JP2002188869A - Refrigerant flow splitter and manufacturing method thereof - Google Patents

Refrigerant flow splitter and manufacturing method thereof

Info

Publication number
JP2002188869A
JP2002188869A JP2000385199A JP2000385199A JP2002188869A JP 2002188869 A JP2002188869 A JP 2002188869A JP 2000385199 A JP2000385199 A JP 2000385199A JP 2000385199 A JP2000385199 A JP 2000385199A JP 2002188869 A JP2002188869 A JP 2002188869A
Authority
JP
Japan
Prior art keywords
refrigerant
main body
path
refrigerant flow
reducing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000385199A
Other languages
Japanese (ja)
Inventor
Kanji Akai
寛二 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000385199A priority Critical patent/JP2002188869A/en
Publication of JP2002188869A publication Critical patent/JP2002188869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the uniformity of the distribution of a gas-liquid mixed refrigerant in a refrigerant distributor manufactured by drawing a pipe material such as copper pipes, with suppressing the manufacturing cost. SOLUTION: The refrigerant distributor 20 for splitting a flow of refrigerant comprises a body 21 and a nozzle 23. The body 21 is formed by drawing a copper pipe and has an inlet hole 21a and a plurality of distributing ports 21b. The nozzle 23 is disposed between the inlet hole 21a and the distributing ports 21b in the body 21 and has a hole 23a which reduces the route of the refrigerant flowing from the inlet hole 21a to the ports 21b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置用の熱交
換器などに用いられる冷媒分流器、特に、流入口から取
り入れた冷媒を複数の分流口から出すことにより冷媒を
分流する冷媒分流器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant flow divider for use in a heat exchanger for a refrigeration system, and more particularly to a refrigerant flow divider for dividing a refrigerant by taking out refrigerant introduced from an inlet through a plurality of outlets. About.

【0002】[0002]

【従来の技術】冷凍装置用の蒸発器など複数本の伝熱流
路を備えた熱交換器に対して冷媒を供給する場合には、
各伝熱流路に供給する冷媒を1つの膨張弁で制御し、膨
張弁を出た冷媒を冷媒分流器により各伝熱流路に対して
均等に分配することが広く行われている。例えば、図4
に示す冷凍装置においては、まず、圧縮機11によって
加圧された冷媒が、凝縮器12で凝縮され、受液器13
を経て膨張弁14に送られる。膨張弁14を出た気液二
相流の冷媒は、冷媒分流器15により蒸発器16の各伝
熱流路に送られ、蒸発器16において蒸発させられた後
に、アキュムレータ17を経て圧縮機11に還流され
る。
2. Description of the Related Art When supplying a refrigerant to a heat exchanger having a plurality of heat transfer passages such as an evaporator for a refrigeration system,
It is widely practiced to control the refrigerant supplied to each heat transfer flow path by one expansion valve, and to distribute the refrigerant flowing out of the expansion valve evenly to each heat transfer flow path by a refrigerant flow divider. For example, FIG.
In the refrigerating apparatus shown in FIG. 1, first, the refrigerant pressurized by the compressor 11 is condensed in the condenser 12 and
Through the expansion valve 14. The gas-liquid two-phase flow refrigerant that has exited the expansion valve 14 is sent to each heat transfer flow path of the evaporator 16 by the refrigerant flow divider 15 and evaporated in the evaporator 16, and then sent to the compressor 11 through the accumulator 17. It is refluxed.

【0003】上記のような装置で用いられる冷媒分流器
は、冷媒を均等に分配するという役割を持っているが、
その均等度合いは高ければ高いほどよい。
[0003] The refrigerant flow divider used in the above-described apparatus has a role of evenly distributing the refrigerant.
The higher the degree of uniformity, the better.

【0004】[0004]

【発明が解決しようとする課題】従来の冷媒分流器の一
例を、図5に示す。ここに示す冷媒分流器15は、大径
の筒状本体51の内部に所定容積の冷媒分配空間Sを有
し、その底部側に冷媒の流入口51aが、また天井部側
に複数の分流口51bが形成されている。この冷媒分流
器15は、流入口51aに接続される冷媒供給路から上
方に向けて供給される気液混合冷媒を一旦冷媒分配空間
Sに導入した後、各分流口51bに接続される冷媒分流
路に冷媒を略均等に分流させる。分流した冷媒は、各冷
媒分流路によって、例えば冷凍機用蒸発器等のクロスフ
ィン熱交換器の各伝熱管へと流れていく。
FIG. 5 shows an example of a conventional refrigerant flow divider. The refrigerant distributor 15 shown here has a refrigerant distribution space S of a predetermined volume inside a large-diameter cylindrical main body 51, a refrigerant inlet 51a on the bottom side, and a plurality of distribution ports on the ceiling side. 51b are formed. The refrigerant distributor 15 introduces the gas-liquid mixed refrigerant supplied upward from the refrigerant supply passage connected to the inflow port 51a into the refrigerant distribution space S once, and then distributes the refrigerant to the refrigerant distribution space 51b. The refrigerant is diverted substantially evenly to the path. The divided refrigerant flows into each heat transfer tube of a cross-fin heat exchanger such as an evaporator for a refrigerator, for example, through each refrigerant distribution channel.

【0005】しかし、上記のような従来の冷媒分流器1
5は、本体51の鉛直方向の設置角精度を相当に高い精
度に保った状態で設置しなければ、重力の影響で各冷媒
分流路に分配される冷媒中の気液の割合にバラツキが生
じる。また、本体51の設置角度の精度が確保されてい
ても、流入口51aに接続される冷媒供給路の設置状態
によっては、冷媒の分配の均等性が確保できない恐れが
ある。
However, the conventional refrigerant flow divider 1 as described above
In the case 5, if the vertical installation angle accuracy of the main body 51 is not maintained at a considerably high accuracy, the ratio of gas-liquid in the refrigerant distributed to each refrigerant branch channel varies due to the influence of gravity. . Even if the accuracy of the installation angle of the main body 51 is ensured, there is a possibility that uniformity of distribution of the refrigerant may not be ensured depending on the installation state of the refrigerant supply path connected to the inlet 51a.

【0006】このような冷媒分流器の分配均等性を向上
させるために、種々の提案が為されており、そのうちの
幾つかは実用に供されている。例えば、特開平11−2
57801号公報には、凹球面状の冷媒流衝突部を設け
て冷媒中の気液が均一に攪拌されるようにした冷媒分流
器が開示されている。また、実公平3−38598号公
報には、分流器本体に別部材を装着し中心通路や環状通
路を形成して均一な気液混合を図った分流器が開示され
ている。
Various proposals have been made to improve the distribution uniformity of such a refrigerant flow divider, and some of them have been put to practical use. For example, JP-A-11-2
No. 57801 discloses a refrigerant flow divider in which a concave-spherical refrigerant flow collision portion is provided so that gas-liquid in the refrigerant is uniformly stirred. Japanese Utility Model Publication No. 3-38598 discloses a flow divider in which a separate member is attached to a flow divider main body to form a central passage or an annular passage to achieve uniform gas-liquid mixing.

【0007】しかしながら、これらの冷媒分流器は、ど
れも複雑な形状を有しており、切削加工など加工コスト
の高い機械加工が必要となる。また、切削加工などを施
すため、黄銅製の冷媒分流器となることが多い。一方、
上記の冷媒分流器15のようなものの場合、銅管を絞っ
て製造することができるため、加工コストを含む製造コ
ストが安くなる。したがって、非常に高い分配の均等性
が要求される場合には機械加工を施した冷媒分流器の採
用が行われているが、それほど高い冷媒分配の均等性が
要求されない場合には、コスト的な面から上記の冷媒分
流器15のような銅管絞り型の分流器が採用されてい
る。
[0007] However, all of these refrigerant flow dividers have complicated shapes, and require high-cost machining such as cutting. In addition, in order to perform a cutting process or the like, a refrigerant flow divider made of brass is often used. on the other hand,
In the case of the above-mentioned refrigerant diverter 15, since the copper pipe can be manufactured by narrowing the copper pipe, the manufacturing cost including the processing cost is reduced. Therefore, when a very high distribution uniformity is required, a machined refrigerant diverter is adopted, but when not so high a refrigerant distribution uniformity is required, cost reduction is required. From the viewpoint, a copper tube throttle type flow divider such as the above-described refrigerant flow divider 15 is employed.

【0008】本発明の課題は、銅管のような管材を絞っ
て製造する冷媒分流器において、製造コストを抑えつ
つ、気液混合冷媒の分配の均等性を向上させることにあ
る。
An object of the present invention is to improve the uniformity of distribution of a gas-liquid mixed refrigerant in a refrigerant flow divider manufactured by squeezing a pipe material such as a copper pipe while suppressing the production cost.

【0009】[0009]

【課題を解決するための手段】請求項1に係る冷媒分流
器は、冷媒を分流するものであって、本体と、経路縮小
部材とを備えている。本体は、絞り加工により管材から
成形されるものであり、流入口及び複数の分流口を有し
ている。経路縮小部材は、本体内において流入口と分流
口との間に配置されており、流入口から分流口へと流れ
る冷媒の経路を小さくする役割を果たす。
According to a first aspect of the present invention, there is provided a refrigerant diverter for diverting a refrigerant, comprising a main body and a path reducing member. The main body is formed from a tube by drawing, and has an inflow port and a plurality of branch ports. The path reducing member is disposed between the inflow port and the diversion port in the main body, and serves to reduce the path of the refrigerant flowing from the inflow port to the diversion port.

【0010】請求項1の冷媒分流器では、冷媒分流器に
送られてきた冷媒は、流入口から本体内に流入する。そ
して、冷媒が本体内において分流口へと流れていくが、
分流口に辿り着く前に経路縮小部材によりその経路が小
さくなる。すなわち、冷媒は、流入口から本体内に入っ
た後、経路縮小部材により小さくなった経路を通って、
各分流口に流れていくことになる。そして、何らかの理
由によって前記経路縮小部材の手前において気液に偏り
があっても、この経路縮小部材の小さな経路を通るとき
に冷媒が集められ、経路縮小部材の小さな経路から噴き
出された冷媒は、噴霧状態となり、各分流口の手前で概
ね均等な気液の割合となる。したがって、各分流口から
後段に流れていく冷媒は、それぞれ気液の割合が略均等
になる。
In the refrigerant distributor of the first aspect, the refrigerant sent to the refrigerant distributor flows into the main body from the inlet. And the refrigerant flows to the diversion port in the main body,
Before arriving at the diversion port, the path is reduced by the path reducing member. That is, after the refrigerant enters the main body from the inflow port, it passes through the path reduced by the path reducing member,
It will flow to each branch. And, even if the gas and liquid are biased before the path reducing member for some reason, the refrigerant is collected when passing through the small path of the path reducing member, and the refrigerant ejected from the small path of the path reducing member is Then, a spray state is established, and the gas-liquid ratio becomes substantially uniform before each of the diversion ports. Therefore, the refrigerant flowing from each branch port to the subsequent stage has a substantially equal gas-liquid ratio.

【0011】このように、請求項1の冷媒分流器を用い
れば、経路縮小部材を有していない従来の冷媒分流器に
較べて、気液混合冷媒の分配の均等性が向上するまた、
請求項1の冷媒分流器は、銅管などの管材に絞り加工を
施すことにより成形される本体に経路縮小部材を合わせ
るという簡易な構造であり、本体に高価な切削加工を施
す必要がないため、製造コストが抑えられる。
As described above, the use of the refrigerant flow divider according to claim 1 improves the uniformity of distribution of the gas-liquid mixed refrigerant as compared with the conventional refrigerant flow divider having no path reducing member.
The refrigerant flow divider according to claim 1 has a simple structure in which a path reducing member is fitted to a main body formed by drawing a pipe material such as a copper pipe, so that it is not necessary to perform expensive cutting on the main body. The manufacturing cost is reduced.

【0012】請求項2に係る冷媒分流器は、請求項1に
記載の冷媒分流器であって、経路縮小部材は、外周面及
び孔を有している。経路縮小部材の外周面は、本体の内
周面に対向する。経路縮小部材の孔は、各分流口からの
距離が概ね等しい。
According to a second aspect of the present invention, there is provided the refrigerant flow divider according to the first aspect, wherein the path reducing member has an outer peripheral surface and a hole. The outer peripheral surface of the path reducing member faces the inner peripheral surface of the main body. The holes of the path reducing member are approximately equal in distance from each of the diversion ports.

【0013】請求項2の冷媒分流器では、本体の内周面
に対向する外周面を持つ経路縮小部材に孔を設け、その
孔によって冷媒の経路を小さくしている。そして、その
孔と各分流口との距離が概ね等しいため、冷媒の均等分
流の度合いが高い。
According to the second aspect of the present invention, a hole is provided in the path reducing member having an outer peripheral surface facing the inner peripheral surface of the main body, and the refrigerant path is reduced by the hole. Since the distance between the hole and each of the branch ports is substantially equal, the degree of the uniform branch of the refrigerant is high.

【0014】請求項3に係る冷媒分流器は、請求項1又
は2に記載の冷媒分流器であって、本体の分流口は、穴
あけ加工によって形成されている。本体は主として絞り
加工により成形されるが、絞り加工だけにより本体の成
形を行うと分流口の成形が困難となることも想定され
る。そこで、請求項3の冷媒分流器では、比較的コスト
の安い穴あけ加工を併用して、その成形を行っている。
これにより、絞り加工だけにより冷媒分流器を成形する
場合に較べて、製造コストを小さく抑えることができる
ようになる。
According to a third aspect of the present invention, there is provided the refrigerant flow divider according to the first or second aspect, wherein the distribution port of the main body is formed by drilling. Although the main body is mainly formed by drawing, it is also assumed that if the main body is formed only by drawing, it is difficult to form the branch opening. Therefore, in the refrigerant flow divider according to the third aspect, the forming is performed by using a relatively inexpensive drilling process.
This makes it possible to reduce the manufacturing cost as compared with the case where the refrigerant flow divider is formed only by drawing.

【0015】請求項4に係る冷媒分流器は、請求項1か
ら3のいずれかに記載の冷媒分流器であって、経路縮小
部材は、プレス加工によって本体に固定されている。こ
こでは、本体と別部材である経路縮小部材を、プレス加
工によって本体に固定している。例えば、ディンプル加
工などにより本体の一部に窪みや突起を形成して、それ
により経路縮小部材を本体に固定する。このように、経
路縮小部材を固定するために本体を切削するようなこと
をせず、上記のように安価なプレス加工によって経路縮
小部材を本体に固定するため、請求項4の冷媒分流器の
製造コストは小さく抑えられる。
According to a fourth aspect of the present invention, there is provided a refrigerant flow divider according to any one of the first to third aspects, wherein the path reducing member is fixed to the main body by press working. Here, the path reducing member, which is a separate member from the main body, is fixed to the main body by press working. For example, a depression or a projection is formed in a part of the main body by dimple processing or the like, thereby fixing the path reducing member to the main body. In this way, the main body is not cut to fix the path reducing member, and the path reducing member is fixed to the main body by the inexpensive press working as described above. Manufacturing costs can be kept low.

【0016】請求項5に係る冷媒分流器の製造方法は、
請求項1から4のいずれかに記載の冷媒分流器を製造す
る製造方法であって、第1工程と、第2工程と、第3工
程と、第4工程とを備えている。第1工程では、管材の
一端部に絞り加工を施し、溶接によって一端部の開口部
分を塞ぐ。第2工程では、管材の一端部に穴あけ加工を
施し、複数の分流口を形成する。第3工程では、管材の
他端部の開口部分から経路縮小部材を管材の内部に挿入
する。第4工程では、管材の他端部に絞り加工を施し、
流入口を形成する。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a refrigerant flow divider.
A method for manufacturing the refrigerant flow divider according to any one of claims 1 to 4, comprising a first step, a second step, a third step, and a fourth step. In the first step, one end of the tube is subjected to drawing, and the opening at the one end is closed by welding. In the second step, one end of the pipe is drilled to form a plurality of branch ports. In the third step, the path reducing member is inserted into the tube from the opening at the other end of the tube. In the fourth step, drawing is performed on the other end of the tube material,
Form an inlet.

【0017】請求項5の製造方法では、経路縮小部材を
本体内に配置するため、管材の他端部に絞り加工を施す
前に、他端部の開口部分から経路縮小部材を内部に挿入
している。また、穴あけ加工により分流口を形成してお
り、絞り加工で複数の分流口を形成するという比較的面
倒な工程を省くことができている。
In the manufacturing method according to the fifth aspect, since the path reducing member is disposed in the main body, the path reducing member is inserted into the inside of the tube from the opening at the other end before the drawing is performed on the other end. ing. Further, the diversion port is formed by drilling, and a relatively troublesome process of forming a plurality of diversion ports by drawing can be omitted.

【0018】請求項6に係る冷媒分流器の製造方法は、
請求項5に記載の製造方法であって、第5工程と、第6
工程とをさらに備えている。第5工程は、第3工程の前
に行われる工程であって、管材の中間部にプレス加工を
施し、経路縮小部材に係止し得る第1突出部を内側に突
出させる。第6工程は、第3工程の後に行われる工程で
あって、管材の中間部にプレス加工を施し、経路縮小部
材の第1突出部側と反対側において経路縮小部材に係止
する第2突出部を内側に突出させる。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a refrigerant flow divider.
The manufacturing method according to claim 5, wherein the fifth step and the sixth step are performed.
And a step. The fifth step is a step performed before the third step, in which the intermediate portion of the tube is subjected to press working so that the first projecting portion that can be locked to the path reducing member projects inward. The sixth step is a step performed after the third step, in which a middle portion of the tube material is subjected to press working, and the second protrusion is engaged with the path reducing member on the side opposite to the first protrusion side of the path reducing member. Part protrudes inward.

【0019】請求項6の製造方法では、高価となる切削
加工ではなく、プレス加工によって経路縮小部材を固定
するための第1及び第2突出部を形成しているため、製
造コストが小さく抑えられる。
According to the manufacturing method of the present invention, since the first and second projections for fixing the path reducing member are formed by press working instead of expensive cutting work, the manufacturing cost can be reduced. .

【0020】[0020]

【発明の実施の形態】本発明の一実施形態に係る冷媒分
流器を、図1に示す。この冷媒分流器20は、前述の図
4に示す冷凍装置において使われている冷媒分流器15
に代えて採用することにより、気液二相流の冷媒を蒸発
器16の各伝熱流路に伝える際の気液の均等度合いを高
めることができるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a refrigerant flow divider according to one embodiment of the present invention. This refrigerant flow divider 20 is the same as the refrigerant flow divider 15 used in the refrigeration apparatus shown in FIG.
By adopting in place of the above, it is possible to increase the degree of gas-liquid uniformity when the refrigerant of the gas-liquid two-phase flow is transmitted to each heat transfer flow path of the evaporator 16.

【0021】<冷媒分流器20の構成>冷媒分流器20
は、主として、本体21と、ノズル部材(経路縮小部
材)23と、スクリーン25とから構成されている。
<Configuration of Refrigerant Divider 20> Refrigerant Divider 20
Is mainly composed of a main body 21, a nozzle member (path reducing member) 23, and a screen 25.

【0022】本体21は、後述するように主として絞り
加工により銅管から成形される「いも型」の成型品であ
り、流入口21a及び複数の分流口21bを有してい
る。分流口21bは、直径2〜3mmの円孔であり、図
1(a)に示すように、上面視において放射状に配置さ
れ、円周方向に等間隔に並ぶ。
The main body 21 is a molded product of a "potato type" which is formed from a copper tube mainly by drawing as described later, and has an inflow port 21a and a plurality of diversion ports 21b. The diversion ports 21b are circular holes having a diameter of 2 to 3 mm, and are radially arranged in a top view as shown in FIG. 1A and are arranged at regular intervals in the circumferential direction.

【0023】ノズル部材23は、本体21内において流
入口21aと分流口21bとの間に配置されており、本
体21内の空間を第1空間S1と第2空間S2とに分け
るとともに、流入口21aから分流口21bへと流れる
冷媒の経路を小さくする役割を果たす。このノズル部材
23は、円板状の部材であり、中央に孔23aが開けら
れている。孔23aは、各分流口21bからの距離が等
しくなるように、ノズル部材23の中央に配置されてい
る。また、ノズル部材23の外周面は、本体21の内周
面に対向しており、スクリーンホルダ25aの筒状部を
介して本体21にはめ込まれる。
The nozzle member 23 is disposed between the inflow port 21a and the diversion port 21b in the main body 21. The nozzle member 23 divides the space in the main body 21 into a first space S1 and a second space S2. It serves to reduce the path of the refrigerant flowing from 21a to the diversion port 21b. The nozzle member 23 is a disk-shaped member, and has a hole 23a in the center. The hole 23a is arranged at the center of the nozzle member 23 so that the distance from each of the branch ports 21b is equal. The outer peripheral surface of the nozzle member 23 faces the inner peripheral surface of the main body 21 and is fitted into the main body 21 via the cylindrical portion of the screen holder 25a.

【0024】スクリーン25は、フィルターの役割を果
たす鋼製の網であり、スクリーンホルダ25aによって
本体21に固定される。このスクリーン25は、ノズル
部材23の流入口21a側に配置される。スクリーンホ
ルダ25aは、その筒状部がノズル部材23の外周面と
本体21の内周面との間に挟持される形で、スクリーン
25を本体21に固定する。また、スクリーン25の周
囲には、スクリーン25の変形を抑制する補強スプリン
グ(図示せず)が装着される。
The screen 25 is a steel net that functions as a filter, and is fixed to the main body 21 by a screen holder 25a. This screen 25 is arranged on the inflow port 21 a side of the nozzle member 23. The screen holder 25a fixes the screen 25 to the main body 21 in such a manner that its cylindrical portion is sandwiched between the outer peripheral surface of the nozzle member 23 and the inner peripheral surface of the main body 21. A reinforcing spring (not shown) for suppressing deformation of the screen 25 is mounted around the screen 25.

【0025】なお、図1(b)に示すようにノズル部材
23及びスクリーンホルダ25aは本体21に形成され
る複数の窪み21c,21dによって本体21内での位
置決めがされるが、これについては後述する。
As shown in FIG. 1B, the nozzle member 23 and the screen holder 25a are positioned in the main body 21 by a plurality of recesses 21c and 21d formed in the main body 21, which will be described later. I do.

【0026】<冷媒分流器20による冷媒の分配>次
に、冷媒分流器20によって冷媒がどのように分配され
るのかについて説明する。
<Distribution of Refrigerant by Refrigerant Divider 20> Next, how the refrigerant is distributed by the refrigerant divider 20 will be described.

【0027】冷媒分流器20に送られてきた冷媒は、流
入口21aから本体21内の第1空間S1に流入する。
そして、冷媒が本体21内において分流口21bへと流
れていくが、分流口21bに辿り着く前にノズル部材2
3によりその経路が小さくなる。すなわち、冷媒は、流
入口21aから本体21内の第1空間S1に入った後、
小さくなった経路(ノズル部材23の孔23a)を通っ
て、第2空間S2から各分流口21bに流れていくこと
になる。そして、ノズル部材23の孔23aを通るとき
に冷媒が集められるため、第1空間S1において冷媒の
気液に偏りがある場合であっても、孔23aから噴き出
された冷媒は、第2空間S2において噴霧状態となり、
各分流口21bの手前で概ね均等な気液の割合となる。
したがって、各分流口21bから蒸発器16の各伝熱流
路へと流れていく冷媒は、それぞれ気液の割合が概ね均
等になる。
The refrigerant sent to the refrigerant distributor 20 flows into the first space S1 in the main body 21 from the inflow port 21a.
Then, the refrigerant flows to the branch port 21b in the main body 21, but before reaching the branch port 21b, the nozzle member 2
3 makes the path smaller. That is, after the refrigerant enters the first space S1 in the main body 21 from the inflow port 21a,
Through the reduced path (the hole 23a of the nozzle member 23), it flows from the second space S2 to each of the diversion ports 21b. Since the refrigerant is collected when passing through the hole 23a of the nozzle member 23, even when the gas-liquid of the refrigerant is biased in the first space S1, the refrigerant ejected from the hole 23a remains in the second space S1. It becomes a spray state in S2,
The gas-liquid ratio becomes substantially uniform before each of the diversion ports 21b.
Therefore, the refrigerant flowing from each branch port 21b to each heat transfer passage of the evaporator 16 has a substantially equal gas-liquid ratio.

【0028】<冷媒分流器20の製造方法>次に、冷媒
分流器20の製法について、図2を参照して説明する。
この冷媒分流器20の製造工程では、金型を用いて銅管
を必要な形に成形することにより本体21を製造すると
ともに、ディンプル加工によって本体21内にノズル部
材23を固定する。また、分流口21bについては、穴
あけ加工によって形成する。
<Method for Manufacturing Refrigerant Flow Divider 20> Next, a method for manufacturing the refrigerant flow divider 20 will be described with reference to FIG.
In the manufacturing process of the refrigerant flow divider 20, the main body 21 is manufactured by molding a copper tube into a required shape using a mold, and the nozzle member 23 is fixed in the main body 21 by dimple processing. Also, the diversion port 21b is formed by drilling.

【0029】まず始めに、図2(a)に示すように、銅
管Mを保持部材31によって保持しつつ、絞り型32に
よって銅管Mの一端に絞り加工を施して椀状に成形す
る。次に、図2(b)に示すように、椀状になった銅管
Mの一端の頂部にある開口部分を、TIG溶接によって
塞ぐ。そして、穴あけ加工によって分流口21bを形成
する。
First, as shown in FIG. 2 (a), one end of the copper tube M is drawn by a drawing die 32 while being held by the holding member 31 to form a bowl shape. Next, as shown in FIG. 2B, the opening at the top of one end of the cup-shaped copper tube M is closed by TIG welding. Then, the branch outlet 21b is formed by drilling.

【0030】次に、図2(b)に示すような銅管Mの所
定位置P1に対して、ディンプル加工を施し、円周方向
に幾つかの第1窪み21c(図2(c)参照)をつけ
る。そして、スクリーン25が装着されたスクリーンホ
ルダ25aをノズル部材23にセットしたものを、銅管
Mの他端から銅管Mの内部に挿入し、第1窪み21cに
当てて止める。
Next, dimple processing is performed on a predetermined position P1 of the copper tube M as shown in FIG. 2B, and several first dents 21c are formed in the circumferential direction (see FIG. 2C). Attach Then, the screen holder 25a on which the screen 25 is mounted is set in the nozzle member 23, inserted into the copper tube M from the other end of the copper tube M, and stopped against the first recess 21c.

【0031】次に、挿入したノズル部材23の第1窪み
21cと反対側において、銅管Mにディンプル加工を施
して第2窪み21dを形成し、ノズル部材23が第1及
び第2窪み21c,21dにより位置決めされるように
する(図2(c)参照)。
Next, on the side opposite to the first recess 21c of the inserted nozzle member 23, dimple processing is performed on the copper tube M to form a second recess 21d, and the nozzle member 23 is provided with the first and second recesses 21c, 21c. The position is determined by 21d (see FIG. 2C).

【0032】そして最後に、図2(d)に示すように、
金型35によって流入口21aの内周面を形作りなが
ら、絞り部材34によって流入口21a近傍の傾斜部2
1eを形成する。
Finally, as shown in FIG.
While the inner peripheral surface of the inflow port 21a is formed by the mold 35, the inclined portion 2 near the inflow port 21a is formed by the throttle member 34.
1e is formed.

【0033】なお、蒸発器16の各伝熱流路につながる
冷媒分流配管29は、冷媒分流器20の本体21の分流
口21bに対して、図3に示すように接続される。 <冷媒分流器20の特徴> (1)冷媒分流器20では、流入口21aから本体21
内の第1空間S1に入った冷媒は、ノズル部材23の孔
23aを通るときに集められ、第2空間S2に噴霧され
て、各分流口21bに流れていく。また、孔23aと各
分流口21bとの距離が等しくなっている。このため、
冷媒分流器20の設置精度や流入口21aまでの配管の
経路などの影響によって第1空間S1において冷媒の気
液に偏りがある場合でも、各分流口21bの手前では概
ね均等な気液の割合となる。したがって、各分流口21
bから冷媒分流配管29に入る冷媒は、それぞれ気液の
割合が略均等になる。
The refrigerant distribution pipe 29 connected to each heat transfer passage of the evaporator 16 is connected to the distribution port 21b of the main body 21 of the refrigerant distributor 20, as shown in FIG. <Features of Refrigerant Flow Divider 20> (1) In the refrigerant flow distributor 20, the main body 21
The refrigerant that has entered the first space S1 is collected when passing through the hole 23a of the nozzle member 23, is sprayed into the second space S2, and flows into each of the diversion ports 21b. Further, the distance between the hole 23a and each of the branch ports 21b is equal. For this reason,
Even if the refrigerant gas is biased in the first space S1 due to the installation accuracy of the refrigerant flow divider 20 or the path of the pipe to the inlet 21a, a substantially uniform gas-liquid ratio is provided in front of each branch 21b. Becomes Therefore, each branch 21
The refrigerant entering the refrigerant distribution pipe 29 from b has a substantially equal gas-liquid ratio.

【0034】このように、冷媒分流器20を用いれば、
ノズル部材23を有していない従来の冷媒分流器15
(図5参照)に較べて、気液混合冷媒の分配の均等性が
向上する (2)冷媒分流器20は、銅管Mに絞り加工及び穴あけ
加工を施すことにより成形される本体21にノズル部材
23を挿入するという簡易な構造であり、本体21に高
価な切削加工を施す必要がないため、製造コストが抑え
られる。
As described above, if the refrigerant flow divider 20 is used,
A conventional refrigerant flow divider 15 having no nozzle member 23
The distribution uniformity of the gas-liquid mixed refrigerant is improved as compared with (see FIG. 5). (2) The refrigerant flow divider 20 has a nozzle formed on the main body 21 formed by subjecting the copper pipe M to drawing and drilling. Since it has a simple structure in which the member 23 is inserted and it is not necessary to perform expensive cutting on the main body 21, the manufacturing cost can be reduced.

【0035】(3)冷媒分流器20では、本体21と別
部材であるノズル部材23を、ディンプル加工により本
体21の一部に窪み21c,21dを形成することによ
って、本体21に固定している。このように、ノズル部
材23を固定するために本体21を切削するようなこと
をせず、上記のように安価なディンプル加工によってノ
ズル部材23を本体21に固定するようにしたため、冷
媒分流器20の製造コストが小さく抑えられる。
(3) In the refrigerant distributor 20, the nozzle member 23, which is a separate member from the main body 21, is fixed to the main body 21 by forming depressions 21c and 21d in a part of the main body 21 by dimple processing. . As described above, the nozzle member 23 is fixed to the main body 21 by the inexpensive dimple processing as described above without cutting the main body 21 to fix the nozzle member 23. Manufacturing costs can be kept low.

【0036】[0036]

【発明の効果】請求項1に係る発明では、経路縮小部材
の小さな経路を通るときに冷媒が集められるため、何ら
かの理由によって前記経路の手前において気液に偏りが
ある場合であっても、経路縮小部材の小さな経路から噴
き出された冷媒は、噴霧状態となり、各分流口の手前で
概ね均等な気液の割合となる。したがって、各分流口か
ら後段に流れていく冷媒は、それぞれ気液の割合が略均
等になる。また、銅管などの管材に絞り加工を施すこと
により成形される本体に経路縮小部材を合わせるという
簡易な構造であり、本体に高価な切削加工を施す必要が
ないため、冷媒分流器の製造コストが抑えられる。
According to the first aspect of the present invention, the refrigerant is collected when passing through the small path of the path reducing member. Therefore, even if the gas-liquid is biased before the path for some reason, the path is reduced. The refrigerant blown out from the small path of the reduction member is in a spray state, and has a substantially equal ratio of gas and liquid before each branch. Therefore, the refrigerant flowing from each branch port to the subsequent stage has a substantially equal gas-liquid ratio. In addition, since it has a simple structure in which a path reducing member is fitted to a main body formed by drawing a pipe material such as a copper pipe, it is not necessary to perform an expensive cutting process on the main body, so that the manufacturing cost of the refrigerant flow divider is reduced. Is suppressed.

【0037】請求項2に係る発明では、経路縮小部材に
孔を設けることで冷媒の経路を小さくしており、その孔
と各分流口との距離が概ね等しいため、冷媒の均等分流
の度合いが高くなる。
According to the second aspect of the present invention, the hole of the path reducing member is provided to reduce the refrigerant path, and the distance between the hole and each of the branch ports is substantially equal. Get higher.

【0038】請求項3に係る発明では、比較的コストの
安い穴あけ加工を併用して各分流口の成形を行っている
ため、絞り加工だけにより冷媒分流器を成形する場合に
較べて、製造コストを小さく抑えることができる。
According to the third aspect of the present invention, since each of the branch ports is formed by using a relatively inexpensive drilling process, the manufacturing cost is reduced as compared with the case where the refrigerant branch is formed only by drawing. Can be kept small.

【0039】請求項4に係る発明では、経路縮小部材を
固定するために本体を切削するようなことをせず、本体
と別部材である経路縮小部材をディンプル加工等のプレ
ス加工によって本体に固定しているため、冷媒分流器の
製造コストが小さくなる。
According to the fourth aspect of the present invention, the main body is not cut to fix the path reducing member, but the path reducing member, which is a separate member from the main body, is fixed to the main body by pressing such as dimple processing. Therefore, the manufacturing cost of the refrigerant flow divider is reduced.

【0040】請求項5に係る発明では、経路縮小部材を
本体内に配置するため、管材の他端部に絞り加工を施す
前に、他端部の開口部分から経路縮小部材を内部に挿入
している。また、穴あけ加工により分流口を形成してお
り、絞り加工で複数の分流口を形成するという比較的面
倒な工程を省くことができる。
According to the fifth aspect of the present invention, since the path reducing member is disposed in the main body, the path reducing member is inserted through the opening at the other end before the drawing is performed on the other end of the tube. ing. Further, since the diversion port is formed by drilling, a relatively troublesome process of forming a plurality of diversion ports by drawing can be omitted.

【0041】請求項6に係る発明では、高価となる切削
加工ではなくプレス加工によって経路縮小部材を固定す
るための第1及び第2突出部を形成しているため、製造
コストが小さく抑えられる。
In the invention according to claim 6, since the first and second projections for fixing the path reducing member are formed by press working instead of expensive cutting work, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の一実施形態に係る冷媒分流器の
上面図。 (b)冷媒分流器の縦断面図。
FIG. 1A is a top view of a refrigerant flow divider according to an embodiment of the present invention. (B) A longitudinal sectional view of the refrigerant flow divider.

【図2】冷媒分流器の製造過程を表す図。FIG. 2 is a diagram illustrating a manufacturing process of a refrigerant flow divider.

【図3】冷媒分流器への冷媒分流配管の接続図。FIG. 3 is a connection diagram of a refrigerant distribution pipe to a refrigerant distribution device.

【図4】冷凍装置における冷媒の流れを表す図。FIG. 4 is a diagram illustrating a flow of a refrigerant in a refrigeration apparatus.

【図5】(a)従来の冷媒分流器の上面図。 (b)従来の冷媒分流器の縦断面図。FIG. 5A is a top view of a conventional refrigerant flow divider. (B) A longitudinal sectional view of a conventional refrigerant flow divider.

【符号の説明】[Explanation of symbols]

20 冷媒分流器 21 本体 21a 流入口 21b 分流口 21c 第1窪み(第1突出部) 21d 第2窪み(第2突出部) 23 ノズル部材(経路縮小部材) 23a 孔 M 銅管(管材) Reference Signs List 20 refrigerant distributor 21 main body 21a inflow port 21b distribution port 21c first depression (first projection) 21d second depression (second projection) 23 nozzle member (path reducing member) 23a hole M copper tube (pipe)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B21D 51/18 B21D 51/18 B D 51/24 51/24 53/06 53/06 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B21D 51/18 B21D 51/18 BD 51/24 51/24 53/06 53/06 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】冷媒を分流するための冷媒分流器(20)
であって、 絞り加工により管材(M)から成形され、流入口(21
a)及び複数の分流口(21b)を有する本体(21)
と、 前記本体(21)内において前記流入口(21a)と前
記分流口(21b)との間に配置され、前記流入口(2
1a)から前記分流口(21b)へと流れる冷媒の経路
を小さくする経路縮小部材(23)と、を備えた冷媒分
流器(20)。
1. A refrigerant diverter for diverting a refrigerant.
It is formed from the tube material (M) by drawing, and the inlet (21)
a) and a body (21) having a plurality of diversion ports (21b)
And disposed between the inflow port (21a) and the diversion port (21b) in the main body (21);
A flow-reducing device (20) comprising: a path-reducing member (23) for reducing the path of the refrigerant flowing from 1a) to the distribution port (21b).
【請求項2】前記経路縮小部材(23)は、前記本体
(21)の内周面に対向する外周面と、前記各分流口
(21b)からの距離が概ね等しい孔(23a)とを有
している、請求項1に記載の冷媒分流器(20)。
2. The path reducing member (23) has an outer peripheral surface facing an inner peripheral surface of the main body (21), and a hole (23a) having a distance substantially equal from each of the branch openings (21b). The refrigerant flow diverter (20) according to claim 1, wherein
【請求項3】前記本体(21)の分流口(21b)は、
穴あけ加工によって形成される、請求項1又は2に記載
の冷媒分流器(20)。
3. The diversion port (21b) of the main body (21)
The refrigerant flow splitter (20) according to claim 1 or 2, formed by drilling.
【請求項4】前記経路縮小部材(23)は、プレス加工
によって前記本体(21)に固定される、請求項1から
3のいずれかに記載の冷媒分流器(20)。
4. The refrigerant flow divider according to claim 1, wherein the path reducing member is fixed to the main body by pressing.
【請求項5】前記請求項1から4のいずれかに記載の冷
媒分流器(20)を製造する製造方法であって、 前記管材(M)の一端部に絞り加工を施し、溶接によっ
て前記一端部の開口部分を塞ぐ第1工程と、 前記一端部に穴あけ加工を施し、前記複数の分流口(2
1b)を形成する第2工程と、 前記管材(M)の他端部の開口部分から前記経路縮小部
材(23)を前記管材(M)の内部に挿入する第3工程
と、 前記管材(M)の他端部に絞り加工を施し、前記流入口
(21a)を形成する第4工程と、を備えた冷媒分流器
(20)の製造方法。
5. A method for manufacturing a refrigerant flow divider (20) according to claim 1, wherein one end of said tube (M) is subjected to drawing and said one end is welded. A first step of closing the opening of the part;
1b), a third step of inserting the path reducing member (23) into the inside of the tube (M) from an opening at the other end of the tube (M), and a step of forming the tube (M). A) forming the inflow port (21a) by drawing at the other end of the refrigerant flow divider (20).
【請求項6】前記第3工程の前に前記管材(M)の中間
部にプレス加工を施し、前記経路縮小部材(23)に係
止し得る第1突出部(21c)を内側に突出させる第5
工程と、 前記第3工程の後に前記中間部にプレス加工を施し、前
記経路縮小部材(23)の前記第1突出部(21c)側
と反対側において前記経路縮小部材(23)に係止する
第2突出部(21d)を内側に突出させる第6工程と、
をさらに備えた請求項5に記載の冷媒分流器(20)の
製造方法。
6. A press working is applied to an intermediate portion of the tube (M) before the third step, so that a first protrusion (21c) which can be locked to the path reducing member (23) is protruded inward. Fifth
After the third step, the intermediate portion is subjected to press working, and is engaged with the path reducing member (23) on the side of the path reducing member (23) opposite to the first protruding portion (21c) side. A sixth step of projecting the second projection (21d) inward;
The method for manufacturing a refrigerant flow divider (20) according to claim 5, further comprising:
JP2000385199A 2000-12-19 2000-12-19 Refrigerant flow splitter and manufacturing method thereof Pending JP2002188869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385199A JP2002188869A (en) 2000-12-19 2000-12-19 Refrigerant flow splitter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385199A JP2002188869A (en) 2000-12-19 2000-12-19 Refrigerant flow splitter and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002188869A true JP2002188869A (en) 2002-07-05

Family

ID=18852509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385199A Pending JP2002188869A (en) 2000-12-19 2000-12-19 Refrigerant flow splitter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002188869A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001803A1 (en) 2006-06-29 2008-01-03 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
US7921671B2 (en) 2005-06-14 2011-04-12 Daikin Industries, Ltd. Refrigerant flow divider
CN104482693A (en) * 2014-12-02 2015-04-01 重庆凌达压缩机有限公司 Liquid distributor and production method thereof
WO2022142734A1 (en) * 2020-12-30 2022-07-07 浙江盾安人工环境股份有限公司 Dispenser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331267U (en) * 1989-08-02 1991-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331267U (en) * 1989-08-02 1991-03-27

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921671B2 (en) 2005-06-14 2011-04-12 Daikin Industries, Ltd. Refrigerant flow divider
WO2008001803A1 (en) 2006-06-29 2008-01-03 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
US8052064B2 (en) 2006-06-29 2011-11-08 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
CN104482693A (en) * 2014-12-02 2015-04-01 重庆凌达压缩机有限公司 Liquid distributor and production method thereof
WO2022142734A1 (en) * 2020-12-30 2022-07-07 浙江盾安人工环境股份有限公司 Dispenser

Similar Documents

Publication Publication Date Title
JP3376534B2 (en) Refrigerant distributor
JPH0829018A (en) Refrigerant flow divider
JP3390565B2 (en) Refrigerant flow divider
JP2002188869A (en) Refrigerant flow splitter and manufacturing method thereof
JPH11316066A (en) Gas/liquid two phases distributor and its manufacture
JPH04316785A (en) Distributor
JP2003214727A (en) Fluid distributor and air conditioner with the same
CN212132965U (en) Distributor with built-in jet orifice plate
JPH1123104A (en) Air conditioner
JPH07301472A (en) Header
WO2014155816A1 (en) Expansion valve and cooling cycle device using same
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP2000274884A (en) Refrigerant flow divider
JP2003090644A (en) Refrigerant distributor
JPH11257801A (en) Refrigerant distributor
JP2000161818A (en) Plate type refrigerant flow divider and freezing cycle using same
JP5193630B2 (en) Heat exchanger
JP2012141108A (en) Flow divider, and refrigeration cycle device
JP2008309345A (en) Expansion valve having integrated structure with refrigerant flow divider and refrigeration unit using the same
CN109631426B (en) Knockout and have its refrigerating system
CN221099056U (en) Diverter and air conditioner
JP2001208451A (en) Refrigerant distributor
JPH0338598Y2 (en)
JPH10253196A (en) Refrigerant distributor of air conditioner
JP5189386B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316