WO2020032171A1 - Method for purifying and method for producing polyarylene sulfide - Google Patents

Method for purifying and method for producing polyarylene sulfide Download PDF

Info

Publication number
WO2020032171A1
WO2020032171A1 PCT/JP2019/031355 JP2019031355W WO2020032171A1 WO 2020032171 A1 WO2020032171 A1 WO 2020032171A1 JP 2019031355 W JP2019031355 W JP 2019031355W WO 2020032171 A1 WO2020032171 A1 WO 2020032171A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
pas
crude
solvent
carbonated water
Prior art date
Application number
PCT/JP2019/031355
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 創
渡邉 英樹
井上 敏
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020532073A priority Critical patent/JPWO2020032171A1/en
Publication of WO2020032171A1 publication Critical patent/WO2020032171A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for purifying and producing polyarylene sulfide (hereinafter sometimes abbreviated as PAS). More specifically, as compared with conventional refining methods using various strong acids (hydrochloric acid, sulfuric acid, etc.), it is possible to reduce the corrosiveness to manufacturing equipment and molds during molding, and to improve the quality of polyarylene sulfide.
  • the present invention relates to a purification method and a production method that can be performed.
  • Another object of the present invention is to provide polyarylene sulfide which is suitable as a material for a wide range of uses such as various molding materials, films, fibers, electric / electronic parts, automobile parts, and paints.
  • a typical polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) is usually N-methyl-2-pyrrolidone, N, N-dimethyl, as described in Patent Document 1 and the like.
  • PPS polyphenylene sulfide
  • relatively polar organic solvents such as acetamide and N-methyl- ⁇ -caprolactam
  • alkali metal sulfide represented by sodium sulfide or alkali metal sulfide represented by sodium hydrosulfide and sodium hydroxide represented by sodium sulfide Obtained by reacting an alkali metal hydroxide with a polyhaloaromatic compound represented by p-dichlorobenzene (see Patent Document 1).
  • the polymerization reaction is usually carried out under high temperature and pressure and under alkaline conditions, and as the polymerization reaction proceeds, salt is generated.
  • the so-called crude reaction product after the polymerization reaction includes at least polyarylene sulfide and alkali metal halide. And, in addition, unreacted raw materials, cyclic or linear oligomers, and the following structural formula (1)
  • Ar is an aryl group having a halogen atom
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms or a cyclohexyl group
  • R 2 represents an alkylene group having 3 to 5 carbon atoms
  • X represents a hydrogen atom or an alkali metal atom
  • a compound represented by -NR 1 R 2 COOX group is sometimes referred to as carboxyalkylamino group (hereinafter sometimes referred to as carboxyalkylamino group-containing compound).
  • carboxyalkylamino group-containing compound a compound represented by -NR 1 R 2 COOX group
  • the polyarylene sulfide is produced, as a raw material for producing the polyarylene sulfide, for example, when the amide solvent is N-methyl-2-pyrrolidone and the polyhalo aromatic compound is p-dichlorobenzene, the carboxyalkylamino group
  • the amide solvent is N-methyl-2-pyrrolidone
  • the polyhalo aromatic compound is p-dichlorobenzene
  • CP-MABA Hydrogen-type
  • CP-MABA alkali-metal salt type
  • CP-MABA Na-salt type
  • the crude reaction product after the polymerization reaction is taken out to a suitable container, and the solvent contained therein is removed by a suitable means (e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.). Depending on the method, it can be separated and recovered and reused (here, this operation is referred to as “desolvation”), or, if necessary, further purified and reused.
  • a suitable means e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.
  • the slurry containing the polyarylene sulfide contained in the crude reaction product (hereinafter, crude polyarylene sulfide) is generally subjected to water washing and filtration repeatedly, Polyarylene sulfide can be obtained by drying after removing impurities such as salt and alkaline substances.
  • the polyarylene sulfide thus obtained is used for fibers, films, paints, compounds for injection molding materials and fiber reinforced composite materials, etc. due to its excellent chemical resistance, electrical properties, and mechanical properties.
  • impurities contained in polyarylene sulfide generate gas during melt processing, corrode injection molds and processing equipment, have poor adhesion to paint supports, and have the effect of reinforcing fibers in composite materials. Due to poor adhesion and the like, it has been desired to reduce the amount of impurities in polyarylene sulfide.
  • the problem to be solved by the present invention is to use an alkali metal halide or a carboxyalkylamino group-containing compound in polyarylene sulfide at a lower pressure without using a strong acid, and to prepare an alkali metal in polyarylene sulfide.
  • a method for purifying polyarylene sulfide which can efficiently reduce halides and carboxyalkylamino group-containing compounds, and a method for producing polyarylene sulfides in which alkali metal halides and carboxyalkylamino group-containing compounds in polyarylene sulfide are low. May be.
  • the inventors of the present application have found that when introducing carbon dioxide gas or carbonated water into the system and bringing carbon dioxide gas or carbonated water into contact with the crude polyarylene sulfide, the crude polyarylene sulfide becomes porous. By forming particles, it has been found that even at a lower temperature or at a low pressure, it is possible to efficiently reduce alkali metal halides and carboxyalkylamino group-containing compounds in polyarylene sulfide. Thus, the present invention has been completed.
  • the present invention provides a slurry containing a crude polyarylene sulfide by desolvating a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfide agent in an organic polar solvent.
  • a step of obtaining a crude product a slurry containing the crude polyarylene sulfide is brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms to make the crude polyarylene sulfide have a specific surface area of 30 m 2 / g or more.
  • a step of bringing the obtained porous particles into contact with carbonated water comprising the steps of:
  • the present invention also relates to a method for producing polyarylene sulfide, comprising a step of purifying polyarylene sulfide by the above-described purification method.
  • an alkali metal halide or a carboxyalkylamino group-containing compound in a polyarylene sulfide is treated at a lower temperature or under a low pressure without using a strong acid, and the alkali in the polyarylene sulfide is treated.
  • a method for purifying a polyarylene sulfide capable of efficiently reducing a metal halide or a carboxyalkylamino group-containing compound, and a method for producing a polyarylene sulfide having a low content of an alkali metal halide or a carboxyalkylamino group-containing compound in the polyarylene sulfide. Can be provided.
  • the present invention provides a slurry containing a crude polyarylene sulfide by desolvating a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent.
  • Polyarylene sulfide is usually prepared by reacting at least one polyhaloaromatic compound with at least one sulfidizing agent in an organic polar solvent such as N-methyl-2-pyrrolidone under appropriate polymerization conditions. And synthesized.
  • the polyhalo aromatic compound used in the present invention is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorobenzene, o- Dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromonaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone Dihaloaromatic compounds such as dibromobenzophenone, dichlorodiphenylether, dibromodiphenylether, dichlorodiphenylsulfide, dibromodiphenylsulfide, dichlorobiphenyl, dibromobiphenyl, and mixtures thereof.
  • the compounds may
  • a polyhalo aromatic compound having three or more halogen substituents in one molecule may be used as a branching agent, if desired.
  • Such polyhalo aromatic compounds include, for example, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
  • polyhalo aromatic compounds having a functional group having an active hydrogen such as an amino group, a thiol group, or a hydroxyl group
  • 2,6-dichloroaniline, 2,5-dichloroaniline Dihaloanilines such as 2,3,4-dichloroaniline and 2,3-dichloroaniline; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenylether and 2,4'-diamino-2 ', 4-dichlorodiphenylether And compounds in which an amino group is replaced with a thiol group or a hydroxyl group in these mixtures.
  • a hydrogen atom bonded to a carbon atom forming an aromatic ring is replaced with another inert group, for example, an active hydrogen-containing polyhalo group such as an alkyl group.
  • Aromatic compounds can also be used.
  • active hydrogen-containing polyhalo aromatic compounds preferred are active hydrogen-containing dihalo aromatic compounds, and particularly preferred is dichloroaniline.
  • polyhalo aromatic compound having a nitro group examples include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether; Dihalonitrodiphenyl ethers; dihalonitrodiphenylsulfones such as 3,3'-dinitro-4,4'-dichlorodiphenylsulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 Mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
  • mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene
  • 2-nitro-4,4'-dichlorodiphenyl ether Dihalonitrodiphenyl ethers
  • dihalonitrodiphenylsulfones such
  • the alkali metal sulfide used in the present invention includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide and a mixture thereof.
  • Such an alkali metal sulfide can be used as a hydrate, an aqueous mixture or an anhydride.
  • the alkali metal sulfide can also be derived by a reaction between the alkali metal hydrosulfide and the alkali metal hydroxide.
  • alkali metal hydroxide may be added in order to react with a small amount of alkali metal hydrosulfide or alkali metal thiosulfate in the alkali metal sulfide.
  • organic polar solvent used in the present invention examples include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, ⁇ -caprolactam , Hexamethylphosphoramide, tetramethylurea, N-dimethylpropyleneurea, amideurea of 1,3-dimethyl-2-imidazolidinonic acid, and lactams; sulfolane such as sulfolane and dimethylsulfolane; benzonitrile and the like Nitriles; ketones such as methylphenylketone and mixtures thereof.
  • the polymerization conditions of the sulfidizing agent and the polyhaloaromatic compound are generally at a temperature of 200 to 330 ° C., and the pressure is substantially lower than the polymerization solvent and the polyhaloaromatic compound as the polymerization monomer.
  • the range should be such that the liquid layer is kept in a liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa.
  • the reaction time varies depending on the temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably 1 hour to 48 hours.
  • a form obtained by reacting a crude reaction product by continuously or intermittently adding a polyhaloaromatic compound and an organic polar solvent in the presence of a sulfidizing agent and an organic polar solvent is also included. I do.
  • the crude reaction product containing the polyarylene sulfide obtained by the polymerization reaction is subjected to suitable means (e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.). After the organic polar solvent is separated and removed, a slurry containing crude polyarylene sulfide can be obtained.
  • suitable means e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.
  • the slurry containing the crude polyarylene sulfide is brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms, whereby the crude polyarylene sulfide has a specific surface area of 30 [m 2 / g].
  • a step of forming porous particles in the above range.
  • an appropriate amount of water is added to the slurry containing at least the crude polyarylene sulfide obtained in the previous step, and the slurry is washed.
  • the temperature at the time of adding water is not particularly limited, but is preferably from 10 ° C. or higher, more preferably from 20 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 80 ° C. or lower. .
  • the solid-liquid separation is performed by filtration or the like to obtain a slurry.
  • the amount of water used in one washing is not particularly limited, but is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and still more preferably 100 parts by mass, based on 100 parts by mass of polyarylene sulfide. To 10,000 parts by mass, preferably 5,000 parts by mass or less, more preferably 2,000 parts by mass or less.
  • the slurry is brought into contact with a slurry containing crude polyarylene sulfide and washed.
  • the temperature at which the organic solvent is added is not particularly limited, but is preferably in the range of 10 ° C or higher, more preferably 20 ° C or higher, preferably 90 ° C or lower, more preferably 70 ° C or lower.
  • the amount of the organic solvent used in one washing is not particularly limited, but is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and still more preferably 100 parts by mass based on 100 parts by mass of polyarylene sulfide. The amount is at least 5,000 parts by mass, preferably at most 5,000 parts by mass, more preferably at most 1,800 parts by mass, still more preferably at most 600 parts by mass.
  • the slurry containing the crude polyarylene sulfide may be brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms in any order, and the slurry containing the crude polyarylene sulfide is contacted with water and washed.
  • Step (Sw) a solvent containing an oxygen atom having 1 to 3 carbon atoms in any order
  • Step (Sw) a solvent containing 1 to 3 carbon atoms to wash it
  • Step (Sw) ”) or the step (Sw) may be performed after the step (Ss). Each step can be performed together or alternately, any one or more times.
  • oxygen atom-containing solvent having 1 to 3 carbon atoms to be brought into contact with the slurry containing the crude polyarylene sulfide for example, at least one selected from the group consisting of alcohol solvents and ketone solvents can be mentioned.
  • alcohol solvents also referred to as alcohol solvents
  • examples of alcohol solvents include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane, and benzyl.
  • Alcohols having 10 or less carbon atoms such as alcohols; 2-methoxyethyl alcohol, 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol Alcohols having 10 or less carbon atoms containing an ether bond, such as, 2-isopropoxyethyl alcohol; alcohols having 10 or less carbon atoms containing a ketone group, such as 3-hydroxy-2-butanone; Dorokishiiso number of carbon atoms containing acid ester groups such as methyl or the like is 10 ppm alcohol are exemplified.
  • ketone solvent also referred to as a ketone solvent
  • examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, ⁇ -butyl lactone, and N-methylpyrrolidinone.
  • the present invention relates to porous particles having a specific surface area of 30 [m 2 / g] or more by contacting crude polyarylene sulfide with water and the organic solvent one or more times, and contacting the same.
  • the porous particles Preferably, have a range of 43 m 2 / g or more and 200 m 2 / g or less, more preferably 60 m 2 / g or more and 120 m 2 / g or less. Range of porous particles.
  • the carboxyalkylamino group-containing compound in the crude polyarylene sulfide can be easily reduced, which is preferable.
  • the carboxyalkylamino group-containing compound contained in the crude polyarylene sulfide is preferably in the range of 1000 ppm or less per g of the polyarylene sulfide, more preferably 400 ppm or less, and 1 ppm or more. It is preferable to set the content in the range described above, because the effect of reducing impurities, particularly alkali metal halides, by washing with carbonated water described later becomes more excellent.
  • the present invention has a step of subsequently contacting the obtained porous particles with carbonated water.
  • the conditions for bringing the porous particles obtained in the previous step into contact with carbonated water are preferably 10 ° C. or higher, more preferably 20 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the pressure gauge pressure
  • the conditions of temperature and pressure are within these ranges, in addition to the effects of excellent quality, in particular, the improvement of the mechanical properties by improving the reactivity with the epoxysilane-based silane coupling agent, the shortening of the isothermal crystallization time, etc.
  • a polyarylene sulfide having a reduced impurity concentration such as an alkali metal halide or a compound containing a carboxyalkylamino group in the polyarylene sulfide can be obtained.
  • the ratio of the alkali metal halide in the polyarylene sulfide is preferably not more than 1000 ppm, more preferably not more than 700 ppm, and still more preferably not more than 500 ppm, per gram of the polyarylene sulfide.
  • Can be reduced to The lower limit is not particularly limited, but is 20 ppm or more.
  • the ratio of the compound (1) represented by the structural formula (1) is preferably 1000 [ppm] or less, more preferably 500 [ppm] or less, and still more preferably 300 / g / g of the polyarylene sulfide. It can be reduced to the range of [ppm] or less.
  • the lower limit is not particularly limited, but is preferably 50 ppm or more.
  • One of the advantages of the present invention is that when the purification method using carbonated water of the present invention is used, there is almost no corrosion to metals under ordinary purification temperature conditions (100 ° C. or less), and the present apparatus can cope.
  • relatively inexpensive materials having corrosion resistance of about SUS304 can withstand corrosion, only the equipment cost advantage from the material side of the apparatus as compared with other acids can be mentioned.
  • One of the advantages of the present invention is that when other acids remain in the polyarylene sulfide (especially chloride ions and sulfate ions are likely to remain in the polymer), mold corrosion during molding and molding of the molded product may occur. Although it is a major cause of deterioration in physical properties, in the case of the purification method using carbonated water of the present invention, it is easy to remove even in a water washing step which is a later step, and it is also decomposed and scattered from polyarylene sulfide even in a drying step, so other It is difficult to cause corrosion of molds such as acids and deterioration of physical properties of molded products.
  • one of the advantages of the present invention is that when a strong acid other than carbonated water is used, a large amount of water and the number of times of washing are required after washing with the strong acid in order to remove the acid remaining in the polyarylene sulfide.
  • the amount of water used after washing with carbonated water can be reduced, and the number of times of washing can be reduced. Therefore, this method is very advantageous in terms of process capability, and can be said to be a method suitable for environmental measures.
  • the present invention provides a polyarylene by contacting an aqueous solution in which the solubility of carbonic acid is controlled by controlling the pressure and temperature of the system by blowing carbon dioxide gas into an airtight container or apparatus, for a suitable period of time (eg, 5 minutes or longer).
  • a purification method characterized in that the molecular end of sulfide is converted from a basic end (SNa type end) to an acidic end (SH type end), wherein the SNa group present at the molecular chain end of polyarylene sulfide is SH.
  • the concentration of carbon dioxide (derived carbonate ions) in carbonated water depends on the solubility of carbon dioxide in water, and more specifically follows Henry's law at the temperature and pressure.
  • carbon dioxide gas may be bubbled into water in an open container or a closed container or piping, or may be press-fitted, or continuously using a hollow fiber membrane module or the like. Carbon dioxide may be dissolved in water.
  • the solid content concentration in the system is preferably a ratio of 1 to 50% by weight.
  • the contact between the polyarylene sulfide particles and the carbonated water is favorably performed, and the purification efficiency is suitable and more preferable.
  • the amount of carbonated water is not particularly limited, but is preferably 50 to 10,000 parts by mass, more preferably 100 to 5,000 parts by mass, and still more preferably 200 to 2,000 parts by mass, per 100 parts by mass of polyarylene sulfide. When the amount of carbonated water is within this range, the contact between the polyarylene sulfide particles and the carbonated water is performed favorably, and the purification efficiency is suitable and more preferable.
  • the contact between carbonated water and porous particles of polyarylene sulfide can be performed in an open-type container having a stirring blade inside the container and a filter disposed at the bottom at the bottom. It is not necessary to carry out in a hermetically sealed or hermetically sealed container having a mixing function, but naturally it can also be carried out in such a container.
  • the embodiment of the present invention is, as described above, in an organic polar solvent, after desolvating a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfidizing agent, A polyarylene sulfide having a specific surface area of 30 [m 2 / g] or more by contacting with an organic solvent to form porous particles, and contacting the obtained porous particles with carbonated water. It relates to a purification method.
  • Another embodiment of the present invention relates to a method for producing polyarylene sulfide, comprising a step of purifying polyarylene sulfide by the purification method.
  • the polyarylene sulfide obtained through the purification method of the present invention may be dried as it is, or may be appropriately washed with water or an organic solvent, then solid-liquid separated and dried.
  • Drying is performed by heating to a temperature at which a solvent such as water is substantially evaporated. Drying may be performed under vacuum, or may be performed in air or under an inert atmosphere such as nitrogen.
  • the polyarylene sulfide obtained by the production method of the present invention can be used as it is for conventional molding materials and the like, but can be thickened by heat treatment in air or oxygen-enriched air or under reduced pressure. After performing such a thickening operation as needed, it may be used for various molding materials. Since the heat treatment temperature varies depending on the treatment time and the atmosphere in which the treatment is performed, it cannot be unconditionally specified. If the heat treatment temperature is lower than 180 ° C., the rate of thickening is extremely slow, and the productivity is poor, which is not preferable.
  • the heat treatment may be performed in a molten state at a temperature higher than the melting point of the polymer using an extruder or the like. However, from the viewpoint of the possibility of deterioration of the polymer or workability, it is preferable to carry out the reaction at a temperature higher than the melting point plus 100 ° C.
  • the polyarylene sulfide obtained by the present invention is, as in the past, blended with a filler or other resin, melt-kneaded, directly or once formed into pellets, and then subjected to injection molding, extrusion molding, compression molding, blow molding.
  • a filler or other resin melt-kneaded, directly or once formed into pellets, and then subjected to injection molding, extrusion molding, compression molding, blow molding.
  • a molded article having excellent heat resistance, moldability, dimensional stability, and the like can be obtained.
  • the filler include a fibrous filler and an inorganic filler.
  • a small amount of a mold release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust inhibitor, a flame retardant, a lubricant, a cup as an additive during the molding process without departing from the object of the present invention.
  • a ring agent can be included.
  • the following synthetic resins and elastomers can be mixed and used.
  • the elastomer include polyolefin rubber, fluorine rubber, and silicone rubber.
  • a molded article obtained by melt-molding the polyarylene sulfide of the present invention or a resin composition containing the same has excellent heat resistance, dimensional stability and the like as PPS obtained by a conventional method.
  • Electric and electronic parts such as molded parts, automotive parts such as lamp reflectors and various electrical parts, interior materials for various buildings, aircraft and automobiles, and precision parts such as OA equipment parts, camera parts, watch parts, etc. It can be widely used as injection molded / compressed molded products, or extruded / pull molded products such as fibers, films, sheets and pipes.
  • CP-MABA in the filtrate was prepared by adding the mobile phase as it was and measured.
  • hydrochloric acid was added to the aqueous solution as a filtrate to adjust the pH of the aqueous solution to 4.
  • brown oily CP-MABA hydrogen type
  • Chloroform was added thereto to extract a brown oily substance.
  • the aqueous phase was discarded because it contained N-methyl-2-pyrrolidone and its ring-opened product, 4-methylaminobutyric acid (hereinafter abbreviated as "MABA").
  • MABA 4-methylaminobutyric acid
  • HPLC measurement From the well stirred solution, 1 ml was sampled, and 9 ml of the HPLC mobile phase was added thereto, and the filtrate was used as a measurement sample. The measurement sample was subjected to HPLC measurement, and the concentration in the liquid was determined from the peak area and the calibration curve at the same retention time as the standard sample prepared by the following method.
  • the HPLC measurement conditions are as follows.
  • Measurement Method 2 Method of Analyzing Specific Surface Area (BET Specific Surface Area) Tristar II3020 manufactured by Shimadzu Corporation was used for measuring the specific surface area. After the sample was put into the cell, it was degassed, replaced with helium, cooled, and replaced with nitrogen to measure the specific surface area.
  • the kettle After heating and distilling 27.3 kg of water, the kettle was sealed. The DCB distilled off azeotropically during the dehydration was separated by a decanter and returned to the kettle at any time. After the completion of the dehydration, the anhydrous sodium sulfide composition was dispersed in the DCB. Furthermore, the internal temperature was cooled to 160 ° C, NMP 47.492 kg (479 mol) was charged, and the temperature was raised to 185 ° C. When the pressure reached 0.00 MPa, the valve connected to the rectification column was opened, and the internal temperature was raised to 200 ° C. over 1 hour. At this time, cooling and valve opening were controlled so that the outlet temperature of the rectification column was 110 ° C. or lower.
  • the mixed vapor of the distilled DCB and water was condensed by a condenser, separated by a decanter, and the DCB was returned to the kettle.
  • the amount of distilled water was 179 g.
  • the internal temperature was raised from 200 ° C. to 230 ° C. over 3 hours, and after stirring for 1 hour, the temperature was raised to 250 ° C. and stirred for 1 hour. After the reaction was completed, the internal temperature of the autoclave was raised from 250 ° C. to 235 ° C.
  • Example 1 400 g of the PPS mixture obtained in Synthesis Example 1 and 634 g of isopropyl alcohol were placed in a flask and mixed by stirring at 40 ° C. for 30 minutes. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 422 g of isopropyl alcohol was further added from above. The mixture was poured into portions and filtered. Further, the cake prepared by the filtration was transferred to a beaker, crushed into a powder with a spoonful, 634 g of water at 70 ° C. was poured therein, and the mixture was stirred and mixed for 30 minutes.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 845 g of water at 70 ° C. was poured from the top into several portions and filtered. 8 g of the cake was crushed, sampled, dried in a hot air drier at 120 ° C. for 4 hours, and the resin content was analyzed. As a result, the specific surface area was 79 [m 2 / g], and the content of CP-MABA in the resin was 207 [ppm]. The cake was transferred to a beaker, and 636 g of carbonated water was poured into the beaker and mixed with stirring for 1 hour.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 848 g of carbonated water was poured from above in several portions and filtered.
  • the cake produced by the filtration was transferred to a vat, crushed into powder with a spoon, and dried at 120 ° C. for 4 hours.
  • As a result of analyzing the amount of sodium in the obtained resin it was 300 [ppm].
  • Example 2 317 g of methanol was used instead of 634 g of isopropyl alcohol, and 634 g of methanol was used instead of 422 g of isopropyl alcohol, and the rest was carried out under the same conditions as in Example 1.
  • the specific surface area was 83 [m 2 / g]
  • the content of CP-MABA in the resin was 52 [ppm].
  • the amount of carbonated water was changed to 845 g instead of 636 g, and the other conditions were the same as in Example 1.
  • As a result of analyzing the amount of sodium in the obtained resin it was 290 [ppm].
  • Example 3 The amount of isopropyl alcohol was changed from 634 g to 1056 g, the amount of isopropyl alcohol was changed from 422 g to 845 g, and the rest was carried out under the same conditions as in Example 1.
  • the specific surface area was 75 [m 2 / g]
  • the content of CP-MABA in the resin was 125 [ppm].
  • the amount of carbonated water was changed to 1584 g instead of 636 g, and the other conditions were the same as in Example 1.
  • As a result of analyzing the amount of sodium in the obtained resin it was 200 [ppm].
  • Example 4 The procedure was performed under the same conditions as in Example 1 except for using 221 g of ethanol instead of 634 g of isopropyl alcohol and 422 g of ethanol instead of 422 g of isopropyl alcohol.
  • the specific surface area was 60 [m 2 / g]
  • the content of CP-MABA in the resin was 450 [ppm].
  • the steps were performed under the same conditions as in Example 1.
  • As a result of analyzing the amount of sodium in the obtained resin it was 230 [ppm].
  • Example 5 845 g of acetone was used instead of 634 g of isopropyl alcohol, and 845 g of acetone was used instead of 422 g of isopropyl alcohol, and the rest was performed under the same conditions as in Example 1.
  • the specific surface area was 43 [m 2 / g]
  • the content of CP-MABA in the resin was 399 [ppm].
  • the amount of carbonated water was changed to 845 g instead of 636 g, and the amount of carbonated water was changed to 1267 g instead of 848 g.
  • As a result of analyzing the amount of sodium in the obtained resin it was 340 [ppm].
  • Example 6 1056 g of ethanol was used instead of 634 g of isopropyl alcohol, and 845 g of ethanol was used instead of 422 g of isopropyl alcohol, and the rest was performed under the same conditions as in Example 1.
  • the specific surface area was 102 [m 2 / g]
  • the content of CP-MABA in the resin was 57 [ppm].
  • the amount of carbonated water was 422 g instead of 636 g, and the amount of carbonated water was 422 g instead of 848 g.
  • As a result of analyzing the amount of sodium in the obtained resin it was 380 [ppm].
  • Example 7 The procedure was carried out under the same conditions as in Example 1, except that 634 g of isopropyl alcohol was replaced by 211 g of methanol, and 422 g of isopropyl alcohol was replaced by 422 g of methanol.
  • the specific surface area was 75 [m 2 / g]
  • the content of CP-MABA in the resin was 187 [ppm].
  • the amount of carbonated water was 422 g instead of 636 g, and the amount of carbonated water was 1267 g instead of 848 g.
  • As a result of analyzing the amount of sodium in the obtained resin it was 350 [ppm].
  • the specific surface area was 78 [m 2 / g], and the content of CP-MABA in the resin was It was 3246 [ppm].
  • the cake was transferred to a beaker, 845 g of carbonated water was poured therein, and the mixture was stirred and mixed for 1 hour.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and further filtered and poured from above with 1267 g of carbonated water in several portions.
  • the cake produced by the filtration was transferred to a vat, crushed into powder with a spoon, and dried at 120 ° C. for 4 hours. As a result of analyzing the amount of sodium in the obtained resin, it was 930 [ppm].
  • the temperature was lowered to room temperature, the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 845 g of 70 ° C. water was poured from above into several portions and filtered.
  • the cake was crushed, 8 g was sampled, dried by a hot air drier at 120 ° C. for 4 hours, and the resin was analyzed.
  • the specific surface area was 8 [m 2 / g], and the content of CP-MABA in the resin was It was 849 [ppm].
  • the cake was transferred to a beaker, 845 g of carbonated water was poured therein, and the mixture was stirred and mixed for 1 hour.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and further filtered and poured from above with 1267 g of carbonated water in several portions.
  • the cake produced by the filtration was transferred to a vat, crushed into powder with a spoon, and dried at 120 ° C. for 4 hours.
  • As a result of analyzing the amount of sodium in the obtained resin it was 1200 [ppm].

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided are a method for purifying polyarylene sulfide (PAS) with which it is possible to efficiently reduce alkali metal halides and carboxyalkylamino-group-containing compounds in the PAS by treating the alkali metal halides and carboxyalkylamino-group-containing compounds in the PAS under a lower pressure without using a strong acid, and a method for producing PAS having a low level of alkali metal halides and carboxyalkylamino-group-containing compounds in the PAS. More specifically: a method for purifying PAS, the method having a step for removing a solvent from a crude reaction product that contains PAS and is obtained by reacting a polyhaloaromatic compound and a sulfidizing agent in an organic polar solvent and obtaining a crude-PAS-containing slurry, a step for bringing the crude-PAS-containing slurry into contact with water and an oxygen-atom-containing solvent to form the crude PAS into porous particles having a specific surface area of 30 m2/g or higher, and a step for bringing the resulting porous particles into contact with carbonated water; and a method for producing PAS, the method having the aforementioned steps.

Description

ポリアリーレンスルフィドの精製方法および製造方法Purification method and production method of polyarylene sulfide
 本発明は、ポリアリーレンスルフィド(以下、PASと略称することがある)の精製方法および製造方法に関する。更に詳しくは、従来の各種の強酸(塩酸、硫酸など)を用いた精製方法と較べて製造設備や成形時の金型に対する腐食性を低減することができ、且つ、ポリアリーレンスルフィドの品質を向上させることが可能な精製方法および製造方法に関する。また、本発明の目的の一つは、各種成形材料やフィルム、繊維、電気・電子部品、自動車用部品、塗料等の幅広い用途材料として好適なポリアリーレンスルフィドを提供することでもある。 The present invention relates to a method for purifying and producing polyarylene sulfide (hereinafter sometimes abbreviated as PAS). More specifically, as compared with conventional refining methods using various strong acids (hydrochloric acid, sulfuric acid, etc.), it is possible to reduce the corrosiveness to manufacturing equipment and molds during molding, and to improve the quality of polyarylene sulfide. The present invention relates to a purification method and a production method that can be performed. Another object of the present invention is to provide polyarylene sulfide which is suitable as a material for a wide range of uses such as various molding materials, films, fibers, electric / electronic parts, automobile parts, and paints.
 ポリアリーレンスルフィドの中でも代表的なポリフェニレンスルフィド(以下、PPSと略称することがある)は、通常、特許文献1などに記載されているように、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N-メチル-ε-カプロラクタム等の比較的極性の高い有機溶媒中で、硫化ナトリウムに代表される硫化アルカリ金属、あるいは水硫化ナトリウムに代表される水硫化アルカリ金属と水酸化ナトリウムに代表される水酸化アルカリ金属と、p-ジクロルベンゼンに代表されるポリハロ芳香族化合物とを反応させる方法などによって得られる(特許文献1参照)。 Among polyarylene sulfides, a typical polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) is usually N-methyl-2-pyrrolidone, N, N-dimethyl, as described in Patent Document 1 and the like. In relatively polar organic solvents such as acetamide and N-methyl-ε-caprolactam, alkali metal sulfide represented by sodium sulfide or alkali metal sulfide represented by sodium hydrosulfide and sodium hydroxide represented by sodium sulfide Obtained by reacting an alkali metal hydroxide with a polyhaloaromatic compound represented by p-dichlorobenzene (see Patent Document 1).
 重合反応は、通常、高温加圧、アルカリ条件下で行われ、重合反応の進行に伴い食塩が生成し、重合反応後のいわゆる粗反応生成物には、少なくとも、ポリアリーレンスルフィド及びアルカリ金属ハロゲン化物や、そのほかに、未反応の原料や、環状ないし線状オリゴマー、さらには、下記構造式(1) The polymerization reaction is usually carried out under high temperature and pressure and under alkaline conditions, and as the polymerization reaction proceeds, salt is generated. The so-called crude reaction product after the polymerization reaction includes at least polyarylene sulfide and alkali metal halide. And, in addition, unreacted raw materials, cyclic or linear oligomers, and the following structural formula (1)
Figure JPOXMLDOC01-appb-C000002
(式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。また、-NRCOOX基をカルボキシアルキルアミノ基ということがある)で表される化合物(以下、カルボキシアルキルアミノ基含有化合物ということがある。)などの副生成物が含有される。
Figure JPOXMLDOC01-appb-C000002
(Wherein, Ar is an aryl group having a halogen atom, R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms or a cyclohexyl group, R 2 represents an alkylene group having 3 to 5 carbon atoms, X represents a hydrogen atom or an alkali metal atom, and a compound represented by -NR 1 R 2 COOX group is sometimes referred to as carboxyalkylamino group (hereinafter sometimes referred to as carboxyalkylamino group-containing compound). And other by-products.
 さらに、ポリアリーレンスルフィドの製造時に、ポリアリーレンスルフィドの製造原料として、例えば、アミド系溶媒がN-メチル-2-ピロリドン、ポリハロ芳香族化合物がp-ジクロロベンゼンである場合には前記カルボキシアルキルアミノ基含有化合物として、下記一般式(2) Further, when the polyarylene sulfide is produced, as a raw material for producing the polyarylene sulfide, for example, when the amide solvent is N-methyl-2-pyrrolidone and the polyhalo aromatic compound is p-dichlorobenzene, the carboxyalkylamino group The compound represented by the following general formula (2)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Xは水素原子又はアルカリ金属原子を表す。)で表されるものが得られる(この化合物を“CP-MABA”と略記し、特にXが水素原子の場合を“CP-MABA(水素型)”、アルカリ金属原子の場合を“CP-MABA(アルカリ金属塩型)”、特にXがナトリウム原子の場合は“CP-MABA(Na塩型)”と略記することがある)。 (Wherein X represents a hydrogen atom or an alkali metal atom) (this compound is abbreviated as “CP-MABA”, and particularly when X is a hydrogen atom, “CP-MABA ( Hydrogen-type) "and the case of an alkali metal atom as" CP-MABA (alkali-metal salt type) ", particularly when X is a sodium atom, may be abbreviated as" CP-MABA (Na-salt type) ").
 重合反応後の粗反応生成物は適当な容器に取り出され、それに含有される溶媒は適当な手段(減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により、分離回収されて(ここではこの操作を「脱溶媒」という)再利用されたり、必要に応じて更に精製されて再利用される。 The crude reaction product after the polymerization reaction is taken out to a suitable container, and the solvent contained therein is removed by a suitable means (e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.). Depending on the method, it can be separated and recovered and reused (here, this operation is referred to as “desolvation”), or, if necessary, further purified and reused.
 一方、脱溶媒させて、有機極性溶媒を分離除去した後、粗反応生成物に含まれていたポリアリーレンスルフィド(以下、粗ポリアリーレンスルフィド)を含むスラリーに、一般には水洗と濾過を繰り返し行い、主に食塩やアルカリ性物質等の不純物を除去した後に乾燥することでポリアリーレンスルフィドが得られる。 On the other hand, after removing the solvent and separating and removing the organic polar solvent, the slurry containing the polyarylene sulfide contained in the crude reaction product (hereinafter, crude polyarylene sulfide) is generally subjected to water washing and filtration repeatedly, Polyarylene sulfide can be obtained by drying after removing impurities such as salt and alkaline substances.
 このようにして得られたポリアリーレンスルフィドはその優れた耐薬品性、電気的特性、機械的特性のために、繊維、フィルム、塗料、射出成形材料用コンパウンド及び繊維強化複合材料などに使用されているが、ポリアリーレンスルフィドに含有される不純物は溶融加工時のガスの発生、射出成形用金型や加工装置の腐食、塗料用支持体への付着性の悪さ、複合材料中の強化繊維への付着性の悪さなどから、ポリアリーレンスルフィド中の不純物の量を低減させることが切望されている。 The polyarylene sulfide thus obtained is used for fibers, films, paints, compounds for injection molding materials and fiber reinforced composite materials, etc. due to its excellent chemical resistance, electrical properties, and mechanical properties. However, impurities contained in polyarylene sulfide generate gas during melt processing, corrode injection molds and processing equipment, have poor adhesion to paint supports, and have the effect of reinforcing fibers in composite materials. Due to poor adhesion and the like, it has been desired to reduce the amount of impurities in polyarylene sulfide.
 このため、ポリアリーレンスルフィドの精製方法として、従来から種々の有機溶剤による洗浄方法が提案されているが、有機溶剤の使用による環境汚染や人体への悪影響、溶剤回収に要する製造コスト、製品に残存する溶剤による品質への悪影響など好ましくない問題を抱えていた。 For this reason, as a method for purifying polyarylene sulfide, washing methods using various organic solvents have been conventionally proposed.However, the use of the organic solvent has an adverse effect on the environment and adverse effects on the human body, the manufacturing cost required for solvent recovery, and residual products. There is an unfavorable problem such as an adverse effect on quality due to the solvent used.
 また、反応混合物を酸と接触させて不純物の量を低減させる方法(特許文献2参照)が提案されているが、強酸を使用する方法が多く、装置や設備に対する腐食性の面で重大な問題を有していると共に、得られたポリアリーレンスルフィドの色調の悪化や製品の特性の低下を招く原因になっていた。 Further, a method has been proposed in which the amount of impurities is reduced by bringing the reaction mixture into contact with an acid (see Patent Document 2). However, many methods use a strong acid, which is a serious problem in terms of corrosiveness to equipment and facilities. In addition, the resulting polyarylene sulfide causes deterioration in color tone and product characteristics.
 そこで、炭酸ガスまたは炭酸水を系内に導入して炭酸ガスまたは炭酸水と該粗ポリアリーレンスルフィドとを接触させる方法が提案されている(特許文献3、4参照)。しかし、炭酸(炭酸ガス)は常温で気体であること、水への溶解度も低いため、結果的に、酸として働きが弱く、それゆえポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物を除去する効果が弱く、耐圧容器内にて加圧下で処理する必要があった。 Therefore, a method has been proposed in which carbon dioxide or carbonated water is introduced into the system to bring carbon dioxide or carbonated water into contact with the crude polyarylene sulfide (see Patent Documents 3 and 4). However, since carbonic acid (carbon dioxide) is a gas at normal temperature and has low solubility in water, it functions weakly as an acid and therefore contains alkali metal halides and carboxyalkylamino groups in polyarylene sulfide. The effect of removing the compound was weak, and the treatment had to be performed under pressure in a pressure vessel.
特公昭52-12240号公報Japanese Patent Publication No. 52-12240 特開平6-192421号公報JP-A-6-192421 特開2005-264030号公報JP 2005-264030 A 特開2010-187949号公報JP 2010-187949 A
 そこで本発明が解決しようとする課題は、強酸を使用せず、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物を、より低圧下で処理して、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物を効率よく低減可能なポリアリーレンスルフィドの精製方法、および、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物の低いポリアリーレンスルフィドの製造方法を提供することがある。 Therefore, the problem to be solved by the present invention is to use an alkali metal halide or a carboxyalkylamino group-containing compound in polyarylene sulfide at a lower pressure without using a strong acid, and to prepare an alkali metal in polyarylene sulfide. Provided is a method for purifying polyarylene sulfide, which can efficiently reduce halides and carboxyalkylamino group-containing compounds, and a method for producing polyarylene sulfides in which alkali metal halides and carboxyalkylamino group-containing compounds in polyarylene sulfide are low. May be.
 本願発明者らは種々の検討を行った結果、炭酸ガスまたは炭酸水を系内に導入して炭酸ガスまたは炭酸水と粗ポリアリーレンスルフィドとを接触させる際に、該粗ポリアリーレンスルフィドを多孔質粒子とすることで、より低温下で、または、低圧下で処理しても、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物を効率よく低減することが可能であることを見出し、本発明を完成するに至った。 As a result of various studies, the inventors of the present application have found that when introducing carbon dioxide gas or carbonated water into the system and bringing carbon dioxide gas or carbonated water into contact with the crude polyarylene sulfide, the crude polyarylene sulfide becomes porous. By forming particles, it has been found that even at a lower temperature or at a low pressure, it is possible to efficiently reduce alkali metal halides and carboxyalkylamino group-containing compounds in polyarylene sulfide. Thus, the present invention has been completed.
 すなわち、本発明は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応して得られるポリアリーレンスルフィドを含有する粗反応生成物を脱溶媒させることにより、粗ポリアリーレンスルフィドを含むスラリー状物を得る工程、粗ポリアリーレンスルフィドを含むスラリー状物を、水および炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗ポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程、得られた多孔質粒子と炭酸水とを接触させる工程とを有することを特徴とするポリアリーレンスルフィドの精製方法に関する。 That is, the present invention provides a slurry containing a crude polyarylene sulfide by desolvating a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfide agent in an organic polar solvent. A step of obtaining a crude product, a slurry containing the crude polyarylene sulfide is brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms to make the crude polyarylene sulfide have a specific surface area of 30 m 2 / g or more. And a step of bringing the obtained porous particles into contact with carbonated water. A method for purifying polyarylene sulfide, comprising the steps of:
 また、本発明は、前記に記載の精製方法によりポリアリーレンスルフィドを精製する工程を有することを特徴とするポリアリーレンスルフィドの製造方法に関する。 The present invention also relates to a method for producing polyarylene sulfide, comprising a step of purifying polyarylene sulfide by the above-described purification method.
 本発明によれば、強酸を使用せず、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物を、より低温下で、または、低圧下で処理して、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物を効率よく低減可能なポリアリーレンスルフィドの精製方法、および、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物の低いポリアリーレンスルフィドの製造方法を提供することができる。 According to the present invention, an alkali metal halide or a carboxyalkylamino group-containing compound in a polyarylene sulfide is treated at a lower temperature or under a low pressure without using a strong acid, and the alkali in the polyarylene sulfide is treated. A method for purifying a polyarylene sulfide capable of efficiently reducing a metal halide or a carboxyalkylamino group-containing compound, and a method for producing a polyarylene sulfide having a low content of an alkali metal halide or a carboxyalkylamino group-containing compound in the polyarylene sulfide. Can be provided.
 本発明は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応して得られるポリアリーレンスルフィドを含有する粗反応生成物を脱溶媒させることにより、粗ポリアリーレンスルフィドを含むスラリー状物を得る工程を有する。 The present invention provides a slurry containing a crude polyarylene sulfide by desolvating a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent. The step of obtaining
 ポリアリーレンスルフィドは、通常、N-メチル-2-ピロリドンなどを代表とする有機極性溶媒中で、少なくとも1種のポリハロ芳香族化合物と少なくとも1種のスルフィド化剤とを適当な重合条件下で反応させて合成される。 Polyarylene sulfide is usually prepared by reacting at least one polyhaloaromatic compound with at least one sulfidizing agent in an organic polar solvent such as N-methyl-2-pyrrolidone under appropriate polymerization conditions. And synthesized.
 本発明で用いられるポリハロ芳香族化合物とは、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p-ジクロルベンゼン、o-ジクロルベンゼン、m-ジクロルベンゼン、トリクロルベンゼン、テトラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、トリヨードベンゼン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルベンゼンを80モル%以上含むものである。 The polyhalo aromatic compound used in the present invention is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorobenzene, o- Dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromonaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone Dihaloaromatic compounds such as dibromobenzophenone, dichlorodiphenylether, dibromodiphenylether, dichlorodiphenylsulfide, dibromodiphenylsulfide, dichlorobiphenyl, dibromobiphenyl, and mixtures thereof. The compounds may be block copolymerized. Of these, dihalogenated benzenes are preferred, and particularly preferred are those containing 80 mol% or more of p-dichlorobenzene.
 また、枝分かれ構造とすることによってポリアリーレンスルフィドの粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロ芳香族化合物としては、例えば、1,2,4-トリクロルベンゼン、1,3,5-トリクロルベンゼン、1,4,6-トリクロルナフタレン等が挙げられる。 で Further, in order to increase the viscosity of the polyarylene sulfide by forming a branched structure, a polyhalo aromatic compound having three or more halogen substituents in one molecule may be used as a branching agent, if desired. Such polyhalo aromatic compounds include, for example, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
 更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロ芳香族化合物を挙げることが出来、具体的には、2,6-ジクロルアニリン、2,5-ジクロルアニリン、2,4-ジクロルアニリン、2,3-ジクロルアニリン等のジハロアニリン類;2,3,4-トリクロルアニリン、2,3,5-トリクロルアニリン、2,4,6-トリクロルアニリン、3,4,5-トリクロルアニリン等のトリハロアニリン類;2,2’-ジアミノ-4,4’-ジクロルジフェニルエーテル、2,4’-ジアミノ-2’,4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類およびこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。 Further, polyhalo aromatic compounds having a functional group having an active hydrogen such as an amino group, a thiol group, or a hydroxyl group can be exemplified. Specifically, 2,6-dichloroaniline, 2,5-dichloroaniline Dihaloanilines such as 2,3,4-dichloroaniline and 2,3-dichloroaniline; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenylether and 2,4'-diamino-2 ', 4-dichlorodiphenylether And compounds in which an amino group is replaced with a thiol group or a hydroxyl group in these mixtures.
 また、これらの活性水素含有ポリハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロ芳香族化合物も使用出来る。 Further, in these active hydrogen-containing polyhalo aromatic compounds, a hydrogen atom bonded to a carbon atom forming an aromatic ring is replaced with another inert group, for example, an active hydrogen-containing polyhalo group such as an alkyl group. Aromatic compounds can also be used.
 これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。 中 で も Among these various active hydrogen-containing polyhalo aromatic compounds, preferred are active hydrogen-containing dihalo aromatic compounds, and particularly preferred is dichloroaniline.
 ニトロ基を有するポリハロ芳香族化合物としては、例えば、2,4-ジニトロクロルベンゼン、2,5-ジクロルニトロベンゼン等のモノまたはジハロニトロベンゼン類;2-ニトロ-4,4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’-ジニトロ-4,4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5-ジクロル-3-ニトロピリジン、2-クロル-3,5-ジニトロピリジン等のモノまたはジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。 Examples of the polyhalo aromatic compound having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether; Dihalonitrodiphenyl ethers; dihalonitrodiphenylsulfones such as 3,3'-dinitro-4,4'-dichlorodiphenylsulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 Mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
 本発明で用いられる硫化アルカリ金属としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかる硫化アルカリ金属は、水和物あるいは水性混合物あるいは無水物として使用することが出来る。また、硫化アルカリ金属は水硫化アルカリ金属と水酸化アルカリ金属との反応によっても導くことが出来る。 ア ル カ リ The alkali metal sulfide used in the present invention includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide and a mixture thereof. Such an alkali metal sulfide can be used as a hydrate, an aqueous mixture or an anhydride. Further, the alkali metal sulfide can also be derived by a reaction between the alkali metal hydrosulfide and the alkali metal hydroxide.
 尚、通常、硫化アルカリ金属中に微量存在する水硫化アルカリ金属、チオ硫酸アルカリ金属と反応させるために、少量の水酸化アルカリ金属を加えても差し支えない。 Usually, a small amount of alkali metal hydroxide may be added in order to react with a small amount of alkali metal hydrosulfide or alkali metal thiosulfate in the alkali metal sulfide.
 本発明で用いられる有機極性溶媒としては、N-メチル-2-ピロリドン、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、テトラメチル尿素、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸のアミド尿素、及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることが出来る。 Examples of the organic polar solvent used in the present invention include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam , Hexamethylphosphoramide, tetramethylurea, N-dimethylpropyleneurea, amideurea of 1,3-dimethyl-2-imidazolidinonic acid, and lactams; sulfolane such as sulfolane and dimethylsulfolane; benzonitrile and the like Nitriles; ketones such as methylphenylketone and mixtures thereof.
 これらの有機極性溶媒の存在下、上記のスルフィド化剤とポリハロ芳香族化合物との重合条件は一般に、温度200~330℃であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液層に保持するような範囲であるべきであり、一般には0.1~20MPa、好ましくは0.1~2MPaの範囲より選択される。反応時間は温度と圧力により異なるが、一般に10分乃至72時間の範囲であり、望ましくは1時間乃至48時間の範囲である。 In the presence of these organic polar solvents, the polymerization conditions of the sulfidizing agent and the polyhaloaromatic compound are generally at a temperature of 200 to 330 ° C., and the pressure is substantially lower than the polymerization solvent and the polyhaloaromatic compound as the polymerization monomer. The range should be such that the liquid layer is kept in a liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa. The reaction time varies depending on the temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably 1 hour to 48 hours.
 本発明においては、粗反応生成物がスルフィド化剤及び有機極性溶媒の存在下に、ポリハロ芳香族化合物及び有機極性溶媒を連続的、乃至、断続的に加えながら反応させることにより得られる形態も包含する。 In the present invention, a form obtained by reacting a crude reaction product by continuously or intermittently adding a polyhaloaromatic compound and an organic polar solvent in the presence of a sulfidizing agent and an organic polar solvent is also included. I do.
 本発明においては、重合反応にて得られたポリアリーレンスルフィドを含有する粗反応生成物を適当な手段(減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により「脱溶媒」させて、有機極性溶媒を分離除去した後、粗ポリアリーレンスルフィドを含むスラリー状物を得ることができる。 In the present invention, the crude reaction product containing the polyarylene sulfide obtained by the polymerization reaction is subjected to suitable means (e.g., vacuum distillation, centrifugation, screw decanter, vacuum filtration, pressure filtration, etc.). After the organic polar solvent is separated and removed, a slurry containing crude polyarylene sulfide can be obtained.
 本発明は、続いて、粗ポリアリーレンスルフィドを含むスラリー状物を、水および炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗ポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程を有する。 In the present invention, subsequently, the slurry containing the crude polyarylene sulfide is brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms, whereby the crude polyarylene sulfide has a specific surface area of 30 [m 2 / g]. There is a step of forming porous particles in the above range.
 本発明においては、前工程で得られた、少なくとも、粗ポリアリーレンスルフィドを含むスラリー状物に適量の水を加えて接触させ、洗浄する。水を加える際の温度としては特に限定されないが、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは80℃以下の範囲である。洗浄した後、濾過等により固液分離して、スラリー状物とすることが好ましい。一回の洗浄に使用する水の量には特に制限は無いが、好ましくはポリアリーレンスルフィド100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは100質量部以上から、好ましくは10000質量部以下、より好ましくは5000質量部以下、さらに好ましくは2000質量部以下である。 に お い て In the present invention, an appropriate amount of water is added to the slurry containing at least the crude polyarylene sulfide obtained in the previous step, and the slurry is washed. The temperature at the time of adding water is not particularly limited, but is preferably from 10 ° C. or higher, more preferably from 20 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 80 ° C. or lower. . After washing, it is preferable that the solid-liquid separation is performed by filtration or the like to obtain a slurry. The amount of water used in one washing is not particularly limited, but is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and still more preferably 100 parts by mass, based on 100 parts by mass of polyarylene sulfide. To 10,000 parts by mass, preferably 5,000 parts by mass or less, more preferably 2,000 parts by mass or less.
 更に、有機溶剤を用いて、粗ポリアリーレンスルフィドを含むスラリー状物と接触させ、洗浄する。有機溶媒を加える際の温度としては特に限定されないが、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは90℃以下、より好ましくは70℃以下の範囲である。一回の洗浄に使用する有機溶剤の量には特に制限は無いが、好ましくはポリアリーレンスルフィド100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは100質量部以上から、好ましくは5000質量部以下、より好ましくは1800質量部以下、さらに好ましくは600質量部以下である。 Furthermore, using an organic solvent, the slurry is brought into contact with a slurry containing crude polyarylene sulfide and washed. The temperature at which the organic solvent is added is not particularly limited, but is preferably in the range of 10 ° C or higher, more preferably 20 ° C or higher, preferably 90 ° C or lower, more preferably 70 ° C or lower. The amount of the organic solvent used in one washing is not particularly limited, but is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and still more preferably 100 parts by mass based on 100 parts by mass of polyarylene sulfide. The amount is at least 5,000 parts by mass, preferably at most 5,000 parts by mass, more preferably at most 1,800 parts by mass, still more preferably at most 600 parts by mass.
 粗ポリアリーレンスルフィドを含むスラリー状物を、水および炭素原子数1~3の酸素原子含有溶媒と接触させる順番は特に問わず、粗ポリアリーレンスルフィドを含むスラリー状物を、水と接触させて洗浄する工程(以下、「工程(Sw)」)を行ってから、粗ポリアリーレンスルフィドを含むスラリー状物を、炭素原子数1~3の酸素原子含有溶媒と接触させて洗浄する工程(以下「工程(Ss)」)を行ってもよいし、または、工程(Ss)を行ってから工程(Sw)を行ってもよい。それぞれの工程は、まとめて、または交互に、任意の一又は複数回、実施することができる。工程(Ss)または工程(Sw)を行ってから、次の工程を行う前に、固液分離により、洗浄に用いた水または炭素原子数1~3の酸素原子含有溶媒を除去しておくことが好ましい。 The slurry containing the crude polyarylene sulfide may be brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms in any order, and the slurry containing the crude polyarylene sulfide is contacted with water and washed. (Hereinafter referred to as “Step (Sw)”), and then contacting the slurry containing the crude polyarylene sulfide with a solvent containing 1 to 3 carbon atoms to wash it (hereinafter referred to as “Step (Sw)”). (Ss) ”), or the step (Sw) may be performed after the step (Ss). Each step can be performed together or alternately, any one or more times. After performing the step (Ss) or the step (Sw), before performing the next step, remove water or an oxygen-containing solvent having 1 to 3 carbon atoms used for washing by solid-liquid separation. Is preferred.
 ここで粗ポリアリーレンスルフィドを含むスラリー状物と接触させる炭素原子数1~3の酸素原子含有溶媒としては、例えば、アルコール系溶媒およびケトン系溶媒からなる群から選ばれる少なくとも一つが挙げられる。アルコール系溶媒(アルコール溶媒ともいう)としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ベンジルアルコール等の炭素原子数が10以下のアルコール;2-メトキシエチルアルコール、2-エトキシエチルアルコール、1-メトキシ-2-プロピルアルコール、1-エトキシ-2-プロピルアルコール、3-メトキシ-1-ブチルアルコール、2-イソプロポキシエチルアルコール等のエーテル結合を含む炭素原子数が10以下のアルコール;3-ヒドロキシ-2-ブタノン等のケトン基を含む炭素原子数が10以下のアルコール;ヒドロキシイソ酪酸メチル等のようなエステル基を含む炭素原子数が10以下のアルコールが例示される。また、ケトン系溶媒(ケトン溶媒ともいう)としては、アセトン、メチルエチルケトン、シクロヘキサノン、γ-ブチルラクトン又はN-メチルピロリジノンが例示される。本発明において、炭素原子数10以下の一価アルコールを用いることが、残留する前記カルボキシアルキルアミノ基含有化合物を効率的に除去可能なことから好ましく、さらに、炭素原子数3以下の一価アルコールが好ましい。 Here, as the oxygen atom-containing solvent having 1 to 3 carbon atoms to be brought into contact with the slurry containing the crude polyarylene sulfide, for example, at least one selected from the group consisting of alcohol solvents and ketone solvents can be mentioned. Examples of alcohol solvents (also referred to as alcohol solvents) include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane, and benzyl. Alcohols having 10 or less carbon atoms such as alcohols; 2-methoxyethyl alcohol, 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol Alcohols having 10 or less carbon atoms containing an ether bond, such as, 2-isopropoxyethyl alcohol; alcohols having 10 or less carbon atoms containing a ketone group, such as 3-hydroxy-2-butanone; Dorokishiiso number of carbon atoms containing acid ester groups such as methyl or the like is 10 ppm alcohol are exemplified. Examples of the ketone solvent (also referred to as a ketone solvent) include acetone, methyl ethyl ketone, cyclohexanone, γ-butyl lactone, and N-methylpyrrolidinone. In the present invention, it is preferable to use a monohydric alcohol having 10 or less carbon atoms because the remaining carboxyalkylamino group-containing compound can be efficiently removed. preferable.
 本発明は、粗ポリアリーレンスルフィドと水および前記有機溶媒とを一回または複数回繰り返して、接触させることにより、粗ポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子、好ましくは43〔m/g〕以上から、200〔m/g〕以下の範囲の多孔質粒子、より好ましくは60〔m/g〕以上から、120〔m/g〕以下の範囲の多孔質粒子とする。 The present invention relates to porous particles having a specific surface area of 30 [m 2 / g] or more by contacting crude polyarylene sulfide with water and the organic solvent one or more times, and contacting the same. Preferably, the porous particles have a range of 43 m 2 / g or more and 200 m 2 / g or less, more preferably 60 m 2 / g or more and 120 m 2 / g or less. Range of porous particles.
 粗ポリアリーレンスルフィドを、このような比表面積の範囲を有する多孔質粒子とすることにより、粗ポリアリーレンスルフィド中のカルボキシアルキルアミノ基含有化合物を前記容易に低減することが可能となり好ましい。その際、粗ポリアリーレンスルフィドに含まれるカルボキシアルキルアミノ基含有化合物を、好ましくは該ポリアリーレンスルフィド1gあたり1000〔ppm〕以下の範囲、より好ましくは同400〔ppm〕以下から、1〔ppm〕以上の範囲とすることが、後述する炭酸水洗浄による不純物、特にアルカリ金属ハロゲン化物の低減効果がより優れることとなるため好ましい。 好 ま し い By making the coarse polyarylene sulfide into porous particles having such a specific surface area range, the carboxyalkylamino group-containing compound in the crude polyarylene sulfide can be easily reduced, which is preferable. At that time, the carboxyalkylamino group-containing compound contained in the crude polyarylene sulfide is preferably in the range of 1000 ppm or less per g of the polyarylene sulfide, more preferably 400 ppm or less, and 1 ppm or more. It is preferable to set the content in the range described above, because the effect of reducing impurities, particularly alkali metal halides, by washing with carbonated water described later becomes more excellent.
 本発明は、続いて、得られた多孔質粒子と炭酸水とを接触させる工程を有する。 The present invention has a step of subsequently contacting the obtained porous particles with carbonated water.
 本発明において、前工程で得られた多孔質粒子と炭酸水とを接触させる際の条件は、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは100℃以下、より好ましくは80℃以下までの範囲であり、かつ、圧力(ゲージ圧)が0.1MPaより小さく、好ましくは0.05MPa以下の範囲、さらに好ましくは大気圧下である。温度と圧力の条件がこの範囲内にあれば、優れた品質、特に、エポキシシラン系シランカップリング剤との反応性の向上による機械的特性の向上、等温結晶化時間の短縮などの効果に加え、ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物やカルボキシアルキルアミノ基含有化合物等の不純物濃度が低減されたポリアリーレンスルフィドが得られるため好ましい。例えば、該ポリアリーレンスルフィド中のアルカリ金属ハロゲン化物の割合は、該ポリアリーレンスルフィド1gあたり、好ましくは1000〔ppm〕以下、より好ましくは700〔ppm〕以下、さらに好ましくは500〔ppm〕以下の範囲にまで低減可能である。なお、下限値としては特に限定されまいが、20〔ppm〕以上である。また、例えば、前記構造式(1)で表される化合物(1)の割合は、該ポリアリーレンスルフィド1gあたり、好ましくは1000〔ppm〕以下、より好ましくは500〔ppm〕以下、さらに好ましくは300〔ppm〕以下の範囲にまで低減可能である。なお、下限値としては特に限定されないが、好ましくは50〔ppm〕以上である。 In the present invention, the conditions for bringing the porous particles obtained in the previous step into contact with carbonated water are preferably 10 ° C. or higher, more preferably 20 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. And the pressure (gauge pressure) is lower than 0.1 MPa, preferably lower than 0.05 MPa, more preferably under atmospheric pressure. If the conditions of temperature and pressure are within these ranges, in addition to the effects of excellent quality, in particular, the improvement of the mechanical properties by improving the reactivity with the epoxysilane-based silane coupling agent, the shortening of the isothermal crystallization time, etc. It is preferable because a polyarylene sulfide having a reduced impurity concentration such as an alkali metal halide or a compound containing a carboxyalkylamino group in the polyarylene sulfide can be obtained. For example, the ratio of the alkali metal halide in the polyarylene sulfide is preferably not more than 1000 ppm, more preferably not more than 700 ppm, and still more preferably not more than 500 ppm, per gram of the polyarylene sulfide. Can be reduced to The lower limit is not particularly limited, but is 20 ppm or more. Further, for example, the ratio of the compound (1) represented by the structural formula (1) is preferably 1000 [ppm] or less, more preferably 500 [ppm] or less, and still more preferably 300 / g / g of the polyarylene sulfide. It can be reduced to the range of [ppm] or less. The lower limit is not particularly limited, but is preferably 50 ppm or more.
 また、本発明の利点の一つは、本発明の炭酸水による精製方法を用いた場合、通常の精製温度条件(100℃以下)では金属への腐食が殆どなく、現行の装置で対応可能であることに加えて、SUS304程度の耐食性を有する比較的安価な材質であれば腐食に耐えることが出来るため、他の酸類と比較して装置の材質面からくる設備コスト的メリットが挙げられるだけでなく、さらに、耐圧容器である必要性もないことから、設備コスト的メリットだけでなく、メンテナンス性や安全性に優れるため好ましい。 One of the advantages of the present invention is that when the purification method using carbonated water of the present invention is used, there is almost no corrosion to metals under ordinary purification temperature conditions (100 ° C. or less), and the present apparatus can cope. In addition, since relatively inexpensive materials having corrosion resistance of about SUS304 can withstand corrosion, only the equipment cost advantage from the material side of the apparatus as compared with other acids can be mentioned. In addition, since it is not necessary to use a pressure-resistant container, it is preferable because it is excellent not only in equipment cost but also in maintainability and safety.
 また、本発明の利点の一つは、他の酸類がポリアリーレンスルフィド内に残存した場合(特に塩素イオンや硫酸イオン等はポリマー中に残存しやすい)、成形時の金型腐食や成型品の物性低下の大きな原因になるが、本発明の炭酸水を用いた精製方法の場合では、後の工程である水洗工程でも除去し易く、乾燥工程でもポリアリーレンスルフィド中より分解飛散するために、他の酸類のような金型腐食や成型品の物性低下は起こり難い。 One of the advantages of the present invention is that when other acids remain in the polyarylene sulfide (especially chloride ions and sulfate ions are likely to remain in the polymer), mold corrosion during molding and molding of the molded product may occur. Although it is a major cause of deterioration in physical properties, in the case of the purification method using carbonated water of the present invention, it is easy to remove even in a water washing step which is a later step, and it is also decomposed and scattered from polyarylene sulfide even in a drying step, so other It is difficult to cause corrosion of molds such as acids and deterioration of physical properties of molded products.
 更に、本発明の利点の一つは、炭酸水以外の強酸を用いた場合にはポリアリーレンスルフィド中に残存する酸を除去するために、強酸を用いた洗浄の後に大量の水と洗浄回数を要して残存する酸を除去する必要があるのに対して、本発明の炭酸水を用いた精製方法の場合には、炭酸水による洗浄の後に使用する水の量も少なく洗浄回数も削減出来るため、工程能力においても非常にメリットがある上に、環境対策の面からも適した方法と言える。 Further, one of the advantages of the present invention is that when a strong acid other than carbonated water is used, a large amount of water and the number of times of washing are required after washing with the strong acid in order to remove the acid remaining in the polyarylene sulfide. In contrast, in the case of the purification method using carbonated water according to the present invention, the amount of water used after washing with carbonated water can be reduced, and the number of times of washing can be reduced. Therefore, this method is very advantageous in terms of process capability, and can be said to be a method suitable for environmental measures.
 本発明は密閉容器または装置内に炭酸ガスを吹き込みその系内圧力と温度を制御することで炭酸の溶解度をコントロールした水溶液中で適切な時間以上(例えば、5分以上)接触させることでポリアリーレンスルフィドの分子末端を塩基性型末端(SNa型末端)から酸性型末端(SH型末端)に変換させることを特徴とする精製方法であり、ポリアリーレンスルフィドの分子鎖末端に存在するSNa基がSH基に変換され、他の樹脂との親和性が増大する。 The present invention provides a polyarylene by contacting an aqueous solution in which the solubility of carbonic acid is controlled by controlling the pressure and temperature of the system by blowing carbon dioxide gas into an airtight container or apparatus, for a suitable period of time (eg, 5 minutes or longer). A purification method characterized in that the molecular end of sulfide is converted from a basic end (SNa type end) to an acidic end (SH type end), wherein the SNa group present at the molecular chain end of polyarylene sulfide is SH. To increase the affinity with other resins.
 炭酸水中の炭酸ガス(由来の炭酸イオン)の濃度は、炭酸ガスの水への溶解度に依存し、より詳しくはその温度と圧力におけるヘンリーの法則に従う。炭酸水の作製法としては、開放容器もしくは密閉容器や配管の中にある水に炭酸ガスをバブリングしても良いし、圧入しても良く、また中空糸膜モジュールなどを利用して連続的に炭酸ガスを水に溶解させても良い。 濃度 The concentration of carbon dioxide (derived carbonate ions) in carbonated water depends on the solubility of carbon dioxide in water, and more specifically follows Henry's law at the temperature and pressure. As a method for producing carbonated water, carbon dioxide gas may be bubbled into water in an open container or a closed container or piping, or may be press-fitted, or continuously using a hollow fiber membrane module or the like. Carbon dioxide may be dissolved in water.
 本発明の炭酸水と前記多孔質粒子とを接触させて精製する際の系内の固形分濃度は、1~50重量%となる割合であることが好ましい。固形分濃度がこの範囲内にあればポリアリーレンスルフィド粒子と炭酸水との接触が良好に行われ精製効率が好適でありより好ましい。炭酸水の量についても特に制限は無いが、好ましくはポリアリーレンスルフィド100質量部に対して、50~10000質量部、より好ましくは100~5000質量部、更に好ましくは200~2000質量部である。炭酸水の量がこの範囲内にあればポリアリーレンスルフィド粒子と炭酸水との接触が良好に行われ精製効率が好適でありより好ましい。 固 形 When the carbonated water of the present invention is brought into contact with the porous particles for purification, the solid content concentration in the system is preferably a ratio of 1 to 50% by weight. When the solid content is within this range, the contact between the polyarylene sulfide particles and the carbonated water is favorably performed, and the purification efficiency is suitable and more preferable. The amount of carbonated water is not particularly limited, but is preferably 50 to 10,000 parts by mass, more preferably 100 to 5,000 parts by mass, and still more preferably 200 to 2,000 parts by mass, per 100 parts by mass of polyarylene sulfide. When the amount of carbonated water is within this range, the contact between the polyarylene sulfide particles and the carbonated water is performed favorably, and the purification efficiency is suitable and more preferable.
 本発明は炭酸水とポリアリーレンスルフィドの多孔質粒子との接触を、容器内部に撹拌翼を有し、且つ、底部に濾過用フィルターが配設された開放型容器内で行うことができる。密閉型あるいは密閉可能な混合機能を有す容器内で行う必要性はないが、当然、このような容器内で行うこともできる。 According to the present invention, the contact between carbonated water and porous particles of polyarylene sulfide can be performed in an open-type container having a stirring blade inside the container and a filter disposed at the bottom at the bottom. It is not necessary to carry out in a hermetically sealed or hermetically sealed container having a mixing function, but naturally it can also be carried out in such a container.
 尚、本発明の態様は、上述するように、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応して得られるポリアリーレンスルフィドを含有する粗反応生成物を脱溶媒させた後、有機溶媒と接触させてポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子とし、得られた多孔質粒子と炭酸水とを接触させることを特徴とするポリアリーレンスルフィドの精製方法に係るものである。 Incidentally, the embodiment of the present invention is, as described above, in an organic polar solvent, after desolvating a crude reaction product containing a polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfidizing agent, A polyarylene sulfide having a specific surface area of 30 [m 2 / g] or more by contacting with an organic solvent to form porous particles, and contacting the obtained porous particles with carbonated water. It relates to a purification method.
 本発明の他の態様の一つとしては、当該精製方法によりポリアリーレンスルフィドを精製する工程を有する、ポリアリーレンスルフィドの製造方法にかかるものである。 一 つ Another embodiment of the present invention relates to a method for producing polyarylene sulfide, comprising a step of purifying polyarylene sulfide by the purification method.
 本発明の精製方法を経て得られたポリアリーレンスルフィドは、そのまま乾燥しても良いし、更に水洗や有機溶剤洗を適宜行った後、固液分離し、乾燥を行っても良い。 (4) The polyarylene sulfide obtained through the purification method of the present invention may be dried as it is, or may be appropriately washed with water or an organic solvent, then solid-liquid separated and dried.
 乾燥は実質的に水等の溶媒が蒸発する温度に加熱して行う。乾燥は真空下で行っても良いし、空気中あるいは窒素のような不活性雰囲気下で行っても良い。 Drying is performed by heating to a temperature at which a solvent such as water is substantially evaporated. Drying may be performed under vacuum, or may be performed in air or under an inert atmosphere such as nitrogen.
 本発明の製造方法で得られたポリアリーレンスルフィドは従来と同様、そのまま各種成形材料等に利用できるが、空気あるいは酸素富化空気中あるいは減圧下で熱処理することにより増粘することが可能であり、必要に応じてこのような増粘操作を行った後、各種成形材料等に利用しても良い。この熱処理温度は処理時間によっても異なるし処理する雰囲気によっても異なるので一概に規定できないが、通常は180℃以上で行うことが好ましい。熱処理温度が180℃未満では増粘速度が非常に遅く生産性が悪く好ましくない。熱処理は押出機等を用いて重合体の融点以上で、溶融状態で行っても良い。但し、重合体の劣化の可能性あるいは作業性等から、融点プラス100℃以下で行うことが好ましい。 The polyarylene sulfide obtained by the production method of the present invention can be used as it is for conventional molding materials and the like, but can be thickened by heat treatment in air or oxygen-enriched air or under reduced pressure. After performing such a thickening operation as needed, it may be used for various molding materials. Since the heat treatment temperature varies depending on the treatment time and the atmosphere in which the treatment is performed, it cannot be unconditionally specified. If the heat treatment temperature is lower than 180 ° C., the rate of thickening is extremely slow, and the productivity is poor, which is not preferable. The heat treatment may be performed in a molten state at a temperature higher than the melting point of the polymer using an extruder or the like. However, from the viewpoint of the possibility of deterioration of the polymer or workability, it is preferable to carry out the reaction at a temperature higher than the melting point plus 100 ° C.
 本発明により得られたポリアリーレンスルフィドは、従来と同様、充填剤や他の樹脂と配合して溶融混練後、直接または一旦ペレットに成形した後、射出成形、押出成形、圧縮成形、ブロー成形のごとき各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形物にすることができる。しかしながら強度、耐熱性、寸法安定性等の性能をさらに改善するために、本発明の目的を損なわない範囲で各種充填材と組み合わせて使用することも可能である。充填材としては、繊維状充填材、無機充填材等が挙げられる。また、成形加工の際に添加剤として本発明の目的を逸脱しない範囲で少量の、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤を含有せしめることができる。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用できる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、弗素ゴム、シリコーンゴム等が挙げられる。 The polyarylene sulfide obtained by the present invention is, as in the past, blended with a filler or other resin, melt-kneaded, directly or once formed into pellets, and then subjected to injection molding, extrusion molding, compression molding, blow molding. By various melt processing methods as described above, a molded article having excellent heat resistance, moldability, dimensional stability, and the like can be obtained. However, in order to further improve the performance such as strength, heat resistance and dimensional stability, it is also possible to use in combination with various fillers as long as the object of the present invention is not impaired. Examples of the filler include a fibrous filler and an inorganic filler. In addition, a small amount of a mold release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust inhibitor, a flame retardant, a lubricant, a cup as an additive during the molding process without departing from the object of the present invention. A ring agent can be included. Further, similarly, the following synthetic resins and elastomers can be mixed and used. As these synthetic resins, polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylene, polyethylene, polypropylene, polytetrafluoroethylene, Examples thereof include polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, and liquid crystal polymer. Examples of the elastomer include polyolefin rubber, fluorine rubber, and silicone rubber.
 本発明のポリアリーレンスルフィドまたはそれを含む樹脂組成物を溶融成形してなる成形品は、従来の方法で得られるPPS同様耐熱性、寸法安定性等が優れるので、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。  A molded article obtained by melt-molding the polyarylene sulfide of the present invention or a resin composition containing the same has excellent heat resistance, dimensional stability and the like as PPS obtained by a conventional method. Electric and electronic parts such as molded parts, automotive parts such as lamp reflectors and various electrical parts, interior materials for various buildings, aircraft and automobiles, and precision parts such as OA equipment parts, camera parts, watch parts, etc. It can be widely used as injection molded / compressed molded products, or extruded / pull molded products such as fibers, films, sheets and pipes.
 以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。 (4) The present invention will be specifically described below with reference to examples. These examples are illustrative and not limiting.
(測定法1)ポリアリーレンスルフィド樹脂中のCP-MABA濃度の定量
(1)ポリアリーレンスルフィド中のCP-MABAの抽出:NaOH0.05%水溶液をポリアリーレンスルフィドに対して、20倍を入れて、200℃に昇温して30分加熱し、固液分離することで、ポリアリーレンスルフィド樹脂中のCP-MABAをろ液に抽出した。
(Measurement Method 1) Determination of CP-MABA Concentration in Polyarylene Sulfide Resin (1) Extraction of CP-MABA in Polyarylene Sulfide: A 0.05% aqueous solution of NaOH was added 20 times to the polyarylene sulfide, The temperature was raised to 200 ° C., the mixture was heated for 30 minutes, and solid-liquid separation was performed to extract CP-MABA in the polyarylene sulfide resin into the filtrate.
(2)〔CP-MABAの測定方法〕
 得られたろ液中のCP-MABA濃度は、(1)で作製したろ液サンプルのHPLC測定を行い、下記の方法で作製した標準サンプルと同じ保持時間のピーク面積と検量線とから液中の濃度を求め、算出した。
(2) [Method for measuring CP-MABA]
The concentration of CP-MABA in the obtained filtrate was determined by performing HPLC measurement on the filtrate sample prepared in (1) and determining the peak area and the calibration curve of the same retention time as the standard sample prepared by the following method. The concentration was determined and calculated.
(サンプル調製)
 ろ液中のCP-MABAは、そのまま移動相を加えて調製し測定した。
(Sample preparation)
CP-MABA in the filtrate was prepared by adding the mobile phase as it was and measured.
(標準サンプル:CP-MABAの合成)
 48%NaOH水溶液83.4g(1.0モル)とN‐メチル‐2‐ピロリドン297.4g(3.0モル)を、撹拌機付き耐圧容器に仕込み、230℃で3時間撹拌した。この撹拌が終了した後、温度230℃のままバルブを開き、放圧し、N‐メチル‐2‐ピロリドンの蒸気圧程度である230℃において0.1MPaまで圧力を低下させ、水を留去した。その後、再び密閉し200℃程度まで温度を低下させた。
(Standard sample: synthesis of CP-MABA)
83.4 g (1.0 mol) of a 48% aqueous NaOH solution and 297.4 g (3.0 mol) of N-methyl-2-pyrrolidone were charged into a pressure-resistant vessel equipped with a stirrer, and stirred at 230 ° C. for 3 hours. After completion of the stirring, the valve was opened at 230 ° C. and the pressure was released, and the pressure was reduced to 0.1 MPa at 230 ° C., which is about the vapor pressure of N-methyl-2-pyrrolidone, and water was distilled off. Then, it was closed again and the temperature was lowered to about 200 ° C.
 p-ジクロロベンゼン147.0g(1.0モル)を60℃以上の温度条件下で加熱溶解して反応混合物中に投入し、250℃まで昇温後4時間撹拌した。この撹拌が終了した後、室温まで冷却した。p-ジクロロベンゼンの反応率は31モル%であった。冷却後、内容物を取り出し、水を加えて撹拌後、未反応のp-ジクロロベンゼンが不溶物となって残ったものをろ過によって取り除いた。 147.0 g (1.0 mol) of p-dichlorobenzene was dissolved by heating under a temperature condition of 60 ° C. or higher, added to the reaction mixture, heated to 250 ° C., and stirred for 4 hours. After the stirring was completed, the mixture was cooled to room temperature. The conversion of p-dichlorobenzene was 31 mol%. After cooling, the content was taken out, water was added and the mixture was stirred, and the unreacted p-dichlorobenzene, which became insoluble, was removed by filtration.
 次いで、ろ液である水溶液に塩酸を加えて該水溶液のpHを4に調整した。このとき水溶液中に褐色オイル状のCP-MABA(水素型)が生じた。そこにクロロホルムを加えて褐色オイル状物質を抽出した。このときの水相には、N-メチル-2-ピロリドン及びその開環物である4-メチルアミノ酪酸(以下「MABA」と略記する。)が含まれるため水相は廃棄した。クロロホルム相は水洗を2回繰り返した。 Next, hydrochloric acid was added to the aqueous solution as a filtrate to adjust the pH of the aqueous solution to 4. At this time, brown oily CP-MABA (hydrogen type) was formed in the aqueous solution. Chloroform was added thereto to extract a brown oily substance. At this time, the aqueous phase was discarded because it contained N-methyl-2-pyrrolidone and its ring-opened product, 4-methylaminobutyric acid (hereinafter abbreviated as "MABA"). The chloroform phase was washed twice with water.
 クロロホルム相に水を加えてスラリー化した状態で48%NaOH水溶液を加え、該スラリーのpHを13に調整した。このときCP-MABAはナトリウム塩となって水相に移り、クロロホルム相には副生成物であるp-クロロ-N-メチルアニリン及びN-メチルアニリンが溶解しているためクロロホルム相は廃棄した。水相はクロロホルム洗浄を2回繰り返した。 (4) In a state where water was added to the chloroform phase to form a slurry, a 48% aqueous solution of NaOH was added to adjust the pH of the slurry to 13. At this time, CP-MABA was transferred to the aqueous phase as a sodium salt, and the chloroform phase was discarded because by-products p-chloro-N-methylaniline and N-methylaniline were dissolved in the chloroform phase. The aqueous phase was washed twice with chloroform.
 水溶液に希塩酸を加えて該水溶液のpHを1以下に調整した。このときCP-MABAは塩酸塩となって水溶液中にとどまるので、水溶液にクロロホルムを加えて、副生成物であるp-クロロフェノールを抽出した。p-クロロフェノールが溶解したクロロホルム相は廃棄した。 (4) Dilute hydrochloric acid was added to the aqueous solution to adjust the pH of the aqueous solution to 1 or less. At this time, since CP-MABA becomes a hydrochloride and remains in the aqueous solution, chloroform was added to the aqueous solution to extract p-chlorophenol as a by-product. The chloroform phase in which p-chlorophenol was dissolved was discarded.
 残った水溶液に48%NaOH水溶液を加え、該水溶液のpHを4に調整した。これにより、CP-MABAの塩酸塩が中和され、褐色オイル状のCP-MABA(水素型)が水溶液から析出した。CP-MABA(水素型)をクロロホルムで抽出し、クロロホルムを減圧除去することによってCP-MABA(水素型)を得た。 (4) A 48% aqueous NaOH solution was added to the remaining aqueous solution to adjust the pH of the aqueous solution to 4. As a result, the hydrochloride of CP-MABA was neutralized, and brown oily CP-MABA (hydrogen type) was precipitated from the aqueous solution. CP-MABA (hydrogen type) was extracted with chloroform, and chloroform was removed under reduced pressure to obtain CP-MABA (hydrogen type).
(HPLCの測定)
よく攪拌した溶液から、1mlをサンプリングし、そこにHPLCの移動相を9ml加え、ろ液を測定サンプルとした。測定サンプルのHPLC測定を行い、下記の方法で作成した標準サンプルと同じ保持時間のピーク面積と検量線とから液中の濃度を求めた。HPLC測定条件は以下の通り。
装置名:株式会社 島津製作所製「高速液体クロマトグラム Prominence」
カラム:株式会社 島津ジーエルシー製
「Phenomenex Luna 5u C18(2) 100A」
検出器:DAD (Diode Array Detector)
データ処理:株式会社 島津製作所製「LCsolution」
測定条件:カラム温度40℃
移動相:メタノール/酢酸水溶液1vol%=6/4(vol比)
流速 :1.0ml/分
(HPLC measurement)
From the well stirred solution, 1 ml was sampled, and 9 ml of the HPLC mobile phase was added thereto, and the filtrate was used as a measurement sample. The measurement sample was subjected to HPLC measurement, and the concentration in the liquid was determined from the peak area and the calibration curve at the same retention time as the standard sample prepared by the following method. The HPLC measurement conditions are as follows.
Apparatus name: "High Performance Liquid Chromatogram Prominence" manufactured by Shimadzu Corporation
Column: "Phenomenex Luna 5u C18 (2) 100A" manufactured by Shimadzu GLC
Detector: DAD (Diode Array Detector)
Data processing: "LCsolution" manufactured by Shimadzu Corporation
Measurement conditions: Column temperature 40 ° C
Mobile phase: methanol / acetic acid aqueous solution 1 vol% = 6/4 (vol ratio)
Flow rate: 1.0 ml / min
(測定法2) 比表面積(BET比表面積)の分析方法
 比表面積の測定には株式会社 島津製作所製トライスターII3020を使用した。試料をセルに入れた後、脱気した後ヘリウム置換、冷却し、窒素置換させることによって比表面積を測定した。
(Measurement Method 2) Method of Analyzing Specific Surface Area (BET Specific Surface Area) Tristar II3020 manufactured by Shimadzu Corporation was used for measuring the specific surface area. After the sample was put into the cell, it was degassed, replaced with helium, cooled, and replaced with nitrogen to measure the specific surface area.
(測定法3) ポリアリーレンスルフィド中のナトリウム濃度
 ポリアリーレンスルフィドの粉末を白金るつぼに秤取り、そこに濃硫酸(原子吸光グレード)を浸る程度に加えて、TOSHIBA製コンロHP-103Kで煙が出なくなりまた大半が灰化したことを確認出来るまで加熱した。その後マッフル炉で700℃5時間加熱し、完全に灰化させた。そこに1%塩酸と及び純水で灰分を溶解させ、その溶液を原子吸光光度計で、ナトリウム量を分析し、ポリアリーレンスルフィド中のナトリウム量を定量した。尚、本操作で使用する水は導電度18.2MΩ・cmのものを使用した。
(Measurement Method 3) Sodium Concentration in Polyarylene Sulfide Polyarylene sulfide powder is weighed in a platinum crucible, and concentrated sulfuric acid (atomic absorption grade) is immersed in the powder, and smoke is emitted with a stove HP-103K made by TOSHIBA. The mixture was heated until it could be confirmed that almost all had disappeared and ash had occurred. Thereafter, the mixture was heated in a muffle furnace at 700 ° C. for 5 hours to completely incinerate. The ash was dissolved therein with 1% hydrochloric acid and pure water, and the solution was analyzed for the amount of sodium with an atomic absorption spectrophotometer to determine the amount of sodium in the polyarylene sulfide. The water used in this operation had a conductivity of 18.2 MΩ · cm.
〔合成例1〕 ポリフェニレンスルフィドの重合工程
 圧力計、温度計、コンデンサー、デカンター、精留塔を付けた撹拌翼付き150Lオートクレーブにp-ジクロロベンゼン(以下、DCBと略す)33.222kg(226mol)、NMP2.280kg(23mol)、47.23質量%水硫化ソーダ27.300kg(230mol)、及び49.21質量%苛性ソーダ18.533kg(228mol)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.3kgを留出させた後、釜を密閉した。脱水時に共沸により留出したDCBはデカンターで分離して随時釜内に戻し、脱水終了後の釜内は無水硫化ナトリウム組成物がDCB中に分散した状態であった。更に、内温を160℃に冷却し、NMP47.492kg(479mol)を仕込み、185℃まで昇温した。圧力が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したDCBと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、DCBは釜へ戻した。留出水量は179gであった。次に、内温200℃から230℃まで3時間かけて昇温し、1時間撹拌した後、250℃まで昇温し1時間撹拌して反応終わり了後、オートクレーブの内温を250℃から235℃に冷却し、到達後にオートクレープの底弁を開いて減圧状態のまま撹拌翼付き150リットル真空撹拌乾燥機(脱溶媒機ジャケット温度120度)にフラッシュさせてN-メチル-2-ピロリドンを抜き取り、室温まで冷却し、サンプリングした結果、N.V.55%のPPS混合物を得た。
[Synthesis Example 1] Polymerization step of polyphenylene sulfide 33.222 kg (226 mol) of p-dichlorobenzene (hereinafter abbreviated as DCB) was placed in a 150 L autoclave equipped with a stirrer equipped with a pressure gauge, a thermometer, a condenser, a decanter, and a rectification tower, 2.280 kg (23 mol) of NMP, 27.300 kg (230 mol) of 47.23 mass% sodium hydrogen sulfide, and 18.533 kg (228 mol) of 49.21 mass% caustic soda were charged and stirred to 173 ° C. under a nitrogen atmosphere for 5 hours. After heating and distilling 27.3 kg of water, the kettle was sealed. The DCB distilled off azeotropically during the dehydration was separated by a decanter and returned to the kettle at any time. After the completion of the dehydration, the anhydrous sodium sulfide composition was dispersed in the DCB. Furthermore, the internal temperature was cooled to 160 ° C, NMP 47.492 kg (479 mol) was charged, and the temperature was raised to 185 ° C. When the pressure reached 0.00 MPa, the valve connected to the rectification column was opened, and the internal temperature was raised to 200 ° C. over 1 hour. At this time, cooling and valve opening were controlled so that the outlet temperature of the rectification column was 110 ° C. or lower. The mixed vapor of the distilled DCB and water was condensed by a condenser, separated by a decanter, and the DCB was returned to the kettle. The amount of distilled water was 179 g. Next, the internal temperature was raised from 200 ° C. to 230 ° C. over 3 hours, and after stirring for 1 hour, the temperature was raised to 250 ° C. and stirred for 1 hour. After the reaction was completed, the internal temperature of the autoclave was raised from 250 ° C. to 235 ° C. After cooling to ℃, the bottom valve of the autoclave was opened, and the system was flushed to 150 liter vacuum stirring dryer equipped with stirring blades (desolvator jacket temperature: 120 ° C) with reduced pressure to remove N-methyl-2-pyrrolidone. After cooling to room temperature and sampling, a PPS mixture having an NV of 55% was obtained.
(実施例1)
 合成例1で得たPPS混合物400gとイソプロピルアルコール634gをフラスコに入れ、40℃で30分間撹拌混合し、そのスラリーを桐山ロートで減圧濾過し、上から押し固め、さらに上からイソプロピルアルコール422gを数回に分けて注ぎろ過した。更に、そのろ過して作製したケーキをビーカーに移して薬さじで粉末状に砕き、そこに70℃の水を634g注ぎ、30分間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から70℃の水845gを数回に分けて注ぎろ過した。そのケーキを砕いて8gをサンプリングし、120℃×4時間熱風乾燥機で乾燥し、その樹脂分を分析した結果、比表面積は79[m/g]、樹脂中のCP-MABAの含有量は207[ppm]であった。上記ケーキをビーカーに移して、そこに636gの炭酸水を注ぎ、1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から炭酸水848gを数回に分けて注ぎろ過した。そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥した。手に入れた樹脂中のナトリウム量を分析した結果、300[ppm]であった。
(Example 1)
400 g of the PPS mixture obtained in Synthesis Example 1 and 634 g of isopropyl alcohol were placed in a flask and mixed by stirring at 40 ° C. for 30 minutes. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 422 g of isopropyl alcohol was further added from above. The mixture was poured into portions and filtered. Further, the cake prepared by the filtration was transferred to a beaker, crushed into a powder with a spoonful, 634 g of water at 70 ° C. was poured therein, and the mixture was stirred and mixed for 30 minutes. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 845 g of water at 70 ° C. was poured from the top into several portions and filtered. 8 g of the cake was crushed, sampled, dried in a hot air drier at 120 ° C. for 4 hours, and the resin content was analyzed. As a result, the specific surface area was 79 [m 2 / g], and the content of CP-MABA in the resin Was 207 [ppm]. The cake was transferred to a beaker, and 636 g of carbonated water was poured into the beaker and mixed with stirring for 1 hour. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 848 g of carbonated water was poured from above in several portions and filtered. The cake produced by the filtration was transferred to a vat, crushed into powder with a spoon, and dried at 120 ° C. for 4 hours. As a result of analyzing the amount of sodium in the obtained resin, it was 300 [ppm].
(実施例2)
 イソプロピルアルコール634gの代わりにメタノール317gとし、イソプロピルアルコール422gの代わりにメタノール634gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は83[m/g]、樹脂中のCP-MABAの含有量は52[ppm]であった。また炭酸水の量を636gの代わりに845gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、290[ppm]であった。
(Example 2)
317 g of methanol was used instead of 634 g of isopropyl alcohol, and 634 g of methanol was used instead of 422 g of isopropyl alcohol, and the rest was carried out under the same conditions as in Example 1. As a result of analyzing the sampled resin, the specific surface area was 83 [m 2 / g], and the content of CP-MABA in the resin was 52 [ppm]. Further, the amount of carbonated water was changed to 845 g instead of 636 g, and the other conditions were the same as in Example 1. As a result of analyzing the amount of sodium in the obtained resin, it was 290 [ppm].
(実施例3)
 イソプロピルアルコールの量を634gから1056gとし、イソプロピルアルコールの量を422gから845gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は75[m/g]、樹脂中のCP-MABAの含有量は125[ppm]であった。また炭酸水の量を636gの代わりに1584gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、200[ppm]であった。
(Example 3)
The amount of isopropyl alcohol was changed from 634 g to 1056 g, the amount of isopropyl alcohol was changed from 422 g to 845 g, and the rest was carried out under the same conditions as in Example 1. As a result of analyzing the sampled resin, the specific surface area was 75 [m 2 / g], and the content of CP-MABA in the resin was 125 [ppm]. Further, the amount of carbonated water was changed to 1584 g instead of 636 g, and the other conditions were the same as in Example 1. As a result of analyzing the amount of sodium in the obtained resin, it was 200 [ppm].
(実施例4)
 イソプロピルアルコール634gの代わりにエタノール211gとし、イソプロピルアルコール422gの代わりにエタノール422gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は60[m/g]、樹脂中のCP-MABAの含有量は450[ppm]であった。以降工程を実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、230[ppm]であった。
(Example 4)
The procedure was performed under the same conditions as in Example 1 except for using 221 g of ethanol instead of 634 g of isopropyl alcohol and 422 g of ethanol instead of 422 g of isopropyl alcohol. As a result of analyzing the sampled resin, the specific surface area was 60 [m 2 / g], and the content of CP-MABA in the resin was 450 [ppm]. Thereafter, the steps were performed under the same conditions as in Example 1. As a result of analyzing the amount of sodium in the obtained resin, it was 230 [ppm].
(実施例5)
 イソプロピルアルコール634gの代わりにアセトン845gとし、イソプロピルアルコール422gの代わりにアセトン845gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は43[m/g]、樹脂中のCP-MABAの含有量は399[ppm]であった。また炭酸水の量636gの代わりに845gとし、炭酸水の量848gの代わりに1267gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、340[ppm]であった。
(Example 5)
845 g of acetone was used instead of 634 g of isopropyl alcohol, and 845 g of acetone was used instead of 422 g of isopropyl alcohol, and the rest was performed under the same conditions as in Example 1. As a result of analyzing the sampled resin, the specific surface area was 43 [m 2 / g], and the content of CP-MABA in the resin was 399 [ppm]. The amount of carbonated water was changed to 845 g instead of 636 g, and the amount of carbonated water was changed to 1267 g instead of 848 g. As a result of analyzing the amount of sodium in the obtained resin, it was 340 [ppm].
(実施例6)
 イソプロピルアルコール634gの代わりにエタノール1056gとし、イソプロピルアルコール422gの代わりにエタノール845gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は102[m/g]、樹脂中のCP-MABAの含有量は57[ppm]であった。また炭酸水の量636gの代わりに422gとし、炭酸水の量848gの代わりに422gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、380[ppm]であった。
(Example 6)
1056 g of ethanol was used instead of 634 g of isopropyl alcohol, and 845 g of ethanol was used instead of 422 g of isopropyl alcohol, and the rest was performed under the same conditions as in Example 1. As a result of analyzing the sampled resin, the specific surface area was 102 [m 2 / g], and the content of CP-MABA in the resin was 57 [ppm]. The amount of carbonated water was 422 g instead of 636 g, and the amount of carbonated water was 422 g instead of 848 g. As a result of analyzing the amount of sodium in the obtained resin, it was 380 [ppm].
(実施例7)
 イソプロピルアルコール634gの代わりにメタノール211gとし、イソプロピルアルコール422gの代わりにメタノール422gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は75[m/g]、樹脂中のCP-MABAの含有量は187[ppm]であった。また炭酸水の量636gの代わりに422gとし、炭酸水の量848gの代わりに1267gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、350[ppm]であった。
(Example 7)
The procedure was carried out under the same conditions as in Example 1, except that 634 g of isopropyl alcohol was replaced by 211 g of methanol, and 422 g of isopropyl alcohol was replaced by 422 g of methanol. As a result of analyzing the sampled resin, the specific surface area was 75 [m 2 / g], and the content of CP-MABA in the resin was 187 [ppm]. The amount of carbonated water was 422 g instead of 636 g, and the amount of carbonated water was 1267 g instead of 848 g. As a result of analyzing the amount of sodium in the obtained resin, it was 350 [ppm].
(比較例1)
 イソプロピルアルコール634gの代わりにトルエン845gとし、イソプロピルアルコール422gの代わりにトルエン422gとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は45[m/g]、樹脂中のCP-MABAの含有量は1398[ppm]であった。また炭酸水の量636gの代わりに845gとし、炭酸水の量848gの代わりに845gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、870[ppm]であった。
(Comparative Example 1)
845 g of toluene was used instead of 634 g of isopropyl alcohol, and 422 g of toluene was used instead of 422 g of isopropyl alcohol, and the rest was carried out under the same conditions as in Example 1. As a result of analyzing the sampled resin, the specific surface area was 45 [m 2 / g], and the content of CP-MABA in the resin was 1,398 [ppm]. The amount of carbonated water was changed to 845 g instead of 636 g, and the amount of carbonated water was changed to 845 g instead of 848 g. As a result of analyzing the amount of sodium in the obtained resin, it was 870 [ppm].
(比較例2)
 イソプロピルアルコールの代わりにメチルイソブチルケトンとし、イソプロピルアルコールの代わりにメソイソブチルケトンとし、残りは実施例1と同様の条件で実施した。サンプリングした樹脂を分析した結果、比表面積は13[m/g]、樹脂中のCP-MABAの含有量は350[ppm]であった。また炭酸水の量636gの代わりに845gとし、炭酸水の量848gの代わりに1267gとし、他は実施例1と同様の条件で実施した。手に入れた樹脂中のナトリウム量を分析した結果、900[ppm]であった。
(Comparative Example 2)
Methyl isobutyl ketone was used instead of isopropyl alcohol, and mesoisobutyl ketone was used instead of isopropyl alcohol. The remainder was performed under the same conditions as in Example 1. As a result of analyzing the sampled resin, the specific surface area was 13 [m 2 / g], and the content of CP-MABA in the resin was 350 [ppm]. The amount of carbonated water was changed to 845 g instead of 636 g, and the amount of carbonated water was changed to 1267 g instead of 848 g. As a result of analyzing the amount of sodium in the obtained resin, it was 900 [ppm].
(比較例3)
 合成例1で得たPPS混合物400gをビーカーに移して薬さじで粉末状に砕き、そこに70℃の水を848g注ぎ、30分間攪拌混合した。そのスラリーをそのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から70℃の水を845gを数回に分けて注ぎろ過した。そのケーキを砕いて8gをサンプリングし、120℃×4時間熱風乾燥機で乾燥し、その樹脂を分析した結果、比表面積は78[m/g]、樹脂中のCP-MABAの含有量は3246[ppm]であった。上記ケーキをビーカーに移して、そこに845gの炭酸水を注ぎ、1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から炭酸水1267gを数回に分けて注ぎろ過した。そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥した。手に入れた樹脂中のナトリウム量を分析した結果、930[ppm]であった。
(Comparative Example 3)
400 g of the PPS mixture obtained in Synthesis Example 1 was transferred to a beaker, crushed into a powder with a spoon, and 848 g of 70 ° C. water was poured into the beaker, followed by stirring and mixing for 30 minutes. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and then 845 g of 70 ° C. water was poured from above into several portions and filtered. The cake was crushed, 8 g was sampled, dried with a hot air dryer at 120 ° C. for 4 hours, and the resin was analyzed. As a result, the specific surface area was 78 [m 2 / g], and the content of CP-MABA in the resin was It was 3246 [ppm]. The cake was transferred to a beaker, 845 g of carbonated water was poured therein, and the mixture was stirred and mixed for 1 hour. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and further filtered and poured from above with 1267 g of carbonated water in several portions. The cake produced by the filtration was transferred to a vat, crushed into powder with a spoon, and dried at 120 ° C. for 4 hours. As a result of analyzing the amount of sodium in the obtained resin, it was 930 [ppm].
(比較例4)
 合成例1で得たPPS混合物400gを加熱式真空乾燥機で150℃に昇温し減圧してNMPを除いた。残った固体をビーカーに移して薬さじで粉末状に砕き、そこに70℃の水を848g注ぎ、30分間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から70℃の水845gを数回に分けて注ぎろ過した。更に回収したケーキをSUS製のオートクレイブに634gの水を加え密閉し、120℃に昇温して、30分ホールドした。その後、室温まで降温し、そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から70℃の水を845gを数回に分けて注ぎろ過した。そのケーキを砕いて8gをサンプリングし、120℃×4時間熱風乾燥機で乾燥し、その樹脂を分析した結果、比表面積は8[m/g]、樹脂中のCP-MABAの含有量は849[ppm]であった。上記ケーキをビーカーに移して、そこに845gの炭酸水を注ぎ、1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から炭酸水1267gを数回に分けて注ぎろ過した。そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥した。手に入れた樹脂中のナトリウム量を分析した結果、1200[ppm]であった。
(Comparative Example 4)
400 g of the PPS mixture obtained in Synthesis Example 1 was heated to 150 ° C. by a heating vacuum dryer and reduced in pressure to remove NMP. The remaining solid was transferred to a beaker, crushed into a powder form with a spoonful, and 848 g of water at 70 ° C. was poured into the powder and mixed with stirring for 30 minutes. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 845 g of water at 70 ° C. was poured from the top into several portions and filtered. Further, the collected cake was sealed by adding 634 g of water to an autoclave made of SUS, heated to 120 ° C., and held for 30 minutes. Thereafter, the temperature was lowered to room temperature, the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 845 g of 70 ° C. water was poured from above into several portions and filtered. The cake was crushed, 8 g was sampled, dried by a hot air drier at 120 ° C. for 4 hours, and the resin was analyzed. As a result, the specific surface area was 8 [m 2 / g], and the content of CP-MABA in the resin was It was 849 [ppm]. The cake was transferred to a beaker, 845 g of carbonated water was poured therein, and the mixture was stirred and mixed for 1 hour. The slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and further filtered and poured from above with 1267 g of carbonated water in several portions. The cake produced by the filtration was transferred to a vat, crushed into powder with a spoon, and dried at 120 ° C. for 4 hours. As a result of analyzing the amount of sodium in the obtained resin, it was 1200 [ppm].

Claims (6)

  1. 有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応して得られるポリアリーレンスルフィドを含有する粗反応生成物を脱溶媒させることにより、粗ポリアリーレンスルフィドを含むスラリー状物を得る工程、粗ポリアリーレンスルフィドを含むスラリー状物を、水および炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗ポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程、得られた多孔質粒子と炭酸水とを接触させる工程とを有することを特徴とするポリアリーレンスルフィドの精製方法。 In an organic polar solvent, a step of obtaining a slurry containing crude polyarylene sulfide by desolvating a crude reaction product containing polyarylene sulfide obtained by reacting a polyhalo aromatic compound with a sulfide agent, The slurry containing the crude polyarylene sulfide is brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms to make the crude polyarylene sulfide have a specific surface area of 30 [m 2 / g] or more. And a step of bringing the obtained porous particles into contact with carbonated water. A method for purifying polyarylene sulfide.
  2. ポリアリーレンスルフィドの多孔質粒子と炭酸水とを0.1MPaより小さい圧力下で接触させる、請求項1記載の精製方法。 The purification method according to claim 1, wherein the porous particles of polyarylene sulfide are brought into contact with carbonated water under a pressure of less than 0.1 MPa.
  3. ポリアリーレンスルフィドの多孔質粒子と炭酸水とを60℃以下の温度で接触させる、請求項1または2記載の精製方法。 The method according to claim 1 or 2, wherein the porous particles of polyarylene sulfide are brought into contact with carbonated water at a temperature of 60 ° C or lower.
  4. 前記多孔質粒子中に含まれる下記構造式(1)で表される化合物(1)の割合が、該ポリアリーレンスルフィド1gあたり1000〔ppm〕以下の範囲である、請求項1~3のいずれか一項に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000001
    4. The method according to claim 1, wherein a ratio of the compound (1) represented by the following structural formula (1) contained in the porous particles is in a range of 1000 ppm or less per 1 g of the polyarylene sulfide. The purification method according to claim 1.
    Figure JPOXMLDOC01-appb-C000001
  5. 前記有機溶媒が、アルコール系溶媒またはケトン系溶媒である請求項1~4のいずれか一項記載の精製方法。 The purification method according to any one of claims 1 to 4, wherein the organic solvent is an alcohol solvent or a ketone solvent.
  6. 請求項1~5の何れか一項に記載の精製方法によりポリアリーレンスルフィドを精製する工程を有することを特徴とするポリアリーレンスルフィドの製造方法。 A method for producing polyarylene sulfide, comprising a step of purifying polyarylene sulfide by the purification method according to any one of claims 1 to 5.
PCT/JP2019/031355 2018-08-10 2019-08-08 Method for purifying and method for producing polyarylene sulfide WO2020032171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532073A JPWO2020032171A1 (en) 2018-08-10 2019-08-08 Purification method and production method of polyarylene sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151586 2018-08-10
JP2018151586 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020032171A1 true WO2020032171A1 (en) 2020-02-13

Family

ID=69413530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031355 WO2020032171A1 (en) 2018-08-10 2019-08-08 Method for purifying and method for producing polyarylene sulfide

Country Status (2)

Country Link
JP (1) JPWO2020032171A1 (en)
WO (1) WO2020032171A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006923A (en) * 2017-06-27 2019-01-17 東ソー株式会社 Polyarylene sulfide and production method thereof
WO2021117795A1 (en) * 2019-12-11 2021-06-17 Dic株式会社 Polyarylene sulfide, and purification method and production method therefor
JP7318843B1 (en) * 2022-05-10 2023-08-01 Dic株式会社 Method for purifying and producing polyarylene sulfide
WO2023218735A1 (en) * 2022-05-10 2023-11-16 Dic株式会社 Purification method and production method for polyarylene sulfide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144495A (en) * 1975-05-27 1976-12-11 Phillips Petroleum Co Process for polymerizing allylene and sulfide
JPH06192421A (en) * 1992-10-23 1994-07-12 Phillips Petroleum Co Production of polyarylene sulfide polymer
WO2003048231A1 (en) * 2001-12-03 2003-06-12 Kureha Chemical Industry Company, Limited Method of continuously cleansing polyarylene sulfide
JP2005264030A (en) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc Purification method for polyarylene sulfide
WO2006027985A1 (en) * 2004-09-06 2006-03-16 Kureha Corporation Process for producing polyarylene sulfide
WO2012070335A1 (en) * 2010-11-26 2012-05-31 株式会社クレハ Method for producing polyarylene sulfide, and polyarylene sulfide
JP2015040284A (en) * 2013-08-23 2015-03-02 Dic株式会社 Polyarylene sulfide resin porous media and method of producing the same
WO2015166838A1 (en) * 2014-04-30 2015-11-05 株式会社クレハ Polyarylene sulfide production method, and polyarylene sulfide production apparatus
JP2017071752A (en) * 2015-10-05 2017-04-13 Dic株式会社 Method for producing polyarylene sulfide resin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144495A (en) * 1975-05-27 1976-12-11 Phillips Petroleum Co Process for polymerizing allylene and sulfide
JPH06192421A (en) * 1992-10-23 1994-07-12 Phillips Petroleum Co Production of polyarylene sulfide polymer
WO2003048231A1 (en) * 2001-12-03 2003-06-12 Kureha Chemical Industry Company, Limited Method of continuously cleansing polyarylene sulfide
JP2005264030A (en) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc Purification method for polyarylene sulfide
WO2006027985A1 (en) * 2004-09-06 2006-03-16 Kureha Corporation Process for producing polyarylene sulfide
WO2012070335A1 (en) * 2010-11-26 2012-05-31 株式会社クレハ Method for producing polyarylene sulfide, and polyarylene sulfide
JP2015040284A (en) * 2013-08-23 2015-03-02 Dic株式会社 Polyarylene sulfide resin porous media and method of producing the same
WO2015166838A1 (en) * 2014-04-30 2015-11-05 株式会社クレハ Polyarylene sulfide production method, and polyarylene sulfide production apparatus
JP2017071752A (en) * 2015-10-05 2017-04-13 Dic株式会社 Method for producing polyarylene sulfide resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006923A (en) * 2017-06-27 2019-01-17 東ソー株式会社 Polyarylene sulfide and production method thereof
WO2021117795A1 (en) * 2019-12-11 2021-06-17 Dic株式会社 Polyarylene sulfide, and purification method and production method therefor
JP7318843B1 (en) * 2022-05-10 2023-08-01 Dic株式会社 Method for purifying and producing polyarylene sulfide
WO2023218735A1 (en) * 2022-05-10 2023-11-16 Dic株式会社 Purification method and production method for polyarylene sulfide

Also Published As

Publication number Publication date
JPWO2020032171A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2020032171A1 (en) Method for purifying and method for producing polyarylene sulfide
JP4310279B2 (en) Method for producing polyarylene sulfide, method for washing, and method for purifying organic solvent used for washing
JP5794468B2 (en) Method for producing polyarylene sulfide resin
JP5888118B2 (en) Method for producing oligoarylene sulfide and carboxyalkylamino group-containing compound
JP7031797B2 (en) Polyarylene sulfide, its purification method and manufacturing method
JP2015218214A (en) Method for producing sulfidizing agent and method for producing polyarylene sulfide resin
JP4929527B2 (en) Method for purifying polyarylene sulfide
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP7331661B2 (en) Method for producing sulfidating agent and polyarylene sulfide resin
JP2014141614A (en) Method for producing polyarylene sulfide
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP7214998B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP6003346B2 (en) Method for producing polyarylene sulfide resin
JP5888142B2 (en) Method for producing solution containing carboxyalkylamino group-containing compound and aprotic polar solvent, and method for producing composition containing alkali metal-containing inorganic salt and aprotic polar solvent
JP6256734B2 (en) Process for producing polyarylene sulfide
JP6003347B2 (en) Method for producing polyarylene sulfide resin
JP7172020B2 (en) Method for producing polyarylene sulfide resin
JP7318843B1 (en) Method for purifying and producing polyarylene sulfide
JP7214996B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP2021098815A (en) Polyarylene sulfide, and purification method and production method of the same
JP6390079B2 (en) Process for producing branched polyarylene sulfide resin
WO2023218735A1 (en) Purification method and production method for polyarylene sulfide
JP2024021683A (en) Production method of polyarylene sulfide resin
JP2024022460A (en) Method for producing polyarylene sulfide resin
JP2022161191A (en) Method for producing sulfidizing agent and polyarylene sulfide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848643

Country of ref document: EP

Kind code of ref document: A1