JP2002187949A - Purification method for polyarylene sulfide - Google Patents

Purification method for polyarylene sulfide

Info

Publication number
JP2002187949A
JP2002187949A JP2000386950A JP2000386950A JP2002187949A JP 2002187949 A JP2002187949 A JP 2002187949A JP 2000386950 A JP2000386950 A JP 2000386950A JP 2000386950 A JP2000386950 A JP 2000386950A JP 2002187949 A JP2002187949 A JP 2002187949A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
carbon dioxide
carbonated water
purifying
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000386950A
Other languages
Japanese (ja)
Other versions
JP4929527B2 (en
Inventor
Nobuhiko Yamauchi
暢彦 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2000386950A priority Critical patent/JP4929527B2/en
Publication of JP2002187949A publication Critical patent/JP2002187949A/en
Application granted granted Critical
Publication of JP4929527B2 publication Critical patent/JP4929527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a purification method for a polyarylene sulfide(PAS) whereby the corrosion of a production apparatus and the corrosion of a metal mold during molding are inhibited; and to obtain a PAS which has been improved in quality, especially in the reactivity with an epoxysilane coupling agent, and gives a molded item improved in mechanical strengths. SOLUTION: At any one of steps of purification process after solvent removal, a PAS is purified by bringing it into contact with gaseous carbon dioxide or carbonated water under a pressure higher than 0.1 MPa but not higher than 2.0 MPa at 10-100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリアリーレンス
ルフィド(以下、PASと略称する)の精製方法に関す
る。更に詳しくは、従来の各種の強酸(塩酸、硫酸な
ど)を用いた精製方法と較べて製造設備や成形時の金型
に対する腐食性を低減することが出来、且つ、PASの
品質を向上させることが可能な精製方法に関する。ま
た、本発明の目的の一つは、各種成形材料やフィルム、
繊維、電気・電子部品、自動車用部品、塗料等の幅広い
用途材料として好適なPASを提供することでもある。
TECHNICAL FIELD The present invention relates to a method for purifying polyarylene sulfide (hereinafter abbreviated as PAS). More specifically, as compared with conventional purification methods using various strong acids (hydrochloric acid, sulfuric acid, etc.), it is possible to reduce the corrosiveness to manufacturing equipment and a mold at the time of molding, and to improve the quality of PAS. To a purification method capable of: Another object of the present invention is to provide various molding materials and films,
Another object of the present invention is to provide a PAS suitable as a material for a wide range of uses such as fibers, electric / electronic parts, automobile parts, and paints.

【0002】[0002]

【従来の技術】PASの中でも代表的なポリフェニレン
スルフィド(以下、PPSと略称する)は、通常、特公
昭52−12240号公報などに記載されているよう
に、N−メチル−2−ピロリドン、N,N−ジメチルア
セトアミド、N−メチル−ε−カプロラクタム等の比較
的極性の高い有機溶媒中で、硫化ナトリウムに代表され
る硫化アルカリ金属、あるいは水硫化ナトリウムに代表
される水硫化アルカリ金属と水酸化ナトリウムに代表さ
れる水酸化アルカリ金属と、p−ジクロルベンゼンに代
表されるポリハロ芳香族化合物とを反応させる方法など
によって得られる。
2. Description of the Related Art A typical polyphenylene sulfide (hereinafter abbreviated as PPS) among PASs is usually N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone, as described in JP-B-52-12240. In a relatively polar organic solvent such as N, N-dimethylacetamide, N-methyl-ε-caprolactam or the like, an alkali metal sulfide represented by sodium sulfide or an alkali metal hydrosulfide represented by sodium hydrosulfide is hydroxylated. It can be obtained by, for example, a method of reacting an alkali metal hydroxide represented by sodium with a polyhalo aromatic compound represented by p-dichlorobenzene.

【0003】重合反応は、通常、高温加圧、アルカリ条
件下で行われ、重合反応の進行に伴い食塩が生成し、重
合反応後の所謂「粗反応生成物」には食塩以外に未反応
の原料や副生成物、オリゴマー等が含有される。
[0003] The polymerization reaction is usually carried out under high-temperature, high-pressure and alkaline conditions. As the polymerization reaction proceeds, salt is produced, and the so-called "crude reaction product" after the polymerization reaction contains unreacted components other than salt. It contains raw materials, by-products, oligomers and the like.

【0004】重合反応後の粗反応生成物は適当な容器に
取り出され、それに含有される溶媒は減圧蒸留装置や濾
過器、遠心分離機等の適当な装置を用いて分離回収され
て(ここではこの操作を「脱溶媒」という)再利用され
たり、必要に応じて更に精製されて再利用される。
[0004] The crude reaction product after the polymerization reaction is taken out to an appropriate container, and the solvent contained therein is separated and recovered by using an appropriate device such as a vacuum distillation device, a filter, a centrifugal separator or the like (here, a solvent). This operation is referred to as “desolvation”) or, if necessary, is further purified and reused.

【0005】一方、脱溶媒後の「粗ポリアリーレンスル
フィド」は、一般には水洗と濾過が繰り返され、主に食
塩やアルカリ性物質等の不純物が除去された後に乾燥さ
れる。
On the other hand, the “crude polyarylene sulfide” after the removal of the solvent is generally dried after repeated washing and filtration to remove impurities such as salt and alkaline substances.

【0006】PASはその優れた耐薬品性、電気的特
性、機械的特性のために、繊維、フィルム、塗料、射出
成形材料用コンパウンド及び繊維強化複合材料などに使
用されているが、PASに含有される不純物は溶融加工
時のガスの発生、射出成形用金型や加工装置の腐食、塗
料用支持体への付着性の悪さ、複合材料中の強化繊維へ
の付着性の悪さなどから、PAS中の不純物の量を低減
させることが切望されている。
PAS is used in fibers, films, paints, compounds for injection molding materials and fiber-reinforced composite materials, etc. due to its excellent chemical resistance, electrical properties and mechanical properties. The impurities produced are PAS due to gas generation during melt processing, corrosion of injection molds and processing equipment, poor adhesion to paint supports, poor adhesion to reinforcing fibers in composite materials, etc. It is desired to reduce the amount of impurities therein.

【0007】このため、PASの精製方法として、従来
から種々の有機溶剤による洗浄方法が提案されている
が、有機溶剤の使用による環境汚染や人体への悪影響、
溶剤回収に要する製造コスト、製品に残存する溶剤によ
る品質への悪影響など好ましくない問題を抱えていた。
For this reason, as a method for purifying PAS, washing methods using various organic solvents have been conventionally proposed. However, the use of the organic solvent causes environmental pollution and adverse effects on the human body.
There have been unfavorable problems such as the production cost required for solvent recovery and the adverse effect on quality due to the solvent remaining in the product.

【0008】また、反応混合物を酸と接触させて不純物
の量を低減させる方法(特開平6−192421号公報
など)が提案されているが、強酸を使用する方法が多
く、装置や設備に対する腐食性の面で重大な問題を有し
ていると共に、得られたPASの色調の悪化や製品の特
性の低下を招く原因になっていた。
Further, a method has been proposed in which the amount of impurities is reduced by bringing the reaction mixture into contact with an acid (Japanese Patent Application Laid-Open No. HEI 6-192421). In addition to having a serious problem in terms of properties, it has caused deterioration of the color tone of the obtained PAS and deterioration of the characteristics of the product.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、強酸を使用せずにPASの精製設備や成形加工時の
金型の腐食を抑制し、且つ、PASの品質(特に、エポ
キシシラン系シランカップリング剤との反応性の向上、
等温結晶化時間の短縮など)に優れるポリアリーレンス
ルフィドを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to suppress the corrosion of a PAS refining facility and a mold at the time of molding without using a strong acid, and to improve the quality of PAS (particularly, epoxy silane). Improvement of reactivity with silane coupling agent,
To provide a polyarylene sulfide which is excellent in shortening the isothermal crystallization time.

【0010】[0010]

【課題を解決するための手段】本発明者は、有機極性溶
媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応
して得られるPASを含有する粗反応生成物を脱溶媒さ
せる以降の工程で、炭酸ガスまたは炭酸水を系内に導入
して飽和蒸気圧下に加圧された状態で炭酸ガスまたは炭
酸水と該PASとを接触させることにより、精製設備に
対する腐食性が低減されると共に、PASの品質(特
に、エポキシシラン系シランカップリング剤との反応性
の向上、等温結晶化時間の短縮など)が著しく改善され
ることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted the following steps to remove the solvent containing a PAS-containing crude reaction product obtained by reacting a polyhaloaromatic compound with a sulfidizing agent in an organic polar solvent. By introducing carbon dioxide gas or carbonated water into the system and bringing the carbon dioxide gas or carbonated water into contact with the PAS in a state of being pressurized under a saturated vapor pressure, corrosiveness to the purification equipment is reduced and PAS (Particularly, improved reactivity with an epoxysilane-based silane coupling agent, shortened isothermal crystallization time, and the like) were remarkably improved, and arrived at the present invention.

【0011】即ち、本発明は、有機極性溶媒中、ポリハ
ロ芳香族化合物とスルフィド化剤とを反応して得られる
ポリアリーレンスルフィドを含有する粗反応生成物を脱
溶媒させた後、炭酸ガスまたは炭酸水を系内に導入して
炭酸ガスまたは炭酸水と該ポリアリーレンスルフィドと
を接触させることを特徴とするポリアリーレンスルフィ
ドの精製方法である。
That is, according to the present invention, a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhaloaromatic compound with a sulfidizing agent in an organic polar solvent is desolvated and then subjected to carbon dioxide gas or carbon dioxide. A method for purifying polyarylene sulfide, comprising introducing water into a system and bringing carbon dioxide gas or carbonated water into contact with the polyarylene sulfide.

【0012】[0012]

【発明の実施の形態】PASは、通常、N−メチル−2
−ピロリドンなどを代表とする有機極性溶媒中で、少な
くとも1種のポリハロ芳香族化合物と少なくとも1種の
スルフィド化剤とを適当な重合条件下で反応させて合成
される。重合反応後、粗反応生成物を取り出し、減圧条
件下での溶媒留去あるいは濾過などの適当な方法で脱溶
媒して溶媒を回収する方法が一般にとられている。
DETAILED DESCRIPTION OF THE INVENTION PAS is usually N-methyl-2.
-Synthesized by reacting at least one polyhaloaromatic compound and at least one sulfidizing agent in an organic polar solvent such as pyrrolidone under suitable polymerization conditions. After the polymerization reaction, a method is generally employed in which a crude reaction product is taken out, and the solvent is removed by a suitable method such as solvent distillation or filtration under reduced pressure.

【0013】本発明では、PASや有機極性溶媒等を含
有する粗反応生成物を脱溶媒する操作を行った後、洗浄
および濾過による精製工程において炭酸ガスまたは炭酸
水を系内に導入して飽和蒸気圧下に炭酸ガスまたは炭酸
水と系内のPASとを接触させることにより、PASの
品質を向上させると共に、製造設備に対する腐食性が少
なくSUS316程度の比較的安価な材質の設備で対応
が可能であり、また、成形時の金型腐食も低減出来る。
In the present invention, after performing an operation of desolvating a crude reaction product containing PAS or an organic polar solvent, etc., carbon dioxide gas or carbonated water is introduced into the system in a purification step by washing and filtration to obtain a saturated solution. By contacting carbon dioxide gas or carbonated water with the PAS in the system under the vapor pressure, the quality of the PAS is improved, and it is possible to cope with equipment of relatively inexpensive materials such as SUS316, which is less corrosive to manufacturing equipment. Yes, and mold corrosion during molding can be reduced.

【0014】本発明で用いられるポリハロ芳香族化合物
とは、例えば、芳香族環に直接結合した2個以上のハロ
ゲン原子を有するハロゲン化芳香族化合物であり、具体
的には、p−ジクロルベンゼン、o−ジクロルベンゼ
ン、m−ジクロルベンゼン、トリクロルベンゼン、テト
ラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼ
ン、トリブロムベンゼン、ジブロムナフタレン、トリヨ
ードベンゼン、ジクロルジフェニルベンゼン、ジブロム
ジフェニルベンゼン、ジクロルベンゾフェノン、ジブロ
ムベンゾフェノン、ジクロルジフェニルエーテル、ジブ
ロムジフェニルエーテル、ジクロルジフェニルスルフィ
ド、ジブロムジフェニルスルフィド、ジクロルビフェニ
ル、ジブロムビフェニル等のジハロ芳香族化合物及びこ
れらの混合物が挙げられ、これらの化合物をブロック共
重合してもよい。これらの中でも好ましいのはジハロゲ
ン化ベンゼン類であり、特に好ましいのはp−ジクロル
ベンゼンを80モル%以上含むものである。
The polyhalo aromatic compound used in the present invention is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorobenzene , O-dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromonaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, Examples include dichloroaromatic compounds such as dichlorobenzophenone, dibromobenzophenone, dichlorodiphenylether, dibromodiphenylether, dichlorodiphenylsulfide, dibromodiphenylsulfide, dichlorbiphenyl, and dibromobiphenyl, and mixtures thereof. Is, these compounds may be block copolymerized. Of these, preferred are dihalogenated benzenes, and particularly preferred are those containing 80 mol% or more of p-dichlorobenzene.

【0015】また、枝分かれ構造とすることによってP
ASの粘度増大を図る目的で、1分子中に3個以上のハ
ロゲン置換基を有するポリハロ芳香族化合物を分岐剤と
して所望に応じて用いてもよい。このようなポリハロ芳
香族化合物としては、例えば、1,2,4−トリクロル
ベンゼン、1,3,5−トリクロルベンゼン、1,4,
6−トリクロルナフタレン等が挙げられる。
Further, by forming a branched structure,
For the purpose of increasing the viscosity of the AS, a polyhalo aromatic compound having three or more halogen substituents in one molecule may be used as a branching agent, if desired. Such polyhalo aromatic compounds include, for example, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,4
6-trichloronaphthalene and the like.

【0016】更に、アミノ基、チオール基、ヒドロキシ
ル基等の活性水素を持つ官能基を有するポリハロ芳香族
化合物を挙げることが出来、具体的には、2,6−ジク
ロルアニリン、2,5−ジクロルアニリン、2,4−ジ
クロルアニリン、2,3−ジクロルアニリン等のジハロ
アニリン類;2,3,4−トリクロルアニリン、2,
3,5−トリクロルアニリン、2,4,6−トリクロル
アニリン、3,4,5−トリクロルアニリン等のトリハ
ロアニリン類;2,2’−ジアミノ−4,4’−ジクロ
ルジフェニルエーテル、2,4’−ジアミノ−2’,4
−ジクロルジフェニルエーテル等のジハロアミノジフェ
ニルエーテル類およびこれらの混合物においてアミノ基
がチオール基やヒドロキシル基に置き換えられた化合物
などが例示される。
Further, there may be mentioned polyhaloaromatic compounds having a functional group having an active hydrogen such as an amino group, a thiol group or a hydroxyl group, and specific examples thereof include 2,6-dichloroaniline and 2,5-dichloroaniline. Dihaloanilines such as dichloroaniline, 2,4-dichloroaniline and 2,3-dichloroaniline; 2,3,4-trichloroaniline;
Trihaloanilines such as 3,5-trichloroaniline, 2,4,6-trichloroaniline and 3,4,5-trichloroaniline; 2,2′-diamino-4,4′-dichlorodiphenyl ether, 2,4 ′ -Diamino-2 ', 4
And dihaloaminodiphenyl ethers such as dichlorodiphenyl ether, and compounds in which an amino group in a mixture thereof is replaced with a thiol group or a hydroxyl group.

【0017】また、これらの活性水素含有ポリハロ芳香
族化合物中の芳香族環を形成する炭素原子に結合した水
素原子が他の不活性基、例えばアルキル基などの炭化水
素基に置換している活性水素含有ポリハロ芳香族化合物
も使用出来る。
Further, in these active hydrogen-containing polyhaloaromatic compounds, a hydrogen atom bonded to a carbon atom forming an aromatic ring is substituted with another inert group, for example, a hydrocarbon group such as an alkyl group. Hydrogen containing polyhalo aromatic compounds can also be used.

【0018】これらの各種活性水素含有ポリハロ芳香族
化合物の中でも、好ましいのは活性水素含有ジハロ芳香
族化合物であり、特に好ましいのはジクロルアニリンで
ある。
Among these various active hydrogen-containing polyhaloaromatic compounds, preferred are active hydrogen-containing dihaloaromatic compounds, and particularly preferred is dichloroaniline.

【0019】ニトロ基を有するポリハロ芳香族化合物と
しては、例えば、2,4−ジニトロクロルベンゼン、
2,5−ジクロルニトロベンゼン等のモノまたはジハロ
ニトロベンゼン類;2−ニトロ−4,4’−ジクロルジ
フェニルエーテル等のジハロニトロジフェニルエーテル
類;3,3’−ジニトロ−4,4’−ジクロルジフェニ
ルスルホン等のジハロニトロジフェニルスルホン類;
2,5−ジクロル−3−ニトロピリジン、2−クロル−
3,5−ジニトロピリジン等のモノまたはジハロニトロ
ピリジン類;あるいは各種ジハロニトロナフタレン類な
どが挙げられる。
Examples of the polyhalo aromatic compound having a nitro group include 2,4-dinitrochlorobenzene,
Mono- or dihalonitrobenzenes such as 2,5-dichloronitrobenzene; dihalonitrodiphenylethers such as 2-nitro-4,4'-dichlorodiphenylether;3,3'-dinitro-4,4'-dichloro Dihalonitrodiphenylsulfones such as diphenylsulfone;
2,5-dichloro-3-nitropyridine, 2-chloro-
Mono- or dihalonitropyridines such as 3,5-dinitropyridine; and various dihalonitronaphthalenes.

【0020】本発明で用いられる硫化アルカリ金属とし
ては、硫化リチウム、硫化ナトリウム、硫化ルビジウ
ム、硫化セシウム及びこれらの混合物が含まれる。かか
る硫化アルカリ金属は、水和物あるいは水性混合物ある
いは無水物として使用することが出来る。また、硫化ア
ルカリ金属は水硫化アルカリ金属と水酸化アルカリ金属
との反応によっても導くことが出来る。
The alkali metal sulfide used in the present invention includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide and a mixture thereof. Such an alkali metal sulfide can be used as a hydrate, an aqueous mixture or an anhydride. Further, the alkali metal sulfide can also be derived by a reaction between the alkali metal hydrosulfide and the alkali metal hydroxide.

【0021】尚、通常、硫化アルカリ金属中に微量存在
する水硫化アルカリ金属、チオ硫酸アルカリ金属と反応
させるために、少量の水酸化アルカリ金属を加えても差
し支えない。
Normally, a small amount of alkali metal hydroxide may be added in order to react with a small amount of alkali metal sulfide or alkali metal thiosulfate in the alkali metal sulfide.

【0022】本発明で用いられる有機極性溶媒として
は、N−メチル−2−ピロリドン、ホルムアミド、アセ
トアミド、N−メチルホルムアミド、N,N−ジメチル
アセトアミド、2−ピロリドン、N−メチル−ε−カプ
ロラクタム、ε−カプロラクタム、ヘキサメチルホスホ
ルアミド、テトラメチル尿素、N−ジメチルプロピレン
尿素、1,3−ジメチル−2−イミダゾリジノン酸のア
ミド尿素、及びラクタム類;スルホラン、ジメチルスル
ホラン等のスルホラン類;ベンゾニトリル等のニトリル
類;メチルフェニルケトン等のケトン類及びこれらの混
合物を挙げることが出来る。
The organic polar solvent used in the present invention includes N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethylphosphoramide, tetramethylurea, N-dimethylpropyleneurea, amide urea of 1,3-dimethyl-2-imidazolidinonic acid, and lactams; sulfolane such as sulfolane, dimethylsulfolane; Examples thereof include nitriles such as nitriles; ketones such as methylphenyl ketone and mixtures thereof.

【0023】これらの有機極性溶媒の存在下、上記のス
ルフィド化剤とポリハロ芳香族化合物との重合条件は一
般に、温度200〜330℃であり、圧力は重合溶媒及
び重合モノマーであるポリハロ芳香族化合物を実質的に
液層に保持するような範囲であるべきであり、一般には
0.1〜20MPa、好ましくは0.1〜2MPaの範
囲より選択される。反応時間は温度と圧力により異なる
が、一般に10分乃至72時間の範囲であり、望ましく
は1時間乃至48時間の範囲である。
In the presence of these organic polar solvents, the conditions for the polymerization of the above sulfidizing agent and the polyhaloaromatic compound are generally at a temperature of 200 to 330 ° C., and the pressure is set at the polymerization solvent and the polyhaloaromatic compound as the polymerization monomer. Should be substantially maintained in the liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa. The reaction time varies depending on the temperature and pressure, but generally ranges from 10 minutes to 72 hours, preferably from 1 hour to 48 hours.

【0024】本発明においては、粗反応生成物がスルフ
ィド化剤及び有機極性溶媒の存在下に、ポリハロ芳香族
化合物及び有機極性溶媒を連続的、乃至、断続的に加え
ながら反応させる形態も包含する。
In the present invention, the crude reaction product may be reacted in the presence of a sulfidizing agent and an organic polar solvent while continuously or intermittently adding a polyhaloaromatic compound and an organic polar solvent. .

【0025】本発明においては、重合反応にて得られた
PASを含有する粗反応生成物を適当な手段(減圧留去
法、遠心分離法、スクリューデカンター法、減圧濾過
法、加圧濾過法など適当な方法が選択可能である)によ
り「脱溶媒」を行い、有機極性溶媒を分離回収した後、
水による洗浄を繰り返して副生物や未反応物質等を除去
する操作を行った後に、炭酸ガスまたは炭酸水による精
製を行い、必要に応じて更に水洗を行い、乾燥後、製品
とする。また、本発明においては、粗反応生成物の脱溶
媒時に粗反応生成物に適量の水を加えて脱溶媒を行って
も差し支えない。更に、精製工程の何れかの段階で水に
代えて溶剤(例えば、N−メチル−2−ピロリドンな
ど)による洗浄を行うとPASに含有される2量体、3
量体等のオリゴマー成分も除去されるため、その様なP
ASを用いることは、成形加工時の発生ガスの抑制、成
型品の物性の向上等の観点から好ましい。
In the present invention, the crude reaction product containing PAS obtained by the polymerization reaction is subjected to suitable means (e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.). An appropriate method can be selected) by performing "desolvation" and separating and recovering the organic polar solvent.
After performing an operation of removing by-products, unreacted substances, and the like by repeating washing with water, purification with carbon dioxide or carbonated water is performed, and if necessary, further washing with water is performed, followed by drying to obtain a product. In the present invention, an appropriate amount of water may be added to the crude reaction product to remove the solvent when the crude reaction product is desolvated. Further, at any stage of the purification process, washing with a solvent (for example, N-methyl-2-pyrrolidone) instead of water may yield a dimer, 3
Oligomer components such as oligomers are also removed.
It is preferable to use AS from the viewpoints of suppressing generated gas during molding and improving the physical properties of molded articles.

【0026】本発明における炭酸ガスまたは炭酸水を用
いた精製条件は、温度が10〜100℃の範囲、且つ、
圧力が0.1MPaより大きく2.0MPa以下の範囲
で行うことが望ましい。温度と圧力の精製条件がこの範
囲内にあれば、優れた品質(特に、エポキシシラン系シ
ランカップリング剤との反応性の向上による機械的特性
の向上、等温結晶化時間の短縮など)のPASが得られ
る。
The purification conditions using carbon dioxide or carbonated water in the present invention are as follows:
It is desirable that the pressure be higher than 0.1 MPa and not higher than 2.0 MPa. If the temperature and pressure purification conditions are within these ranges, PAS of excellent quality (especially, improved mechanical properties due to improved reactivity with the epoxysilane-based silane coupling agent, shortened isothermal crystallization time, etc.) Is obtained.

【0027】本発明の利点の一つは、本発明の炭酸ガス
または炭酸水による精製方法を用いた場合、通常の精製
温度条件(100℃以下)では金属への腐食が殆どな
く、現行の装置で対応可能であることに加えて、SUS
316程度の耐食性を有する比較的安価な材質であれば
腐食に耐えることが出来るため、他の酸類と比較して装
置の材質面からくる設備コスト的メリットが挙げられ
る。
One of the advantages of the present invention is that when the method for purifying with carbon dioxide or carbonated water of the present invention is used, there is almost no corrosion to metals under normal refining temperature conditions (100 ° C. or less), and the current apparatus In addition to being compatible with
Since a relatively inexpensive material having a corrosion resistance of about 316 can withstand corrosion, there is an advantage in terms of equipment cost in terms of the material of the apparatus as compared with other acids.

【0028】また、本発明の利点の一つは、他の酸類が
PAS内に残存した場合(特に塩素イオンや硫酸イオン
等はポリマー中に残存しやすい)、成形時の金型腐食や
成型品の物性低下の大きな原因になるが、本発明の炭酸
ガスあるいは炭酸水を用いた精製方法の場合では、後の
工程である水洗工程でも除去し易く、乾燥工程でもPA
S中より分解飛散するために、他の酸類のような金型腐
食や成型品の物性低下は起こり難い。
One of the advantages of the present invention is that when other acids remain in the PAS (especially chloride ions and sulfate ions are likely to remain in the polymer), mold corrosion during molding and molded products may occur. However, in the case of the purification method using carbon dioxide gas or carbonated water according to the present invention, it is easy to remove even in the subsequent washing step, and PA is also used in the drying step.
Since it is decomposed and scattered from S, it is hard to cause corrosion of a mold such as other acids and deterioration of physical properties of a molded product.

【0029】更に、本発明の利点の一つは、炭酸ガスま
たは炭酸水以外の強酸を用いた場合にはPAS中に残存
する酸を除去するために、強酸を用いた洗浄の後に大量
の水と洗浄回数を要して残存する酸を除去する必要があ
るのに対して、本発明の炭酸ガスまたは炭酸水を用いた
精製方法の場合には、炭酸ガスまたは炭酸水による洗浄
の後に使用する水の量も少なく洗浄回数も削減出来るた
め、工程能力においても非常にメリットがある上に、環
境対策の面からも適した方法と言える。
Further, one of the advantages of the present invention is that when a strong acid other than carbon dioxide or carbonated water is used, a large amount of water is removed after cleaning with the strong acid in order to remove the acid remaining in the PAS. In contrast, in the case of the purification method using carbon dioxide or carbonated water according to the present invention, it is necessary to remove the remaining acid by requiring the number of times of washing, and to use after the cleaning with carbon dioxide or carbonated water. Since the amount of water is small and the number of times of washing can be reduced, this method is very advantageous in terms of process capability, and can be said to be a method suitable for environmental measures.

【0030】本発明は密閉容器または装置内に炭酸ガス
を吹き込みその系内圧力と温度を制御することで炭酸の
溶解度をコントロールした水溶液中で適切な時間以上
(例えば、5分以上)接触させることでPASの分子末
端を塩基性型末端(SNa型末端)から酸性型末端(S
H型末端)に変換させることを特徴とする精製方法であ
り、PASの分子鎖末端に存在するSNa基がSH基に
変換され、他の樹脂との親和性が増大する。
According to the present invention, carbon dioxide gas is blown into a closed container or apparatus, and the system is brought into contact with an aqueous solution in which the solubility of carbonic acid is controlled by controlling the pressure and temperature in the system for an appropriate time or more (for example, 5 minutes or more). To change the molecular end of PAS from the basic end (SNa type end) to the acidic end (S
This is a purification method characterized in that the SNa group present at the molecular chain end of the PAS is converted into an SH group, and the affinity with other resins increases.

【0031】炭酸ガスの水への溶解度は、ヘンリーの法
則に従って次式で表される。
The solubility of carbon dioxide in water is expressed by the following equation according to Henry's law.

【0032】〔ヘンリーの法則による計算式〕 m2=p2/H(m) ln(H/H0)=A(1−T0/T)+Bln(T/T0)+
C(T/T0−1) m2:炭酸ガスの質量モル濃度 p2:炭酸ガスの分圧 H(m):ヘンリー定数 H0:25℃の時のヘンリー定数 T0:温度25℃
[Calculation formula based on Henry's law] m 2 = p 2 / H (m) In (H / H 0 ) = A (1-T 0 / T) + Bln (T / T 0 ) +
C (T / T 0 -1) m 2 : mass molar concentration of carbon dioxide gas p 2 : partial pressure of carbon dioxide gas H (m) : Henry's constant H 0 : Henry's constant at 25 ° C. T 0 : temperature of 25 ° C.

【0033】前述のヘンリーの法則による計算式から水
への炭酸ガスの溶解度は炭酸ガスの圧力に比例して増加
し、逆に温度が上がれば低下することが判る。即ち、炭
酸ガスの水への溶解性は、高圧で且つ低温の場合の方が
より溶解し易い。
From the above-mentioned calculation formula based on Henry's law, it can be seen that the solubility of carbon dioxide in water increases in proportion to the pressure of carbon dioxide, and conversely decreases as the temperature rises. That is, the solubility of carbon dioxide gas in water is higher at high pressure and low temperature.

【0034】しかしながら、PASの精製効率や装置の
コスト、炭酸ガス使用量による経済性などを考慮した場
合に、温度と圧力の組み合わせによる適切な精製条件が
存在する。水とPASの「塗れ性」を考慮すると精製す
る際の温度は高い方がより好ましいが、温度を高くする
と炭酸ガスの溶解度が低下してしまうために好ましくな
い。
However, in consideration of the purification efficiency of PAS, the cost of the apparatus, and the economics of the amount of carbon dioxide used, there are appropriate purification conditions depending on the combination of temperature and pressure. Considering the “paintability” of water and PAS, the higher the temperature at the time of purification, the more preferable. However, if the temperature is increased, the solubility of carbon dioxide gas decreases, which is not preferable.

【0035】本発明のPASの精製条件において、炭酸
ガスの圧力条件の好ましい範囲は0.1MPaより大き
く2.0MPa以下の範囲で出来るだけ高い圧力が効果
的であり、より好ましくは0.1MPaより大きく1.
0MPa以下の範囲で出来るだけ高い圧力である。
In the purification conditions of the PAS of the present invention, the preferable range of the pressure condition of the carbon dioxide gas is as high as possible in the range of more than 0.1 MPa and less than 2.0 MPa, more preferably 0.1 MPa. Largely 1.
The pressure is as high as possible in the range of 0 MPa or less.

【0036】また、温度条件の好ましい範囲は10〜1
00℃であり、より好ましくは10〜80℃の範囲であ
り、特に好ましくは10〜50℃の範囲である。
The preferred range of the temperature condition is 10 to 1
00 ° C, more preferably in the range of 10 to 80 ° C, particularly preferably in the range of 10 to 50 ° C.

【0037】本発明の炭酸ガスまたは炭酸水とPASと
を接触させて精製する際の系内の固形分濃度は、1〜5
0重量%となる割合であることが好ましい。固形分濃度
がこの範囲内にあればPAS粒子と炭酸水との接触が良
好に行われ精製効率が好適でありより好ましい。
When the carbon dioxide or carbonated water of the present invention is contacted with PAS for purification, the solid concentration in the system is 1 to 5
The proportion is preferably 0% by weight. When the solid content is within this range, the contact between the PAS particles and the carbonated water is performed well, and the purification efficiency is suitable and more preferable.

【0038】本発明は炭酸ガスまたは炭酸水とポリアリ
ーレンスルフィドとの接触を、容器内部に撹拌翼を有
し、且つ、底部に濾過用フィルターが配設された密閉型
あるいは密閉可能な混合機能を有す容器内で行うことが
出来る。
According to the present invention, the contact between carbon dioxide gas or carbonated water and polyarylene sulfide is performed by a closed type or a sealable mixing function having a stirring blade inside the vessel and a filter disposed at the bottom. It can be performed in a container that has.

【0039】本発明の精製方法を実施するための炭酸ガ
ス導入の概略構成図としては図1、図2及び図3などを
例示することが出来るが、これらに限定されない。炭酸
ガスを液層に溶解可能な密閉型あるいは密閉可能な混合
機能を有す装置であり、本発明の目的を達成可能なもの
であるなら何れのものでもよい。尚、図1、図2および
図3に記載した機器、ライン及び物質名には説明のため
にそれぞれ1から14の番号を付して○で囲んである。
FIGS. 1, 2 and 3 are schematic diagrams illustrating the introduction of carbon dioxide gas for carrying out the purification method of the present invention, but the present invention is not limited thereto. It is a device having a closed type capable of dissolving carbon dioxide gas in a liquid layer or a device having a mixing function capable of sealing, and may be any device as long as the object of the present invention can be achieved. The devices, lines and substance names shown in FIGS. 1, 2 and 3 are numbered from 1 to 14 and are circled for the sake of explanation.

【0040】尚、本発明の態様は、上述するように、有
機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤
とを反応して得られるポリアリーレンスルフィドを含有
する粗反応生成物を脱溶媒させた後、炭酸ガスまたは炭
酸水を系内に導入して炭酸ガスまたは炭酸水と該ポリア
リーレンスルフィドとを接触させることを特徴とするポ
リアリーレンスルフィドの精製方法にかかるものであ
る。
As described above, the embodiment of the present invention is to remove the crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent to remove the solvent. Then, carbon dioxide gas or carbonated water is introduced into the system, and the carbon dioxide gas or carbonated water is brought into contact with the polyarylene sulfide.

【0041】本発明の他の態様の一つとしては、粗反応
生成物を脱溶媒した後に粗ポリアリーレンスルフィドを
得、これを水洗した後に、炭酸ガスまたは炭酸水を系内
に導入し、飽和蒸気圧下に加圧された状態で炭酸ガスま
たは炭酸水とポリアリーレンスルフィドとを接触させる
ことを特徴とする上記のポリアリーレンスルフィドの精
製方法にかかるものである。
In another embodiment of the present invention, crude polyarylene sulfide is obtained after desolvation of a crude reaction product, washed with water, and then carbon dioxide or carbonated water is introduced into the system to obtain a saturated polyarylene sulfide. The present invention relates to the above-mentioned method for purifying polyarylene sulfide, which comprises contacting carbon dioxide or carbonated water with polyarylene sulfide in a state of being pressurized under a vapor pressure.

【0042】本発明の他の態様の一つとしては、炭酸ガ
スまたは炭酸水とポリアリーレンスルフィドとを0.1
MPaより大きく2.0MPa以下の圧力条件下で、且
つ、10〜100℃の温度条件下で接触させることを特
徴とする上記の各ポリアリーレンスルフィドの精製方法
にかかるものである。
In another embodiment of the present invention, carbon dioxide or carbonated water is mixed with polyarylene sulfide at 0.1%.
The present invention relates to the above-mentioned method for purifying polyarylene sulfide, wherein the contacting is carried out under a pressure condition of not less than 2.0 MPa and not more than MPa and at a temperature of 10 to 100 ° C.

【0043】本発明の他の態様の一つとしては、系内の
固形分濃度が1〜50重量%となる割合で炭酸ガスまた
は炭酸水とポリアリーレンスルフィドとを接触させるこ
とを特徴とする上記の各ポリアリーレンスルフィドの精
製方法にかかるものである。
Another embodiment of the present invention is characterized in that carbon dioxide or carbonated water is brought into contact with polyarylene sulfide in such a manner that the solid concentration in the system becomes 1 to 50% by weight. Of the method for purifying each of the polyarylene sulfides.

【0044】本発明の他の態様の一つとしては、炭酸ガ
スまたは炭酸水とポリアリーレンスルフィドとの接触
を、容器内部に撹拌翼を有し、且つ、底部に濾過用フィ
ルターが配設された密閉型あるいは密閉可能な混合機能
を有す容器内で行うことを特徴とする上記の各ポリアリ
ーレンスルフィドの精製方法にかかるものである。
According to another aspect of the present invention, a contact between carbon dioxide or carbonated water and polyarylene sulfide is provided by providing a stirring blade inside the vessel and a filter for filtration at the bottom. The present invention relates to a method for purifying each of the above-mentioned polyarylene sulfides, which is carried out in a closed type or a container having a mixing function capable of being closed.

【0045】本発明の他の態様の一つとしては、粗反応
生成物がスルフィド化剤及び有機極性溶媒の存在下に、
ポリハロ芳香族化合物及び有機極性溶媒を連続的、乃
至、断続的に加えながら反応させることを特徴とする上
記の各ポリアリーレンスルフィドの精製方法にかかるも
のである。
According to another embodiment of the present invention, the crude reaction product is prepared in the presence of a sulfidizing agent and an organic polar solvent.
The present invention relates to the above-mentioned method for purifying each of the polyarylene sulfides, wherein the reaction is performed while continuously or intermittently adding the polyhalo aromatic compound and the organic polar solvent.

【0046】本発明の他の態様の一つとしては、ポリハ
ロ芳香族化合物がジハロゲン化ベンゼンであるところの
上記の各ポリアリーレンスルフィドの精製方法にかかる
ものである。
Another embodiment of the present invention relates to the above-mentioned method for purifying each polyarylene sulfide wherein the polyhaloaromatic compound is a dihalogenated benzene.

【0047】本発明の他の態様の一つとしては、粗反応
生成物から脱溶媒が蒸留装置または固液分離装置にて行
われることを特徴とする上記の各ポリアリーレンスルフ
ィドの精製方法にかかるものである。
Another embodiment of the present invention relates to the above-mentioned method for purifying each of the polyarylene sulfides, wherein the solvent is removed from the crude reaction product by a distillation apparatus or a solid-liquid separation apparatus. Things.

【0048】[0048]

【実施例】以下に、本発明を実施例と比較例により、一
層、具体的に説明するが、本発明はこれらに限定される
ものではない。以下において、部および%は、特にこと
わりのない限り、全て重量基準であるものとする。本発
明にて行った評価方法の概略は以下の通りである。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these. In the following, all parts and percentages are by weight unless otherwise specified. The outline of the evaluation method performed in the present invention is as follows.

【0049】〔末端基の定量方法〕乾燥後のPAS10
gを少量のアセトンで湿潤させた中に、蒸留水を加えて
分散させる。次に、濃度1mol/Lの塩酸水溶液10
mlを加えて撹拌する。撹拌後濾過し、塩酸が検出され
なくなるまで(硝酸銀水溶液を添加して白濁しなくなる
まで)蒸留水による洗浄を繰り返す。得られたポリマー
を再度蒸留水に分散させ、そこに濃度1mol/Lの水
酸化ナトリウム水溶液10mlを加えて撹拌する。撹拌
後濾過し、水酸化ナトリウムが検出されなくなるまで
(フェノールフタレイン溶液を添加して赤色化しなくな
るまで)蒸留水による洗浄を繰り返し、水洗で用いた濾
液を全て回収し、該濾液中の水酸化ナトリウムを塩酸で
滴定し、消費された水酸化ナトリウム量を求めて算出す
る。
[Method for Quantifying Terminal Group] PAS10 after drying
g is moistened with a small amount of acetone and dispersed by adding distilled water. Next, an aqueous solution of hydrochloric acid having a concentration of 1 mol / L 10
Add ml and stir. After stirring, the mixture is filtered, and washing with distilled water is repeated until hydrochloric acid is no longer detected (until the aqueous solution of silver nitrate is added and no more cloudy). The obtained polymer is dispersed again in distilled water, and 10 ml of a 1 mol / L aqueous sodium hydroxide solution is added thereto and stirred. After stirring, filtration was carried out, and washing with distilled water was repeated until sodium hydroxide was no longer detected (until the red color disappeared by adding the phenolphthalein solution), and all the filtrate used in the water washing was collected. The sodium is titrated with hydrochloric acid, and the amount of sodium hydroxide consumed is calculated.

【0050】〔等温結晶化時間の測定方法〕示差熱測定
装置(パーキンエルマー社製、型式;DSC7)にて、
窒素雰囲気中、330℃にて3分間ホールド後、降温速
度210℃/分にて260℃まで降温させ、260℃に
てホールドする。260℃でのホールド開始から結晶化
時の発熱ピークの頂点までに要した時間より求める。
[Method for Measuring Isothermal Crystallization Time] Using a differential calorimeter (manufactured by PerkinElmer, model: DSC7),
After holding at 330 ° C. for 3 minutes in a nitrogen atmosphere, the temperature is lowered to 260 ° C. at a rate of 210 ° C./min, and the temperature is held at 260 ° C. It is determined from the time required from the start of holding at 260 ° C. to the peak of the exothermic peak during crystallization.

【0051】〔エポキシシラン系カップリング剤との反
応性の評価方法〕3−グリシドキシプロピルトリメトキ
シシラン(以下、「エポキシシラン」と略称する)を
0.5重量%添加したPASを調整し、射出成形を行い
試験片を作成し曲げ試験機にてその曲げ破断伸びを測定
した。
[Method for Evaluating Reactivity with Epoxysilane-Based Coupling Agent] A PAS containing 0.5% by weight of 3-glycidoxypropyltrimethoxysilane (hereinafter abbreviated as “epoxysilane”) was prepared. A test piece was prepared by injection molding, and the bending elongation at break was measured by a bending tester.

【0052】《実施例1》攪拌機付耐圧反応釜に所定量
のN−メチル−2−ピロリドン(以下、NMPと略称す
る)、水硫化ナトリウム(NaSH換算濃度分析値=7
2.8重量%)、47.9重量%水酸化ナトリウム水溶
液を仕込み、撹拌しながら窒素雰囲気下で205℃まで
昇温させ、水を含有する留出液を得た。次いで、窒素導
入ラインと流出ラインを閉鎖して耐圧反応釜を密閉した
後、220℃まで昇温し、220℃に到達後、所定量の
p−ジクロルベンゼンのNMP溶液を発熱を制御しなが
ら滴下し滴下終了後、220℃で3時間反応させた後、
30分間かけて255℃まで昇温し、更に255℃で1
時間反応させた後、冷却した。
Example 1 A predetermined amount of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), sodium hydrosulfide (concentration analysis value in terms of NaSH = 7) was placed in a pressure-resistant reactor equipped with a stirrer.
2.8% by weight) and a 47.9% by weight aqueous sodium hydroxide solution were charged, and the temperature was raised to 205 ° C. in a nitrogen atmosphere with stirring to obtain a distillate containing water. Next, after closing the nitrogen introduction line and the outflow line and sealing the pressure-resistant reactor, the temperature was raised to 220 ° C., and after reaching 220 ° C., a predetermined amount of NMP solution of p-dichlorobenzene was controlled while generating heat. After completion of the dropping and reaction at 220 ° C. for 3 hours,
The temperature was raised to 255 ° C. over 30 minutes,
After reacting for an hour, the mixture was cooled.

【0053】以上のようにして得られたPPSの粗反応
生成物に、粗反応生成物に含有されるPPSの5倍重量
の水を加えてリスラリーした後、PPSの5倍重量の水
でケーキ(濾過物)洗浄してケーキ(A)を得た。この
ケーキ(A)に5倍重量のNMPを加えて120℃に加
温した後よく混合し、このスラリーを該温度で図1に示
す様に遠心濾過機へ導入して固液分離した後、更にPP
Sの5倍重量のNMPでケーキ洗浄する。その後、図1
に示す様に配管内に炭酸ガスを吹き込み、スタテックミ
キサーでよく混合溶解させ、PPSの7倍重量の炭酸水
で更にPPSをケーキ洗浄してケーキ(B)を得た。
尚、炭酸ガス吹き込み時の配管圧力は0.3MPa、水
の温度は25℃であった。
To the crude reaction product of PPS obtained as described above, water of 5 times the weight of PPS contained in the crude reaction product was added and reslurried, and the cake was washed with water of 5 times the weight of PPS. (Filtered substance) The cake (A) was obtained by washing. To the cake (A) was added 5 times the weight of NMP, heated to 120 ° C. and mixed well. The slurry was introduced at this temperature into a centrifugal filter as shown in FIG. Further PP
The cake is washed with NMP 5 times the weight of S. Then, FIG.
As shown in (2), carbon dioxide gas was blown into the pipe, mixed and dissolved well with a static mixer, and PPS was further washed with 7 times the weight of carbonic acid water of PPS to obtain a cake (B).
The pipe pressure at the time of blowing carbon dioxide gas was 0.3 MPa, and the temperature of water was 25 ° C.

【0054】このケーキ(B)を一旦取り出しPPSの
5倍重量の水でリスラリーした後、遠心濾過機で濾過
し、更にPPSの5倍重量の水でケーキ洗浄を行い固液
分離する。分離したPPSを乾燥した後、末端基量(S
Na型末端基とSH型末端基)、等温結晶化時間、およ
びエポキシシラン系カップリング剤配合での曲げ破断伸
びについて評価し、その結果を表1に示した。
The cake (B) is once taken out, reslurried with 5 times the weight of PPS, reslurried, filtered with a centrifugal filter, and further washed with 5 times the weight of PPS to perform solid-liquid separation. After drying the separated PPS, the amount of terminal groups (S
The Na type end group and the SH type end group), the isothermal crystallization time, and the flexural elongation at break with the epoxysilane-based coupling agent were evaluated. The results are shown in Table 1.

【0055】《実施例2》実施例1で得られるケーキ
(A)を実施例1と同様にNMP洗浄する。その後、P
PSの7倍重量の水でケーキ洗浄してケーキ(C)を得
る。但し、実施例2ではケーキ洗浄に使用する水には炭
酸ガスは溶解させない。このケーキ(C)を一旦取り出
し、5倍重量の水でリスラリーした後、図2に示す平板
濾過機へ給液する。平板濾過機に給液後炭酸ガスで0.
3MPaに加圧して30分攪拌した後一旦濾過する。こ
の時の平板濾過機内のスラリーの温度は25℃であっ
た。固液分離したケーキ(D)は実施例1と同様に、P
PSの5倍重量の水でリスラリーし濾過後、PPSの5
倍重量の水でケーキ洗浄し乾燥した。得られたPPSの
評価結果を表1に示す。
Example 2 The cake (A) obtained in Example 1 is subjected to NMP washing in the same manner as in Example 1. Then P
The cake is washed with water 7 times the weight of PS to obtain a cake (C). However, in Example 2, carbon dioxide gas is not dissolved in water used for cake washing. The cake (C) is once taken out, reslurried with 5 times the weight of water, and supplied to the flat plate filter shown in FIG. After the solution was supplied to the flat plate filter, it was treated with carbon dioxide gas.
After pressurizing to 3 MPa and stirring for 30 minutes, the mixture is once filtered. At this time, the temperature of the slurry in the flat plate filter was 25 ° C. The solid-liquid separated cake (D) was treated with P as in Example 1.
After reslurrying with 5 times the weight of PS water and filtering,
The cake was washed with twice the weight of water and dried. Table 1 shows the evaluation results of the obtained PPS.

【0056】《実施例3〜5》実施例2で得られるケー
キ(C)をPPSの5倍重量の水でリスラリーして図3
に示す耐圧攪拌槽に給液する。その後、耐圧撹拌槽に炭
酸ガスを吹き込み、炭酸ガス吹き込み後の槽内圧力を
0.11MPaにして30分攪拌する。この時の槽内ス
ラリー温度は25℃であった。その後、遠心分離機によ
り濾過し、PPSの5倍重量の水でケーキ洗浄を行い固
液分離を行った後、乾燥した。得られたPPSの評価結
果を表1に示す。
<< Examples 3 to 5 >> The cake (C) obtained in Example 2 was reslurried with water 5 times the weight of PPS to obtain a slurry (FIG. 3).
Is supplied to the pressure-resistant stirring tank shown in (1). Thereafter, carbon dioxide gas is blown into the pressure-resistant stirring tank, and the pressure in the tank after blowing the carbon dioxide gas is set to 0.11 MPa, followed by stirring for 30 minutes. The slurry temperature in the tank at this time was 25 ° C. Thereafter, the mixture was filtered by a centrifugal separator, washed with 5 times the weight of PPS water to perform solid-liquid separation, and then dried. Table 1 shows the evaluation results of the obtained PPS.

【0057】また、炭酸ガス吹き込み後の槽内圧力を実
施例4では0.3MPaで、実施例5では1.0MPa
として行った以外は実施例3と同様の操作にて行った。
得られたPPSの評価結果を表1に示す。
The pressure in the tank after blowing carbon dioxide gas was 0.3 MPa in Example 4 and 1.0 MPa in Example 5.
The operation was performed in the same manner as in Example 3 except that the operation was performed as follows.
Table 1 shows the evaluation results of the obtained PPS.

【0058】[0058]

【表1】 [Table 1]

【0059】《比較例1》実施例1と同様の操作で得ら
れるPPSを含有するケーキ(A)に、5倍重量のNM
Pを加えて120℃に加温した後よく混合し、このスラ
リーを該温度で遠心濾過機へ導入して固液分離した後、
更にPPSの5倍重量のNMPでケーキ洗浄する。その
後、PPSの7倍重量の水でPPSをケーキ洗浄する。
尚、この時に使用した水の温度は実施例1で炭酸ガスを
溶解した時と同じ25℃である。ここで一旦ケーキ
(C)を取り出し、PPSの5倍重量の水にてリスラリ
ー後、遠心濾過機で濾過し、更にPPSの5倍重量の水
でケーキ洗浄を行い固液分離し、乾燥した。得られたP
PSの評価結果を表2に示す。
Comparative Example 1 PPS-containing cake (A) obtained by the same operation as in Example 1 was added to a 5-fold weight of NM.
After adding P and heating to 120 ° C., the mixture was mixed well, and the slurry was introduced into a centrifugal filter at that temperature to perform solid-liquid separation.
Further, the cake is washed with NMP five times the weight of PPS. Thereafter, the PPS is cake-washed with 7 times the weight of PPS water.
The temperature of the water used at this time was 25 ° C. which was the same as that in Example 1 when carbon dioxide was dissolved. Here, the cake (C) was once taken out, reslurried with water 5 times the weight of PPS, filtered with a centrifugal filter, washed with water 5 times the weight of PPS, solid-liquid separated, and dried. P obtained
Table 2 shows the evaluation results of PS.

【0060】《比較例2》実施例2で得られるケーキ
(C)を一旦取り出して5倍重量の水でリスラリーした
後、図2に示す平板濾過機に給液する。平板濾過機に給
液後、窒素ガスで0.3MPaに加圧して30分間攪拌
した後一旦濾過する。この時の平板濾過機内のスラリー
温度は25℃であった。固液分離したケーキ(E)は実
施例2と同様にPPSの5倍重量の水でリスラリーし濾
過後、PPSの5倍重量の水でケーキ洗浄を行い固液分
離した後、乾燥した。得られたPPSの評価結果を表2
に示す。
Comparative Example 2 The cake (C) obtained in Example 2 was once taken out, reslurried with 5 times the weight of water, and fed to a flat plate filter shown in FIG. After supplying the liquid to the flat plate filter, the mixture is pressurized to 0.3 MPa with nitrogen gas, stirred for 30 minutes, and then filtered once. At this time, the temperature of the slurry in the flat plate filter was 25 ° C. The cake (E) subjected to solid-liquid separation was reslurried with 5 times the weight of PPS, filtered, washed with 5 times the weight of PPS, solid-liquid separated and dried in the same manner as in Example 2. Table 2 shows the evaluation results of the obtained PPS.
Shown in

【0061】《比較例3》実施例2で得られるケーキ
(C)を一旦取り出して5倍重量の水でリスラリーした
後、図2に示す平板濾過機に給液する。平板濾過機に塩
酸を添加して系内のスラリーのpHが3.0になるよう
に調整し30分間攪拌した後一旦濾過する。その後、P
PSの5倍重量の水でPPSのケーキ洗浄を窒素ガス加
圧下で行い固液分離する。この時の平板濾過機内のスラ
リー温度は25℃であった。固液分離したケーキ(F)
はPPSの10倍重量の水でリスラリーし濾過後、PP
Sの10倍重量の水でケーキ洗浄後、乾燥した。得られ
たPPS評価結果を表2に示す。
<< Comparative Example 3 >> The cake (C) obtained in Example 2 was once taken out, reslurried with 5 times the weight of water, and then supplied to the flat plate filter shown in FIG. Hydrochloric acid is added to the flat plate filter to adjust the pH of the slurry in the system to 3.0, stirred for 30 minutes, and then filtered once. Then P
The PPS cake is washed with water five times the weight of PS under nitrogen gas pressure to perform solid-liquid separation. At this time, the temperature of the slurry in the flat plate filter was 25 ° C. Solid-liquid separated cake (F)
Is reslurried with 10 times the weight of PPS water and filtered.
The cake was washed with 10 times the weight of S and dried. Table 2 shows the obtained PPS evaluation results.

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【発明の効果】本発明によれば、ポリアリーレンスルフ
ィド(以下、PASと略称する)の精製方法において、
炭酸ガスを加圧溶解させた水溶液あるいは炭酸ガスと接
触させることにより、相溶化剤であるエポキシシラン系
カップリング剤との反応性が改良され、その結果、成形
品の機械的強度が向上すると共に、結晶化時間が短縮し
成形加工時の生産性向上にも効果がある。また、従来の
強酸を用いた精製方法と較べて、製造設備や成形時の金
型に対する腐食性を低減させることが出来、PAS中の
不純物を低減させてPASの品質を向上させることが可
能である。更に、本発明によれば、各種成形材料やフィ
ルム、繊維、電気・電子部品、自動車用部品、コーティ
ング等の材料として好適なPASを提供することが出来
る。
According to the present invention, in a method for purifying polyarylene sulfide (hereinafter abbreviated as PAS),
By bringing carbon dioxide gas into contact with an aqueous solution or carbon dioxide gas that is dissolved under pressure, the reactivity with the epoxysilane-based coupling agent as a compatibilizer is improved, and as a result, the mechanical strength of the molded article is improved. In addition, the crystallization time is shortened, which is effective in improving the productivity at the time of forming. Further, as compared with the conventional refining method using a strong acid, it is possible to reduce the corrosiveness to the production equipment and the mold at the time of molding, and to reduce impurities in the PAS to improve the quality of the PAS. is there. Further, according to the present invention, it is possible to provide a PAS suitable as a material for various molding materials, films, fibers, electric / electronic parts, automobile parts, coatings and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明を遠心濾過機を用いて行った
場合の炭酸ガス導入の概略構成図の一例である。
FIG. 1 is an example of a schematic configuration diagram of carbon dioxide gas introduction when the present invention is performed using a centrifugal filter.

【図2】 図2は、本発明を平板濾過機を用いて行った
場合の炭酸ガス導入の概略構成図の一例である。
FIG. 2 is an example of a schematic configuration diagram of carbon dioxide gas introduction when the present invention is performed using a flat plate filter.

【図3】 図3は、本発明を耐圧撹拌槽を用いて行った
場合の炭酸ガス導入の概略構成図の一例である。尚、図
面中、図1、図2および図3に記載した機器、ライン及
び物質名にはそれぞれ説明のために1から14の番号を
付して○で囲んである。
FIG. 3 is an example of a schematic configuration diagram of carbon dioxide gas introduction when the present invention is performed using a pressure-resistant stirring tank. In the drawings, the devices, lines and substance names shown in FIG. 1, FIG. 2 and FIG.

【符号の説明】[Explanation of symbols]

1……炭酸ガスボンベ 2……レギュレーター 3……撹拌モーター 4……撹拌槽 5……撹拌翼 6……炭酸ガス分散板 7……ポンプ 8……圧力計 9……流量計 10……スタテックミキサー 11……遠心分離機 12……反応物ケーキ(PASケーキ) 13……平板濾過機 14……PAS/水スラリー導入ライン DESCRIPTION OF SYMBOLS 1 ... Carbon dioxide gas cylinder 2 ... Regulator 3 ... Stirring motor 4 ... Stirring tank 5 ... Stirring blade 6 ... Carbon dioxide dispersion plate 7 ... Pump 8 ... Pressure gauge 9 ... Flow meter 10 ... Statek Mixer 11: Centrifuge 12: Reacted cake (PAS cake) 13: Flat plate filter 14: PAS / water slurry introduction line

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 有機極性溶媒中、ポリハロ芳香族化合物
とスルフィド化剤とを反応して得られるポリアリーレン
スルフィドを含有する粗反応生成物を脱溶媒させた後、
炭酸ガスまたは炭酸水を系内に導入して炭酸ガスまたは
炭酸水と該ポリアリーレンスルフィドとを接触させるこ
とを特徴とするポリアリーレンスルフィドの精製方法。
1. A method for removing a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent,
A method for purifying polyarylene sulfide, which comprises introducing carbon dioxide or carbonated water into a system and bringing carbon dioxide or carbonated water into contact with the polyarylene sulfide.
【請求項2】 粗反応生成物を脱溶媒した後に粗ポリア
リーレンスルフィドを得、これを水洗した後に、炭酸ガ
スまたは炭酸水を系内に導入し、飽和蒸気圧下に加圧さ
れた状態で炭酸ガスまたは炭酸水とポリアリーレンスル
フィドとを接触させることを特徴とする請求項1に記載
のポリアリーレンスルフィドの精製方法。
2. After removing the crude reaction product from the solvent, crude polyarylene sulfide is obtained. After washing with water, carbon dioxide or carbonated water is introduced into the system, and carbon dioxide is added under a saturated vapor pressure. The method for purifying polyarylene sulfide according to claim 1, wherein the gas or carbonated water is brought into contact with polyarylene sulfide.
【請求項3】 炭酸ガスまたは炭酸水とポリアリーレン
スルフィドとを0.1MPaより大きく2.0MPa以
下の圧力条件下で、且つ、10〜100℃の温度条件下
で接触させることを特徴とする請求項1または2に記載
のポリアリーレンスルフィドの精製方法。
3. The method according to claim 1, wherein carbon dioxide or carbonated water and polyarylene sulfide are brought into contact with each other under a pressure of not less than 0.1 MPa and not more than 2.0 MPa and at a temperature of 10 to 100 ° C. Item 3. The method for purifying polyarylene sulfide according to Item 1 or 2.
【請求項4】 系内の固形分濃度が1〜50重量%とな
る割合で炭酸ガスまたは炭酸水とポリアリーレンスルフ
ィドとを接触させることを特徴とする請求項1〜3の何
れかに記載のポリアリーレンスルフィドの精製方法。
4. The method according to claim 1, wherein carbon dioxide or carbonated water and polyarylene sulfide are brought into contact with each other in such a manner that the solid concentration in the system becomes 1 to 50% by weight. A method for purifying polyarylene sulfide.
【請求項5】 炭酸ガスまたは炭酸水とポリアリーレン
スルフィドとの接触を、容器内部に撹拌翼を有し、且
つ、底部に濾過用フィルターが配設された密閉型あるい
は密閉可能な混合機能を有す容器内で行うことを特徴と
する請求項1〜4の何れかに記載のポリアリーレンスル
フィドの精製方法。
5. A contact between carbon dioxide gas or carbonated water and polyarylene sulfide, which has a stirring function inside the container and a closed type in which a filter for filtration is provided at the bottom, or a mixing function capable of sealing. The method for purifying polyarylene sulfide according to any one of claims 1 to 4, wherein the method is performed in a vessel.
【請求項6】 粗反応生成物がスルフィド化剤及び有機
極性溶媒の存在下に、ポリハロ芳香族化合物及び有機極
性溶媒を連続的、乃至、断続的に加えながら反応させる
ことを特徴とする請求項1〜5の何れかに記載のポリア
リーレンスルフィドの精製方法。
6. The crude reaction product is reacted while continuously or intermittently adding a polyhalo aromatic compound and an organic polar solvent in the presence of a sulfidizing agent and an organic polar solvent. A method for purifying a polyarylene sulfide according to any one of claims 1 to 5.
【請求項7】 ポリハロ芳香族化合物がジハロゲン化ベ
ンゼンであるところの請求項1〜6の何れかに記載のポ
リアリーレンスルフィドの精製方法。
7. The method for purifying polyarylene sulfide according to claim 1, wherein the polyhalo aromatic compound is a dihalogenated benzene.
【請求項8】 粗反応生成物から脱溶媒が蒸留装置また
は固液分離装置にて行われることを特徴とする請求項1
〜7の何れかに記載のポリアリーレンスルフィドの精製
方法。
8. The method according to claim 1, wherein the solvent is removed from the crude reaction product by a distillation apparatus or a solid-liquid separation apparatus.
8. The method for purifying polyarylene sulfide according to any one of items 1 to 7, above.
JP2000386950A 2000-12-20 2000-12-20 Method for purifying polyarylene sulfide Expired - Lifetime JP4929527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386950A JP4929527B2 (en) 2000-12-20 2000-12-20 Method for purifying polyarylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386950A JP4929527B2 (en) 2000-12-20 2000-12-20 Method for purifying polyarylene sulfide

Publications (2)

Publication Number Publication Date
JP2002187949A true JP2002187949A (en) 2002-07-05
JP4929527B2 JP4929527B2 (en) 2012-05-09

Family

ID=18853971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386950A Expired - Lifetime JP4929527B2 (en) 2000-12-20 2000-12-20 Method for purifying polyarylene sulfide

Country Status (1)

Country Link
JP (1) JP4929527B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002553A1 (en) 2002-06-27 2004-01-08 Koninklijke Philips Electronics N.V. Method for calculating filter clogging factor and bed-side system
JP2005264030A (en) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc Purification method for polyarylene sulfide
JP2010083780A (en) * 2008-09-30 2010-04-15 Toray Ind Inc Method for separatively recovering high-boiling component having boiling point of 200°c or higher, and manufacturing method of polyarylene sulfide
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
CN112074502A (en) * 2018-09-28 2020-12-11 株式会社Lg化学 Method and apparatus for recovering amide-based compounds
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
CN114729123A (en) * 2019-12-11 2022-07-08 Dic株式会社 Polyarylene sulfide, method for purifying same, and method for producing same
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144495A (en) * 1975-05-27 1976-12-11 Phillips Petroleum Co Process for polymerizing allylene and sulfide
JPS62195022A (en) * 1986-02-21 1987-08-27 Dainippon Ink & Chem Inc Production of high-molecular-weight arylene sulfide polymer
JPH05112647A (en) * 1991-10-23 1993-05-07 Tosoh Corp Purification of polyphenylene sulfide
JPH06192421A (en) * 1992-10-23 1994-07-12 Phillips Petroleum Co Production of polyarylene sulfide polymer
JPH10265576A (en) * 1997-03-19 1998-10-06 Hoechst Res & Technol Deutsche Gmbh & Co Kg Method for separating polymer solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144495A (en) * 1975-05-27 1976-12-11 Phillips Petroleum Co Process for polymerizing allylene and sulfide
JPS62195022A (en) * 1986-02-21 1987-08-27 Dainippon Ink & Chem Inc Production of high-molecular-weight arylene sulfide polymer
JPH05112647A (en) * 1991-10-23 1993-05-07 Tosoh Corp Purification of polyphenylene sulfide
JPH06192421A (en) * 1992-10-23 1994-07-12 Phillips Petroleum Co Production of polyarylene sulfide polymer
JPH10265576A (en) * 1997-03-19 1998-10-06 Hoechst Res & Technol Deutsche Gmbh & Co Kg Method for separating polymer solution

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002553A1 (en) 2002-06-27 2004-01-08 Koninklijke Philips Electronics N.V. Method for calculating filter clogging factor and bed-side system
JP2005264030A (en) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc Purification method for polyarylene sulfide
JP2010083780A (en) * 2008-09-30 2010-04-15 Toray Ind Inc Method for separatively recovering high-boiling component having boiling point of 200°c or higher, and manufacturing method of polyarylene sulfide
US9938379B2 (en) 2013-09-25 2018-04-10 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9868824B2 (en) 2013-09-25 2018-01-16 Ticona Llc Method of polyarylene sulfide crystallization
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US10882959B2 (en) 2015-02-19 2021-01-05 Ticona Llc Method of polyarylene sulfide precipitation
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
CN112074502A (en) * 2018-09-28 2020-12-11 株式会社Lg化学 Method and apparatus for recovering amide-based compounds
EP3766867A4 (en) * 2018-09-28 2021-05-12 Lg Chem, Ltd. Method and apparatus for recovering amide-based compound
US11970445B2 (en) 2018-09-28 2024-04-30 Lg Chem, Ltd. Method and apparatus for recovering amide-based compound
CN112074502B (en) * 2018-09-28 2023-11-03 株式会社Lg化学 Method and apparatus for recovering amide-based compounds
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
KR20220098752A (en) 2019-12-11 2022-07-12 디아이씨 가부시끼가이샤 Polyarylene sulfide, its purification method and manufacturing method
CN114729123A (en) * 2019-12-11 2022-07-08 Dic株式会社 Polyarylene sulfide, method for purifying same, and method for producing same
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Also Published As

Publication number Publication date
JP4929527B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4929527B2 (en) Method for purifying polyarylene sulfide
JP4777610B2 (en) Polyarylene sulfide and method for producing the same
JP5794468B2 (en) Method for producing polyarylene sulfide resin
JPS63289025A (en) Improved manufacture of poly(p-phenylenesulfide)
JP3118347B2 (en) Method for preparing poly (arylene sulfide)
JP7031797B2 (en) Polyarylene sulfide, its purification method and manufacturing method
WO2020032171A1 (en) Method for purifying and method for producing polyarylene sulfide
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP7331661B2 (en) Method for producing sulfidating agent and polyarylene sulfide resin
JP6801232B2 (en) Manufacturing method of polyarylene sulfide resin
JP6136292B2 (en) Process for producing polyarylene sulfide
JP6120054B2 (en) Method for producing polyarylene sulfide resin
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP6003347B2 (en) Method for producing polyarylene sulfide resin
JP6003346B2 (en) Method for producing polyarylene sulfide resin
JP7453617B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP7380278B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP2020007490A (en) Method for producing carboxyalkylamino group-containing compound, and method for producing cyclic polyarylene sulfide
JP7413820B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP2024021682A (en) Production method of polyarylene sulfide resin
JP2024021679A (en) Production method of polyarylene sulfide oligomer mixture, and production method of polyarylene sulfide resin
JPH06248079A (en) Production of polyarylene sulfide and resin composition
JP2022161191A (en) Method for producing sulfidizing agent and polyarylene sulfide resin
JP2024022460A (en) Method for producing polyarylene sulfide resin
JP2024021683A (en) Production method of polyarylene sulfide resin

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4929527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term