繊維をホッパ(4) 内で均一に混合せしめるために
は、供給された両者をホッパ(4) 内で攪拌することが好
ましく、そのための攪拌装置(60)としては種々の形態を
とりうるが、該攪拌装置(60)は、この例では図1,図6
に示すように、ホッパ(4) の内部に於いて上部近接スイ
ッチ(41)より高位に設けられた攪拌羽根(61)と、これを
回転させるモータ(62)から構成されている。
In this embodiment, the hopper (4) is a polyethylene terephthalate film (having a thickness of 0.4 m).
m) is formed of a material in which stainless steel for reinforcement is layered on the outer surface. Also, the upper proximity switch (41) and the lower proximity switch
(42) are arranged at 150 mm intervals along the wall surface of the hopper (4). Further, in this embodiment, in order to more reliably prevent fibers and the like from adhering to the inner wall surface of the hopper (4),
A vibration generator (43) is provided on the outer surface of the hopper (4) to vibrate the hopper (4). [Regarding the stirrer (60)] In order to uniformly mix the supplied thermoplastic resin material and fiber in the hopper (4), it is preferable to stir the supplied two in the hopper (4). The stirrer (60) can take various forms, and in this example, the stirrer (60)
As shown in FIG. 7, the hopper (4) includes a stirring blade (61) provided at a position higher than the upper proximity switch (41), and a motor (62) for rotating the stirring blade.

【0035】上記攪拌羽根(61)は、ロービングカッタ
(1) からの繊維(L1)(L1)とシュート(6) からの熱可塑性
樹脂材料の合流点の下流側に位置し、合流後の繊維と熱
可塑性樹脂材料を攪拌・混合する。この場合、繊維(L1)
(L1)の解繊を回避する為に、強い剪断を掛けずに攪拌す
るのが好ましい。この為、本実施の形態では、上記のよ
うに攪拌羽根(61)をモータ(62)で回転させる形式の攪拌
装置(60)を用いており、その回転速度を600r.p.
mに設定している。
The stirring blade (61) is a roving cutter.
The fibers (L1) and (L1) from (1) and the thermoplastic resin material from the chute (6) are located downstream of the junction of the thermoplastic resin material, and the combined fibers and the thermoplastic resin material are stirred and mixed. In this case, fiber (L1)
In order to avoid the fibrillation of (L1), it is preferable to stir without applying strong shearing. For this reason, in the present embodiment, a stirring device (60) of a type in which the stirring blade (61) is rotated by the motor (62) as described above is used, and the rotation speed is set to 600 rpm. p.
m.

【0036】尚、ホッパ(4) 内に攪拌羽根(61)を挿入配
設する為に必要な間隙がホッパ(4)の上端開口周縁部と
ロービングカッタ(1) 等の間に確保するのが困難な構造
となっている場合は、図7に示すように、ホッパ(4) の
側壁にモータ(64)の回転軸(640) を水平方向に貫通させ
てその端部を軸受(69)で支持し、該回転軸(640) に攪拌
羽根(63)を取付けてもよい。このものでも、熱可塑性樹
脂材料と繊維(L1)(L1)が攪拌羽根(63)に衝突して攪拌さ
れる。
It is to be noted that a gap required for inserting and disposing the stirring blade (61) in the hopper (4) is to be secured between the periphery of the upper end opening of the hopper (4) and the roving cutter (1). In the case of a difficult structure, as shown in FIG. 7, the rotating shaft (640) of the motor (64) is passed through the side wall of the hopper (4) in the horizontal direction, and the end thereof is fixed by a bearing (69). The rotating shaft (640) may be supported and a stirring blade (63) may be attached to the rotating shaft (640). Also in this case, the thermoplastic resin material and the fibers (L1) (L1) collide with the stirring blade (63) and are stirred.

【0037】尚、攪拌装置(60)は、上記攪拌羽根(61)で
攪拌する形式のものに限定されず、合流後の繊維と熱可
塑性樹脂材料が衝突してその流れをランダムに変えるこ
とができる拡散部材でもよく、これらの混合割合を均一
化する機能を具備するものであればよい。 [成形動作について]上記装置は、図5に示すフローチ
ャートに基づいた制御動作を行う制御装置によって制御
されようになっており、該制御装置には、同図の(イ)
のフローチャートに従って動作する第1コンピュータ
と、(ロ)のフローチャートに従って動作する第2コン
ピュータの2つコンピュータが組み込まれている。
The stirrer (60) is not limited to the type in which the stirring is performed by the stirring blade (61). The stirrer (60) is capable of randomly changing the flow by the collision of the fibers after the merger and the thermoplastic resin material. Any diffusion member may be used as long as it has a function of making the mixing ratio of these components uniform. [Regarding the molding operation] The above device is controlled by a control device which performs a control operation based on the flowchart shown in FIG. 5, and the control device includes (a) in FIG.
And a second computer that operates according to the flowchart in (b).

【0038】上記装置の動作を同図のフローチャートに
基づいて説明する。定量フィーダ(2) の樹脂ホッパ(21)
にペレット状の熱可塑性樹脂材料(例えばポリプロピレ
ン樹脂)を投入すると共に、リール(19)から引き出した
長尺強化繊維(L) の先端をフィードロール(11)(11)間に
挿入した状態で装置を動作させると、第1,第2コンピ
ュータが作動し始める。
The operation of the above device will be described with reference to the flowchart of FIG. Resin hopper for metering feeder (2) (21)
A thermoplastic resin material (for example, polypropylene resin) in the form of a pellet is charged into the apparatus, and the end of the long reinforcing fiber (L) drawn from the reel (19) is inserted between the feed rolls (11) and (11). Is operated, the first and second computers start operating.

【0039】第1コンピュータが始動すると、ステップ
(ST1) でロービングカッタ(1) と定量フィーダ(2) と更
に攪拌装置(60)が駆動させられる。尚、定量フィーダ
(2) とロービングカッタ(1) は同時に駆動させてもよい
し異なるタイミングで駆動させてもよいが、熱可塑性樹
脂材料と繊維が同時にホッパ(4) に供給できるタイミン
グで上記定量フィーダ(2) 等を駆動させる。
When the first computer starts, the steps
In (ST1), the roving cutter (1), the fixed amount feeder (2), and the stirring device (60) are driven. In addition, quantitative feeder
(2) and the roving cutter (1) may be driven at the same time or at different timings, but at the timing when the thermoplastic resin material and the fiber can be supplied to the hopper (4) at the same time, the above-mentioned fixed-quantity feeder (2) And so on.

【0040】上記ロービングカッタ(1) と定量フィーダ
(2) が始動すると、ロービングカッタ(1) の作動によっ
て繊維(L1)(L1)が形成されてこれが内筒(5) の繊維排出
口(52)からホッパ(4) 内に落下する。一方、定量フィー
ダ(2) から供給される熱可塑性樹脂材料(P) はシュート
(6) を経て、その先端からホッパ(4) 内に投入される。
すると、これら繊維(L1)(L1)と熱可塑性樹脂材料(P)
が、攪拌装置(60)の攪拌羽根(61)に当たると共にこれで
攪拌混合され、この混合物がホッパ(4) に貯留される。
The above roving cutter (1) and the fixed-quantity feeder
When (2) starts, the fibers (L1) and (L1) are formed by the operation of the roving cutter (1), and the fibers fall from the fiber discharge port (52) of the inner cylinder (5) into the hopper (4). On the other hand, the thermoplastic resin material (P) supplied from the fixed-quantity feeder (2)
After (6), it is thrown into the hopper (4) from its tip.
Then, these fibers (L1) (L1) and thermoplastic resin material (P)
This strikes the stirring blades (61) of the stirring device (60) and is stirred and mixed by this, and the mixture is stored in the hopper (4).

【0041】次に、ホッパ(4) 内に供給された上記熱可
塑性樹脂材料(P) 等の貯留量が増加してその上面が上部
近接スイッチ(41)部分まで上昇すると、該上部近接スイ
ッチ(41)が検知信号を出力し、該検知信号によってロー
ビングカッタ(1) と定量フィーダ(2) と更に攪拌装置(6
0)が停止される(ステップ(ST2) (ST3) )。一方、上記
上部近接スイッチ(41)から検知信号が出力されると、第
2コンピュータが図5の(ロ)に示すステップ(ST11)か
らステップ(ST12)を実行して射出機(3) を駆動させる。
即ち、スクリュー駆動装置(33)でスクリュー(31)を回転
させながら軸線方向に後退させる共に、シリンダ(39)の
外面に添設された図示しないヒータを発熱させる。する
と、ホッパ(4) の下端から材料受容口(37)を介してシリ
ンダ(39)内に熱可塑性樹脂材料(P) 等が供給され、これ
がスクリュー(31)の先端側に移送されると共にこれが上
記ヒータで加熱されて次第に溶融して行く。やがてスク
リュー(31)の先端部に於ける溶融樹脂の貯留量が設定値
に達すると、スクリュー(31)の回転を停止させ(ステッ
プ(ST13)(ST14))、その後、スクリュー(31)をスクリュ
ー駆動装置(33)で軸線方向に進出させる。すると、チェ
ックリング機構を有するミキシングヘッド(32)がシリン
ダ(39)先端の吐出口(36)から前記溶融樹脂を吐出させ、
これが図示しない金型に注入されて成形品が作られる。
Next, when the storage amount of the thermoplastic resin material (P) and the like supplied into the hopper (4) increases and the upper surface thereof rises to the upper proximity switch (41), the upper proximity switch (41) 41) outputs a detection signal, and the roving cutter (1), the fixed-quantity feeder (2) and the stirring device (6)
0) is stopped (steps (ST2) and (ST3)). On the other hand, when the detection signal is output from the upper proximity switch (41), the second computer drives the injection machine (3) by executing the steps (ST11) to (ST12) shown in FIG. Let it.
That is, while the screw (31) is rotated by the screw driving device (33), the screw (31) is retracted in the axial direction, and a heater (not shown) attached to the outer surface of the cylinder (39) generates heat. Then, a thermoplastic resin material (P) or the like is supplied from the lower end of the hopper (4) into the cylinder (39) through the material receiving port (37), and is transferred to the tip side of the screw (31) and is also transferred. It is gradually heated and melted by the heater. When the accumulated amount of the molten resin at the tip of the screw (31) reaches the set value, the rotation of the screw (31) is stopped (steps (ST13) and (ST14)), and then the screw (31) is screwed. It is advanced in the axial direction by the driving device (33). Then, the mixing head (32) having a check ring mechanism discharges the molten resin from the discharge port (36) at the tip of the cylinder (39),
This is injected into a mold (not shown) to form a molded product.

【0042】尚、上記動作の途中で、ホッパ(4) 内の熱
可塑性樹脂材料(P) 等の貯留量が下部近接スイッチ(42)
以下に減少すると、第1コンピュータが図5の(イ)に
示すステップ(ST4) を実行し、再びステップ(ST1) でロ
ービングカッタ(1) 等を作動させる。これにより、ホッ
パ(4) 内に於ける熱可塑性樹脂材料(P) 等の貯留量が常
に上部近接スイッチ(41)と下部近接スイッチ(42)の間に
保たれる。
During the above operation, the storage amount of the thermoplastic resin material (P) in the hopper (4) is reduced by the lower proximity switch (42).
When it decreases below, the first computer executes the step (ST4) shown in FIG. 5A, and again operates the roving cutter (1) in the step (ST1). As a result, the storage amount of the thermoplastic resin material (P) and the like in the hopper (4) is always maintained between the upper proximity switch (41) and the lower proximity switch (42).

【0043】上記実施の形態の射出機を用いて、既述し
たポリプロピレン樹脂とロービングガラス繊維を溶融混
合して繊維強化樹脂製の成形品を製造する場合、ロービ
ングカッタ(1) から繊維長14mmの繊維(L1)(L1)を
2.2Kg/minの速度で供給し、定量フィーダ(2)
から上記樹脂のペレットを5.1Kg/minで供給し
た。その結果、2Kgのガラス繊維強化ポリプロピレン
樹脂を溶融状態にするのに約18secの時間を要した
が、この時間は常に安定しており、ホッパ(4) での繊維
及び熱可塑性樹脂材料の詰まりもなく、円滑に射出機
(3) に供給された。
When a molded article made of fiber reinforced resin is manufactured by melting and mixing the above-described polypropylene resin and roving glass fiber using the injection machine of the above embodiment, a fiber length of 14 mm is obtained from the roving cutter (1). The fiber (L1) (L1) is supplied at a rate of 2.2 kg / min, and a fixed amount feeder (2)
Supplied pellets of the above resin at 5.1 kg / min. As a result, it took about 18 seconds to melt the 2 kg glass fiber reinforced polypropylene resin, but this time was always stable, and the clogging of the fiber and thermoplastic resin material in the hopper (4) was No injection machine
Supplied to (3).

【0044】尚、上記ホッパ(4) の内面の既述傾斜角度
θを既述したように0°以上で30°以下に設定してい
ると、ホッパ(4) の内壁に繊維等が殆ど付着しないこと
は既述した通りであるが、上記傾斜角度θが50°のホ
ッパ(4) を使用した場合には上記と同じ条件であって
も、繊維がホッパ(4) の内壁面に付着することが確認さ
れた。
If the above-described inclination angle θ of the inner surface of the hopper (4) is set to be not less than 0 ° and not more than 30 ° as described above, most of the fibers and the like adhere to the inner wall of the hopper (4). As described above, when the hopper (4) having the inclination angle θ of 50 ° is used, the fibers adhere to the inner wall surface of the hopper (4) even under the same conditions as described above. It was confirmed that.

【0045】尚、上記実施の形態では、式の右辺の値
が579cm3 に設定されたスクリュー(31)を使用した
が、該値が350cm3 であても、繊維等が円滑にスク
リュー(31)に供給された。 [その他、各部の変形例等] .熱可塑性樹脂材料(P) の投入に関して 上記実施の形態では、落下途中の繊維(L1)(L1)に対して
シュート(6) からの熱可塑性樹脂材料(P) を横方向から
合流させるものを提示的に開示したが、図8に示したよ
うに、定量フィーダ(2) をロービングカッタ(1) の上方
に配設し、内筒(80)とホッパ(4) の間隙に熱可塑性樹脂
材料(P) を自由落下させる態様で投入しても良い。この
ものでは、繊維(L1)(L1)が熱可塑性樹脂材料(P) で包囲
される態様で攪拌羽根(63)部分まで流下して該部分で攪
拌混合される。この方法では、図1に於けるシュート
(6) が不要となる。 .繊維の投入に関して 本発明の、ホッパ(4) からなる繊維と熱可塑性樹脂材料
の供給装置において、繊維及び熱可塑性樹脂材料は直接
ホッパ(4) に供給されてもよいが、図9に示すように、
ホッパ(4) 内に少なくとも下端が開放されている内筒
(5) を設け、繊維をこの内筒(5) を経由してホッパ(4)
内に供給し、熱可塑性樹脂材料はこの内筒(5) の外周と
ホッパ(4) の内周面との間に供給することが、両者をよ
り均一に混合し、円滑に可塑化装置に導くことができる
点で好ましい。
[0045] In the above embodiment, although the value of the expression on the right side was used screw (31) which is set to 579cm 3, also addressed in the said value is 350 cm 3, the fiber or the like smoothly screws (31) Supplied to [Other modified examples of each part] In the above embodiment, the thermoplastic resin material (P) from the chute (6) joins the fibers (L1) and (L1) in the middle of falling from the lateral direction. As shown in FIG. 8, a fixed-quantity feeder (2) is disposed above the roving cutter (1), and a thermoplastic resin material is provided in a gap between the inner cylinder (80) and the hopper (4). (P) may be thrown in a free-fall mode. In this apparatus, the fibers (L1) (L1) are flowed down to the stirring blade (63) in a mode of being surrounded by the thermoplastic resin material (P), and are stirred and mixed at the portion. In this method, the shoot in FIG.
(6) becomes unnecessary. . Regarding the introduction of the fibers In the fiber and thermoplastic resin material supply device of the present invention comprising the hopper (4), the fibers and the thermoplastic resin material may be directly supplied to the hopper (4), as shown in FIG. To
Inner cylinder with at least lower end open in hopper (4)
(5), and the fibers are transferred to the hopper (4) via this inner cylinder (5).
The thermoplastic resin material is supplied between the outer periphery of the inner cylinder (5) and the inner peripheral surface of the hopper (4), so that the two are more uniformly mixed and smoothly supplied to the plasticizer. It is preferable because it can be guided.

【0046】この場合、内筒(5) の材質は既述ホッパ
(4) と同様に、静電気が発生しにくい材質で構成するの
が望ましい。又、前記内筒(5) の形状は、その上下両端
の繊維投入口(51)と繊維排出口(52)の大きさを同じにし
てもよく、又、何れが大きくてもよいが、図示したもの
のように、逆円錐形のものを使用する場合は、鉛直線に
対する内壁面の傾斜角度θ'は30°以下にするのが良
く、望ましくは15°以下にするのが良い。この角度に
設定すると、繊維(L1)(L1)の付着防止効果を顕著に発揮
するからである。又、内筒(5) の内壁面に繊維(L1)(L1)
が付着するのを一層確実に防止する為に該内筒(5) を振
動させるバイブレータ等の振動発生装置を設けても良
い。又、シュート(6) から供給される熱可塑性樹脂材料
(P) を内筒(5) に衝突させることによって、該内筒(5)
を振動させてもよい。更に、内筒(5)の下方で合流する
熱可塑性樹脂材料(P) と繊維(L1)(L1)を攪拌混合する攪
拌羽根を設けても良い。
In this case, the material of the inner cylinder (5) is the hopper described above.
As in (4), it is desirable to use a material that does not easily generate static electricity. The shape of the inner cylinder (5) may be such that the size of the fiber inlet (51) and the fiber outlet (52) at the upper and lower ends thereof may be the same, or either may be larger. When an inverted conical shape is used, the inclination angle θ ′ of the inner wall surface with respect to the vertical line is preferably 30 ° or less, and more preferably 15 ° or less. This is because if the angle is set to this angle, the effect of preventing the adhesion of the fibers (L1) and (L1) is remarkably exhibited. Also, fibers (L1) (L1) on the inner wall surface of the inner cylinder (5)
A vibration generator such as a vibrator for vibrating the inner cylinder (5) may be provided in order to more reliably prevent the adherence of the inner cylinder. The thermoplastic resin material supplied from the chute (6)
By colliding (P) with the inner cylinder (5), the inner cylinder (5)
May be vibrated. Further, a stirring blade may be provided for stirring and mixing the thermoplastic resin material (P) and the fibers (L1) (L1) which merge below the inner cylinder (5).

【0047】又、既述した図1のものではロービングカ
ッタで繊維(L1)(L1)を形成するようにしたものを例示し
たが、図9に示すように、予め所定長さにカットされた
チョップドストランドを定量的に投入できる定量フィー
ダ(7) からの繊維(L1)(L1)を上記内筒(5) 内に投入する
ようにしてもよい。 .攪拌装置(60)に関して 既述各実施の形態では、モータで回転される攪拌羽根を
具備する攪拌装置で熱可塑性樹脂材料(P) と繊維を攪拌
混合する構成としたが、図10に示すように、定量フィ
ーダ(2) (7) からの熱可塑性樹脂材料(P) と繊維(L1)(L
1)が投入される内筒(5) の下端開口部に下方から臨むよ
うにワイヤ(67)で吊された円錐状の拡散部材(66)を設け
てもよい。このものでは、内筒(5) の下端から落下する
熱可塑性樹脂材料(P) と繊維(L1)(L1)が前記拡散部材(6
6)に衝突して流れの方向がランダムに変更せしめられ、
これにより、熱可塑性樹脂材料(P) と繊維(L1)(L1)が攪
拌混合される。 .上記実施の形態は可塑化装置として射出機を例示し
て説明したが、可塑化装置が樹脂の押出機である場合で
も本発明を適用することができる。
In FIG. 1 described above, the fiber (L1) (L1) is formed by using a roving cutter. However, as shown in FIG. 9, the fiber (L1) (L1) is cut into a predetermined length in advance. The fibers (L1) (L1) from the quantitative feeder (7), which can quantitatively supply the chopped strands, may be supplied into the inner cylinder (5). . Regarding the Stirrer (60) In each of the embodiments described above, the thermoplastic resin material (P) and the fiber are stirred and mixed by the stirrer provided with the stirring blade rotated by the motor, as shown in FIG. Next, the thermoplastic resin material (P) and fiber (L1) (L
A conical diffusion member (66) suspended by a wire (67) may be provided so as to face the lower end opening of the inner cylinder (5) into which 1) is charged, from below. In this device, the thermoplastic resin material (P) and the fibers (L1) (L1) that fall from the lower end of the inner cylinder (5) are mixed with the diffusion member (6).
6) The direction of the flow is randomly changed by collision,
As a result, the thermoplastic resin material (P) and the fibers (L1) (L1) are stirred and mixed. . In the above embodiment, an injection machine has been described as an example of a plasticizing device. However, the present invention can be applied to a case where the plasticizing device is a resin extruder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を説明する射出機の全体図FIG. 1 is an overall view of an injection machine illustrating an embodiment of the present invention.

【図2】図1に於けるロービングカッタ(1) と内筒(5)
の関係説明図
FIG. 2 shows the roving cutter (1) and the inner cylinder (5) in FIG.
Illustration of the relationship

【図3】図1に現れる定量フィーダ(2) の詳細図FIG. 3 is a detailed view of the quantitative feeder (2) shown in FIG.

【図4】図1の射出機に於けるホッパ(4) と内筒(5) の
内壁面の傾斜角度θの説明と、スクリュー(31)の各ゾー
ンを説明する図
FIG. 4 is a view for explaining the inclination angle θ of the inner wall surfaces of the hopper (4) and the inner cylinder (5) in the injection machine of FIG. 1, and explaining each zone of the screw (31).

【図5】図1の射出機の制御動作を説明するフローチャ
ート
FIG. 5 is a flowchart illustrating a control operation of the injection machine in FIG. 1;

【図6】攪拌装置(60)の配設部の説明図FIG. 6 is an explanatory view of an arrangement portion of the stirring device (60).

【図7】攪拌装置(60)の変形例の説明図FIG. 7 is an explanatory view of a modification of the stirring device (60).

【図8】内筒(80)の上方から熱可塑性樹脂材料を供給す
る変形例を説明する図
FIG. 8 is a view for explaining a modification in which a thermoplastic resin material is supplied from above the inner cylinder (80).

【図9】内筒(5) を介して供給する繊維(L1)(L1)の下方
で熱可塑性樹脂材料(P) を合流させる変形例の説明図
FIG. 9 is an explanatory view of a modification in which a thermoplastic resin material (P) is merged below fibers (L1) (L1) supplied via an inner cylinder (5).

【図10】攪拌装置の変形例の説明図FIG. 10 is an explanatory view of a modification of the stirring device.

【符号の説明】 (1) ・・・ロービングカッタ (2) ・・・定量フィーダ (3) ・・・射出機 (4) ・・・ホッパ (6) ・・・シュート (31)・・・スクリュー (37)・・・材料受容口 (39)・・・シリンダ (45)・・・吐出口 (60)・・・攪拌装置 (L1)・・・繊維 (P) ・・・熱可塑性樹脂材料[Explanation of symbols] (1) ・ ・ ・ Roving cutter (2) ・ ・ ・ Quantitative feeder (3) ・ ・ ・ Injector (4) ・ ・ ・ Hopper (6) ・ ・ ・ Chute (31) ・ ・ ・ Screw (37) ・ ・ ・ Material receiving port (39) ・ ・ ・ Cylinder (45) ・ ・ ・ Discharge port (60) ・ ・ ・ Stirring device (L1) ・ ・ ・ Fiber (P) ・ ・ ・ Thermoplastic resin material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松原 重義 大阪府高槻市塚原2丁目10番1号 住友化 学工業株式会社内 Fターム(参考) 4F201 AB25 AC01 AC04 AL01 AL14 AL16 AR12 BA01 BC02 BC37 BD04 BD05 BK13 BK59 BQ07 BQ14 BQ45 BQ50 BQ54  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shigeyoshi Matsubara 2-10-1 Tsukahara, Takatsuki-shi, Osaka Sumitomo Kagaku Kogyo Co., Ltd. F-term (reference) 4F201 AB25 AC01 AC04 AL01 AL14 AL16 AR12 BA01 BC02 BC37 BD04 BD05 BK13 BK59 BQ07 BQ14 BQ45 BQ50 BQ54

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】下端開放部が吐出口となった筒状の材料供
給路を具備し、前記材料供給路にそれぞれ別個に直接投
入された平均繊維長が3mm〜50mmの繊維と粒状又
は粉末状の熱可塑性樹脂材料を前記吐出口から可塑化装
置に供給する繊維と熱可塑性樹脂材料の供給装置であっ
て、 前記吐出口の中心部を含む鉛直面と前記材料供給路の内
壁面が交わってできる交差線の鉛直線に対する角度が、
前記内壁面全域に於いて、0°以上で且つ30°以下の
範囲に設定されている繊維と熱可塑性樹脂材料の供給装
置。
1. A cylindrical material supply passage having a discharge opening at a lower end opening portion, wherein a fiber having an average fiber length of 3 mm to 50 mm and directly injected into each of the material supply passages is combined with a granular or powdery material. A fiber and a thermoplastic resin material supply device for supplying the thermoplastic resin material from the discharge port to the plasticizing device, wherein a vertical plane including a center portion of the discharge port intersects an inner wall surface of the material supply path. The angle of the intersection line to the vertical line
An apparatus for supplying fibers and a thermoplastic resin material which is set to a range of 0 ° or more and 30 ° or less over the entire inner wall surface.
【請求項2】 前記材料供給路の壁面を振動させる振動
発生装置を具備する請求項1の繊維と熱可塑性樹脂材料
の供給装置。
2. The fiber and thermoplastic resin material supply apparatus according to claim 1, further comprising a vibration generator that vibrates a wall surface of the material supply path.
【請求項3】 前記材料供給路内の繊維と熱可塑性樹脂
材料を攪拌する攪拌装置を具備する請求項1又は請求項
2の繊維と熱可塑性樹脂材料の供給装置。
3. The fiber and thermoplastic resin supply apparatus according to claim 1, further comprising a stirrer for stirring the fiber and the thermoplastic resin material in the material supply path.
【請求項4】繊維と熱可塑性樹脂材料の供給装置を具備
し、該供給装置から供給される前記繊維と前記熱可塑性
樹脂材料をスクリューで下流側に移送する移送手段から
なる可塑化装置であって、 前記繊維と熱可塑性樹脂材料の供給装置は、 下端開放部が吐出口となった筒状の材料供給路を具備
し、前記材料供給路にそれぞれ別個に直接投入された平
均繊維長が3mm〜50mmの繊維と粒状又は粉末状の
熱可塑性樹脂材料を前記吐出口から前記移送手段に供給
するするものであり、更に、前記吐出口の中心部を含む
鉛直面と前記材料供給路の内壁面が交わってできる交差
線の鉛直線に対する角度が、前記内壁面全域に於いて、
0°以上で且つ30°以下の範囲に設定されており、 前記移送手段は、 前記吐出口に繋がる材料受容口(37)を具備するシリンダ
(39)と、前記材料受容口(37)から前記シリンダ(39)内に
取り入れられた前記繊維と前記熱可塑性樹脂材料を下流
側に移送するスクリュー(31)を具備し、 前記スクリュー(31)の外径をa,該スクリュー(31)の溝
部(38)の溝底部の直径をb,前記溝部(38)の溝幅をc、
とした場合、 前記cが前記材料受容口(37)の口径以下の寸法条件下に
おいては、前記溝部(38)に於ける前記材料受容口(37)に
対応する部分が、 【数1】 を満たしている、可塑化装置。
4. A plasticizing apparatus comprising a supply device for supplying fibers and a thermoplastic resin material, and a transfer means for transferring the fibers and the thermoplastic resin material supplied from the supply device to a downstream side by a screw. The fiber and thermoplastic resin material supply device includes a cylindrical material supply path having a lower end opening portion serving as a discharge port, and an average fiber length separately injected directly into each of the material supply paths is 3 mm. A fiber having a size of about 50 mm and a granular or powdery thermoplastic resin material are supplied to the transfer means from the discharge port, and further, a vertical plane including a central portion of the discharge port and an inner wall surface of the material supply path. The angle of the intersection line formed by the intersection with the vertical line, in the entire inner wall surface,
The transfer means is a cylinder having a material receiving port (37) connected to the discharge port.
(39), comprising a screw (31) for transferring the fiber and the thermoplastic resin material taken into the cylinder (39) from the material receiving port (37) to the downstream side, the screw (31) A, the diameter of the groove bottom of the groove (38) of the screw (31) is b, the groove width of the groove (38) is c,
Under the dimensional condition where c is equal to or smaller than the diameter of the material receiving port (37), a portion of the groove (38) corresponding to the material receiving port (37) is expressed by the following equation. Meets the plasticizing equipment.
【請求項5】 前記材料供給路内の繊維と熱可塑性樹脂
材料を攪拌する攪拌装置を具備する請求項4に記載の可
塑化装置。
5. The plasticizer according to claim 4, further comprising a stirrer for stirring the fibers and the thermoplastic resin material in the material supply path.
【請求項6】 可塑化装置が樹脂の押出機である請求項
4又は請求項5に記載の可塑化装置。
6. The plasticizer according to claim 4, wherein the plasticizer is a resin extruder.
【請求項7】 可塑化装置が樹脂の射出機である請求項
4又は請求項5に記載の可塑化装置。
7. The plasticizing apparatus according to claim 4, wherein the plasticizing apparatus is a resin injection machine.
JP2001340935A 2001-11-06 2001-11-06 Apparatus for supplying fiber and thermoplastic resin material Pending JP2002192517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340935A JP2002192517A (en) 2001-11-06 2001-11-06 Apparatus for supplying fiber and thermoplastic resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340935A JP2002192517A (en) 2001-11-06 2001-11-06 Apparatus for supplying fiber and thermoplastic resin material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35087996A Division JP3280875B2 (en) 1996-12-27 1996-12-27 Plasticizer

Publications (1)

Publication Number Publication Date
JP2002192517A true JP2002192517A (en) 2002-07-10

Family

ID=19155064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340935A Pending JP2002192517A (en) 2001-11-06 2001-11-06 Apparatus for supplying fiber and thermoplastic resin material

Country Status (1)

Country Link
JP (1) JP2002192517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051170A (en) * 2007-08-29 2009-03-12 Kashima Polymer Kk Production device for fiber-reinforced thermoplastic resin composition and production method therefor
JP2013237241A (en) * 2012-05-17 2013-11-28 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing fiber reinforced resin molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051170A (en) * 2007-08-29 2009-03-12 Kashima Polymer Kk Production device for fiber-reinforced thermoplastic resin composition and production method therefor
JP2013237241A (en) * 2012-05-17 2013-11-28 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing fiber reinforced resin molded article

Similar Documents

Publication Publication Date Title
JP3280875B2 (en) Plasticizer
CN1226129C (en) Method and apparatus for mfg. fibre reinforced plastic material
US9714333B2 (en) Single and twin screw extruders with ultrasound horns for decrosslinking and devulcanization
JP5894349B1 (en) Injection molding method, screw, and injection molding machine
JPH1135701A (en) Fiber-reinforced thermoplastic resin molding
JP2004017502A (en) Pellet manufacturing apparatus and pellet manufacturing method
JP3280874B2 (en) Method of supplying fiber and thermoplastic resin material to plasticizing device and plasticizing device
JP2002192517A (en) Apparatus for supplying fiber and thermoplastic resin material
JP3236234B2 (en) Plasticizer
JP6789084B2 (en) Screws for injection molding machines and injection molding machines that inject molten resin in which thermoplastic resin and reinforcing fibers are mixed and melted.
JP2002192526A (en) Method for feeding fiber and thermoplastic resin material to plasticizing apparatus, and plasticizing apparatus
JP7164170B2 (en) Concrete formwork wall extrusion method and concrete formwork wall extrusion apparatus
JP6933951B2 (en) Fiber reinforced thermoplastic resin kneading method and plasticizing equipment
JP2005169764A (en) Kneader for plastic material
WO2017094740A1 (en) Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
JP2011098499A (en) Resin feeder, injection molding machine, and resin molding manufacturing method
JP5032244B2 (en) Apparatus for producing fiber-reinforced thermoplastic resin composition and method for producing the same
CN114222655A (en) Method and extrusion device for extruding a fibre-reinforced plastic material for an additive-manufactured component
JPH09150436A (en) Injection method and injection apparatus for executing this method
WO2019208663A1 (en) Injection molding method and injection molding machine using said method, and injection molding screw used therewith
JPH08197581A (en) Screw device in injection machine
JP2013237240A (en) Heating conveying device of raw material for molding
JP2024035860A (en) Fibrous filler stirring supply device, supply method, manufacturing method, and manufacturing method of thermoplastic resin composition
JP2024030243A (en) Fibrous filler stirring supply device, supply method, manufacturing method, and manufacturing method of thermoplastic resin composition
JPH0584781A (en) Plasticizing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808