WO2023218735A1 - Purification method and production method for polyarylene sulfide - Google Patents

Purification method and production method for polyarylene sulfide Download PDF

Info

Publication number
WO2023218735A1
WO2023218735A1 PCT/JP2023/007708 JP2023007708W WO2023218735A1 WO 2023218735 A1 WO2023218735 A1 WO 2023218735A1 JP 2023007708 W JP2023007708 W JP 2023007708W WO 2023218735 A1 WO2023218735 A1 WO 2023218735A1
Authority
WO
WIPO (PCT)
Prior art keywords
pas
solvent
polyarylene sulfide
parts
mass
Prior art date
Application number
PCT/JP2023/007708
Other languages
French (fr)
Japanese (ja)
Inventor
麻朗 竹中
高志 古沢
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023525062A priority Critical patent/JP7318843B1/en
Publication of WO2023218735A1 publication Critical patent/WO2023218735A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for purifying and producing polyarylene sulfide.
  • PAS Polyarylene sulfide
  • PPS polyphenylene sulfide
  • PAS porous materials are useful for chemical filtration to remove impurities in semiconductor manufacturing, as well as filtration of synthetic raw materials and organic solvents in pharmaceutical manufacturing, food manufacturing, and chemical industry manufacturing, by taking advantage of their excellent heat resistance and chemical resistance. It is expected that it will be used for such purposes.
  • the problem to be solved by the present invention is to provide a method for purifying porous PAS that has a large specific surface area and reduces the COD of wastewater, and a method for producing porous PAS that has a large specific surface area and reduces the COD of wastewater. It's about doing.
  • the present disclosure provides a step of obtaining a mixture containing crude PAS ( 1) and Step (2) of contacting a mixture containing crude PAS with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms to form the crude PAS into porous particles having a specific surface area of 30 [m 2 /g] or more. and, a step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles; a step (4) of bringing the obtained porous particles into contact with carbonated water,
  • a method of removing the solvent in the step (3) is a steam stripping method, and the amount of steam is 50 parts by mass or more based on 100 parts by mass of the porous particles of PAS. Relating to a purification method.
  • the present disclosure also relates to a method for producing PAS, which includes a step of purifying PAS by the purification method described above.
  • the present invention it is possible to provide a method for purifying porous PAS that has a large specific surface area and reduced COD of wastewater, and a method for producing porous PAS that has a large specific surface area and reduced COD of wastewater.
  • One embodiment of the present disclosure relates to a method for purifying PAS. That is, the invention related to the method for purifying PAS purifies crude PAS by desolventizing a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent.
  • the method for removing the solvent in step (3) is a steam stripping method, and the amount of steam is 50 parts by mass or more based on 100 parts by mass of the PAS porous particles; It is characterized by The details will be explained below.
  • a mixture containing crude PAS is purified by desolventizing a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent. It has a step (1) of obtaining.
  • PAS is usually produced by reacting at least one polyhaloaromatic compound and at least one sulfidating agent under appropriate polymerization conditions in an organic polar solvent such as N-methyl-2-pyrrolidone. be synthesized.
  • the polyhaloaromatic compound used in the present disclosure is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically includes p-dichlorobenzene, o- Dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromnaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone , dibrobenzophenone, dichlorodiphenyl ether, dibromidiphenyl ether, dichlordiphenyl sulfide, dibromidiphenyl sulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof, and these compounds can be used as block co-
  • a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used as a branching agent as desired.
  • examples of such polyhaloaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, and 1,4,6-trichloronaphthalene.
  • polyhaloaromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, and hydroxyl groups
  • 2,6-dichloroaniline, 2,5-dichloroaniline, etc. 2,4-dichloroaniline, dihaloanilines such as 2,3-dichloroaniline; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether Examples include compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
  • active hydrogen-containing polyhaloaromatic compounds in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing polyhaloaromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups.
  • Aromatic compounds can also be used.
  • active hydrogen-containing polyhaloaromatic compounds active hydrogen-containing dihaloaromatic compounds are preferred, and dichloroaniline is particularly preferred.
  • polyhaloaromatic compounds having a nitro group examples include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether, etc. dihalonitrodiphenyl ethers; dihalonitrodiphenyl sulfones such as 3,3'-dinitro-4,4'-dichlorodiphenylsulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - Mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
  • mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene
  • 2-nitro-4,4'-dichlorodiphenyl ether etc. dihalonitrodiphenyl ethers
  • the sulfidating agents used in this disclosure include alkali metal sulfides such as lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates or aqueous mixtures or anhydrous. Furthermore, alkali metal sulfide can also be derived by reaction between alkali metal hydrosulfide and alkali metal hydroxide.
  • alkali metal hydroxide may be added in order to react with the alkali metal hydrosulfide and alkali metal thiosulfate that are normally present in trace amounts in the alkali metal sulfide.
  • Organic polar solvents used in the present disclosure include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, and ⁇ -caprolactam. , hexamethylphosphoramide, tetramethylurea, N-dimethylpropylene urea, amidourea of 1,3-dimethyl-2-imidazolidinonic acid, and lactams; sulfolanes such as sulfolane and dimethylsulfolane; benzonitrile, etc. Nitriles; ketones such as methyl phenyl ketone and mixtures thereof can be mentioned.
  • the polymerization conditions for the above-mentioned sulfidating agent and the polyhaloaromatic compound are generally at a temperature of 200 to 330°C, and a pressure that substantially removes the polymerization solvent and the polyhaloaromatic compound as a polymerization monomer.
  • the pressure should be within a range such that the pressure is maintained in the liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa.
  • the reaction time varies depending on temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably in the range of 1 hour to 48 hours.
  • the present disclosure also includes a form in which the crude reaction product is obtained by reacting a polyhaloaromatic compound and an organic polar solvent in the presence of a sulfidating agent and an organic polar solvent while continuously or intermittently adding the polyhaloaromatic compound and the organic polar solvent. do.
  • the crude reaction product containing PAS obtained from the polymerization reaction is processed by an appropriate method (such as a vacuum distillation method, a centrifugal separation method, a screw decanter method, a vacuum filtration method, a pressure filtration method, etc.).
  • an appropriate method such as a vacuum distillation method, a centrifugal separation method, a screw decanter method, a vacuum filtration method, a pressure filtration method, etc.
  • a mixture containing crude PAS can be obtained.
  • the degree of separation and removal of the organic polar solvent is not particularly limited, but the proportion of solid content (solid content concentration) in the mixture is preferably 40 parts by mass or more, more preferably is 50 parts by mass or more, more preferably 55 parts by mass or more.
  • the upper limit is not limited, it is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, and even more preferably 99 parts by mass or less.
  • the mixture containing crude PAS is then brought into contact with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms, so that the crude PAS has a specific surface area of 30 [m 2 /g] or more. (2) to form porous particles in the range of .
  • the oxygen atom-containing solvent having 1 to 3 carbon atoms to be brought into contact with the mixture containing crude PAS includes, for example, at least one selected from the group consisting of alcohol-based solvents and ketone-based solvents.
  • alcoholic solvents also referred to as alcoholic solvents
  • examples of alcoholic solvents include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, ethylene glycol, propylene glycol, and the like; 2-methoxyethyl alcohol, and the like.
  • acetone is exemplified as a ketone solvent (also referred to as a ketone solvent).
  • monohydric alcohols having 3 or fewer carbon atoms are preferred.
  • this step may be carried out using an aqueous solution prepared by adding water to a solvent containing an oxygen atom having 1 to 3 carbon atoms and reducing the concentration.
  • the temperature at which the oxygen atom-containing solvent having 1 to 3 carbon atoms is added is not particularly limited, but is preferably 10°C or higher, more preferably 20°C or higher, preferably 90°C or lower, and more preferably 70°C or lower. range.
  • There is no particular restriction on the amount of the solvent used for one cleaning but preferably 20 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 100 parts by mass or more, per 100 parts by mass of PAS. , preferably 5,000 parts by mass or less, more preferably 1,800 parts by mass or less, still more preferably 600 parts by mass or less.
  • the crude PAS is made into porous particles having a specific surface area of 30 [m 2 /g] or more, preferably 40 [m 2 /g], by contacting the crude PAS with an oxygen atom-containing solvent having 1 to 3 carbon atoms. 2 /g] or more and 200 [m 2 /g] or less, more preferably 60 [m 2 /g] or more and 120 [m 2 /g] or less. do.
  • the specific surface area can be measured by the method described in Examples.
  • the purification method according to the present embodiment subsequently includes a step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles.
  • the method for removing the oxygen atom-containing solvent from the mixture containing the porous particles is not particularly limited as long as it uses a steam stripping method, and any known device or method can be used. That is, the treatment may be performed by bringing the mixture containing the porous particles into contact with steam, and removing volatile substances such as the oxygen atom-containing solvent contained in the mixture by volatilizing them together with the steam.
  • the treatment may be performed by bringing the mixture containing the porous particles into contact with steam, and removing volatile substances such as the oxygen atom-containing solvent contained in the mixture by volatilizing them together with the steam.
  • a device that agitates the mixture using a stirrer while supplying steam for example, JP-A-4-292604, etc.
  • a device that supplies steam to the mixture from the bottom and brings it into countercurrent contact within a multistage column for example, Examples include Japanese Patent Publication No. 58-44086, Japanese Patent Application Publication No. 2018-58025, etc.), and vertical devices in which a steam
  • the conditions for steam stripping are not particularly limited, but for example, the amount of steam to be contacted is preferably 50 parts by mass or more, and 100 parts by mass or more, based on 100 parts by mass of the theoretical yield of PAS contained in the mixture containing the porous particles. Parts by mass or more are more preferable.
  • the flow rate of steam is preferably 0.5 kg/hr or more, more preferably 1.0 kg/hr or more per 1 kg of PAS. Within this range, the oxygen atom-containing solvent can be efficiently removed.
  • the temperature at the time of contacting with steam is preferably 100°C or higher, and preferably 170°C or lower. Within this range, the water content of the mixture can be adjusted to an appropriate range.
  • the pressure (gauge pressure) of the pot when contacting with steam is preferably 0.5 MPa or less, more preferably 0.3 MPa or less, and even more preferably atmospheric pressure or less.
  • Steam may be blown from the bottom of the device, from the side of the device, or from multiple locations at the same time.
  • the mixture containing the porous particles may be mixed in a pipe that supplies the apparatus and then enter the evaporation tank.
  • the mixture after the oxygen atom-containing solvent is removed by steam stripping contains water derived from steam.
  • the water content of the mixture is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, based on 100 parts by mass of the mixture.
  • the amount is preferably 250 parts by mass or less, and more preferably 200 parts by mass or less.
  • the volatile substances separated by the steam stripping process in this step may contain unreacted raw materials, organic polar solvents, PAS oligomers, byproducts, and the like. These materials may be further separated and recovered from the volatiles and reused in the production of other PAS.
  • the purification method according to the present embodiment subsequently includes a step (4) of bringing the obtained porous particles into contact with carbonated water.
  • the conditions for contacting the porous particles obtained in the preceding steps (1) to (3) with carbonated water are preferably 10°C or higher, more preferably 20°C or higher, and preferably 100°C.
  • the temperature is more preferably 80° C. or less
  • the pressure gauge pressure is less than 0.1 MPa, preferably 0.05 MPa or less, and even more preferably atmospheric pressure.
  • the amount of carbonated water used when bringing the porous particles into contact with the porous particles is not particular restriction.
  • 100 parts by mass preferably 50 parts by mass or more, more preferably 100 parts by mass or more, still more preferably 200 parts by mass or more, preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, still more preferably 2,000 parts by mass.
  • the range is below parts by mass.
  • Another embodiment of the present disclosure relates to a method for producing PAS, which includes a step of refining PAS by the above-described purification method. That is, the invention related to the method for producing PAS is to remove crude PAS by desolventizing a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent. Step (1) of obtaining a mixture comprising; Step (2) of contacting a mixture containing crude PAS with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms to form the crude PAS into porous particles having a specific surface area of 30 [m 2 /g] or more.
  • step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles; a step (4) of bringing the obtained porous particles into contact with carbonated water,
  • the method for removing the solvent in step (3) is a steam stripping method.
  • the PAS obtained through the purification method or manufacturing method of the present disclosure may be dried as is, or may be further washed with water or an organic solvent as appropriate, followed by solid-liquid separation and dried.
  • Drying is performed by heating to a temperature at which the solvent such as water substantially evaporates. Drying may be carried out under vacuum, in air or under an inert atmosphere such as nitrogen.
  • PAS obtained through the purification method or manufacturing method of the present disclosure described above has the following characteristics. That is, the purified PAS of the present disclosure has a specific surface area of 10 [m 2 /g] or more, preferably 15 [m 2 /g] or more, more preferably 20 [m 2 /g] or more, and preferably 180 [m 2 /g] or more. m 2 /g] or less, preferably 150 [m 2 /g] or less. Note that the specific surface area can be measured by the method described in Examples.
  • the purified PAS of the present disclosure has a sodium content of 100 [ppm] or more, preferably 150 [ppm] or more, more preferably 200 [ppm] or more, preferably 500 [ppm] or less, more preferably 400 [ppm] or more. ppm] or less.
  • the amount of sodium can be measured by the method of the example.
  • the PAS obtained through the purification method or production method of the present disclosure can be used as it is in various molding materials as before, but it can be thickened by heat treatment in air, oxygen-enriched air, or under reduced pressure. After performing such a thickening operation as necessary, it may be used in various molding materials.
  • This heat treatment temperature varies depending on the treatment time and the atmosphere in which the treatment is carried out, so it cannot be absolutely defined, but it is usually preferably carried out at 180° C. or higher. If the heat treatment temperature is less than 180° C., the rate of viscosity increase will be very slow and productivity will be poor, which is not preferable.
  • the heat treatment may be performed in a molten state using an extruder or the like at a temperature above the melting point of the polymer. However, in view of the possibility of deterioration of the polymer, workability, etc., it is preferable to carry out the reaction at a temperature of 100° C. or less above the melting point.
  • the PAS obtained according to the present disclosure can be blended with fillers and other resins, melt-kneaded, directly or once formed into pellets, and then subjected to various processes such as injection molding, extrusion molding, compression molding, and blow molding.
  • melt processing method it is possible to make molded products with excellent heat resistance, moldability, dimensional stability, etc.
  • various fillers in order to further improve performance such as strength, heat resistance, and dimensional stability, it is also possible to use it in combination with various fillers as long as the purpose of the present invention is not impaired.
  • the filler include fibrous fillers and inorganic fillers.
  • mold release agents small amounts of mold release agents, colorants, heat stabilizers, ultraviolet stabilizers, foaming agents, rust preventives, flame retardants, lubricants, and cups may be used as additives during molding without departing from the purpose of the present invention.
  • a ring agent can be included.
  • the following synthetic resins and elastomers can be mixed and used in the same manner.
  • These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylate, polyethylene, polypropylene, polytetrafluoroethylene,
  • the elastomer include polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, and liquid crystal polymer, and examples of the elastomer include polyolefin rubber, fluorine rubber, and silicone rubber.
  • Molded products obtained by melt-molding PAS obtained according to the present disclosure or resin compositions containing the same have excellent heat resistance, dimensional stability, etc., as well as PAS obtained by conventional methods.
  • Electrical and electronic parts such as encapsulation molded products, automotive parts such as lamp reflectors and various electrical components, interior materials for various buildings, aircraft, and automobiles, and precision parts such as OA equipment parts, camera parts, and clock parts, etc. It can be widely used as injection molded or compression molded products, or extrusion molded or pultruded products such as fibers, films, sheets, pipes, etc. Furthermore, by taking advantage of its porous nature, it is suitable for adsorbents, filter agents, catalyst carriers, and the like.
  • COD value of wastewater is less than 300mg/L
  • COD value of wastewater is 300mg/L or more
  • the temperature was raised over 5 hours until 27.300 kg of water was distilled out, and then the pot was sealed.
  • DCB distilled azeotropically during dehydration was separated in a decanter and returned to the pot as needed.
  • the anhydrous sodium sulfide composition was dispersed in the DCB inside the pot.
  • the internal temperature was cooled to 160°C, 47.492 kg (479 mol) of NMP was charged, and the temperature was raised to 185°C.
  • the pressure reached 0.00 MPa, the valve connected to the rectification column was opened, and the internal temperature was raised to 200° C. over 1 hour.
  • Example 1 20 kg of the crude PPS mixture obtained in Synthesis Example 1 and 21 kg of methanol were placed in a stirring container, stirred and mixed at 25° C. for 30 minutes, and the slurry was filtered with a filter device, and further 32 kg of methanol was poured in several portions and filtered. The specific surface area was 95 m 2 /g. The filtered cake was transferred to a steam stripping device (Ribocorn manufactured by Okawara Seisakusho Co., Ltd.), and stirred and mixed for 60 minutes while blowing steam at 11 kg/hr. As a result of analysis of the amount of methanol contained in the mixture after treatment, it was found to be 0.1%.
  • Example 2 The same procedure as in Example 1 was carried out except that the steam amount was 16 kg/hr and the steam flow rate was tripled. Analysis of the amount of methanol contained in the mixture after the steam stripping process revealed that it was 0.02%. Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
  • Example 3 The same procedure as in Example 2 was carried out except that ethanol was used as the washing solvent.
  • the specific surface area of the resin obtained after the contacting step with ethanol was 92 m 2 /g.
  • Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
  • Example 4 The same procedure as in Example 2 was carried out except that isopropyl alcohol was used as the washing solvent.
  • the specific surface area of the resin obtained after the contacting step with isopropyl alcohol was 90 m 2 /g.
  • the amount of isopropyl alcohol contained in the mixture after the steam stripping process was analyzed and found to be 0.04%.
  • Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
  • Example 5 The same procedure as in Example 2 was carried out except that acetone was used as the washing solvent.
  • the specific surface area of PPS after the step of contacting with acetone was 88 m 2 /g.
  • the amount of acetone contained in the mixture after the steam stripping process was analyzed and found to be 0.03%.
  • Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
  • the slurry was filtered using a filtration device, and 42 kg of carbonated water was poured into the slurry in several portions and filtered.
  • the COD concentration was measured using the filtered liquid phase component as wastewater.
  • Table 2 shows the COD evaluation of the wastewater and the evaluation of the obtained porous PPS.
  • Comparative example 2 It was carried out in the same manner as Comparative Example 1, and the cake produced by filtration was placed in a dryer to remove methanol. The amount of methanol contained in the mixture after drying was analyzed and found to be 3.2%. Table 2 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water, which had a specific surface area of 8 m 2 /g, and the evaluation of the obtained porous PPS.
  • Example 4 The same procedure as in Example 1 was carried out except that the amount of steam was 1.1 kg/hr and the flow rate of steam was increased 0.2 times. An analysis of the amount of methanol contained in the mixture after the steam stripping process revealed that it was 30%. Table 2 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
  • Examples 1 to 5 and Comparative Examples 1 to 2 showed that PPS produced by removing the solvent using steam stripping had a larger specific surface area and a smaller amount of sodium. Furthermore, a comparison between Examples 1 to 5 and Comparative Example 3 showed that the COD concentration of wastewater can be reduced when steam stripping is used. Furthermore, a comparison between Examples 1 to 5 and Comparative Example 4 showed that the COD concentration of wastewater can be reduced when treated with a specific range of steam amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided are a purification method and a production method that are for porous polyarylene sulfide (PAS) and that enlarge specific surface area of the same and reduce COD in waste water. In more detail, the PAS purification method and production method are characterized by comprising: a step (1) for obtaining a mixture containing crude PAS, by removing solvents from a crude reaction product that contains PAS and that is obtained by reacting, in an organic polar solvent, a polyhalo aromatic compound and a sulfidation agent; a step (2) for converting the crude PAS into porous particles having a specific surface area in a range of 30 [m2/g] or more, by bringing the mixture into contact with water and an oxygen atom-containing solvent having 1-3 carbon atoms; a step (3) for removing the oxygen atom-containing solvent from the mixture containing the porous particles; and a step (4) for bringing the obtained porous particles into contact with carbonated water. The methods are characterized in that the process for removing the solvent in the step (3) is a steam stripping process, and that the amount of steam used therein is 50 parts by mass or more with respect to 100 parts by mass of the porous particles of PAS.

Description

ポリアリーレンスルフィドの精製方法及び製造方法Purification method and manufacturing method of polyarylene sulfide
 本発明は、ポリアリーレンスルフィドの精製方法、及び、製造方法に関する。 The present invention relates to a method for purifying and producing polyarylene sulfide.
 ポリフェニレンスルフィド(以下、PPSと略称することがある)に代表されるポリアリーレンスルフィド(以下、PASと略称することがある)は、耐熱性、耐薬品性等に優れ、電気電子部品、自動車部品、給湯機部品、繊維、フィルム用途等に幅広く利用されている。中でも、PAS多孔質体は、優れた耐熱性や耐薬品性を活かして、半導体製造における不純物除去のための薬液ろ過や、医薬品製造、食品製造、化学工業品製造における合成原料や有機溶剤のろ過などへの利用が期待されている。 Polyarylene sulfide (hereinafter sometimes abbreviated as PAS), represented by polyphenylene sulfide (hereinafter sometimes abbreviated as PPS), has excellent heat resistance and chemical resistance, and is used in electrical and electronic parts, automobile parts, It is widely used for water heater parts, textiles, films, etc. Among these, PAS porous materials are useful for chemical filtration to remove impurities in semiconductor manufacturing, as well as filtration of synthetic raw materials and organic solvents in pharmaceutical manufacturing, food manufacturing, and chemical industry manufacturing, by taking advantage of their excellent heat resistance and chemical resistance. It is expected that it will be used for such purposes.
 このようなPASを用いて多孔質の粒子体を製造する方法として、PASを重合後、高温で所定量の水とN-メチル-2-ピロリドンを含む混合溶液を添加して製造する方法が知られている(特許文献1参照)。しかしながら、得られた多孔質の粒子体は、比表面積が小さく、多孔質に基づく各種機能、例えば、イオン交換能や吸油量が低いものであった。 As a method for producing porous particles using such PAS, a method is known in which PAS is polymerized and then a mixed solution containing a predetermined amount of water and N-methyl-2-pyrrolidone is added at high temperature. (See Patent Document 1). However, the obtained porous particles had a small specific surface area, and various functions based on porosity, such as ion exchange ability and oil absorption, were low.
 また、PASを重合後、特定の有機溶媒と接触、及び、水と接触させてPASを多孔質化する方法が知られている(特許文献2参照)。しかしながら、当該方法で多孔質化されたPASは、後続の精製工程において比表面積を維持するために、一定量の溶媒を含有した状態で水洗する必要があるため、廃水の環境負荷が課題であった。 There is also known a method of making PAS porous by contacting it with a specific organic solvent and water after polymerizing PAS (see Patent Document 2). However, PAS made porous by this method needs to be washed with water while containing a certain amount of solvent in order to maintain the specific surface area in the subsequent purification process, so the environmental impact of wastewater is an issue. Ta.
特開平2-163126号公報Japanese Unexamined Patent Publication No. 2-163126 特開2021-98815号公報JP2021-98815A
 そこで本発明が解決しようとする課題は、比表面積が大きくかつ廃水のCODを削減した多孔質PASの精製方法、及び、比表面積が大きくかつ廃水のCODを削減した多孔質PASの製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a method for purifying porous PAS that has a large specific surface area and reduces the COD of wastewater, and a method for producing porous PAS that has a large specific surface area and reduces the COD of wastewater. It's about doing.
 本願発明者らは種々の検討を行った結果、粗PASを含む混合物を、特定有機溶媒と接触、及び、水と接触させて多孔質化した後、スチームストリッピング法を用いて前記特定有機溶媒を除去してから、多孔質化した粗PASと、水及び炭酸ガス又は炭酸水とを接触させる精製方法により、従来の方法よりも比表面積が大きくかつ廃水のCODを削減した多孔質PASが得られることを見出し、本発明を完成するに至った。 As a result of various studies, the inventors of the present application found that after making a mixture containing crude PAS porous by contacting it with a specific organic solvent and water, the specific organic solvent was removed using a steam stripping method. A purification method in which the porous crude PAS is brought into contact with water and carbon dioxide gas or carbonated water after removal of the The present invention was completed based on the discovery that the present invention is possible.
 すなわち、本開示は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程(1)と、
 粗PASを含む混合物を、水及び炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)と、
 前記多孔質粒子を含む混合物から前記酸素原子含有溶媒を除去する工程(3)と、
 得られた多孔質粒子と炭酸水とを接触させる工程(4)とを有し、
 前記工程(3)における溶媒を除去する方法がスチームストリッピング法であること、かつ、スチーム量がPASの多孔質粒子100質量部に対して50質量部以上であること、を特徴とするPASの精製方法に関する。
That is, the present disclosure provides a step of obtaining a mixture containing crude PAS ( 1) and
Step (2) of contacting a mixture containing crude PAS with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms to form the crude PAS into porous particles having a specific surface area of 30 [m 2 /g] or more. and,
a step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles;
a step (4) of bringing the obtained porous particles into contact with carbonated water,
A method of removing the solvent in the step (3) is a steam stripping method, and the amount of steam is 50 parts by mass or more based on 100 parts by mass of the porous particles of PAS. Relating to a purification method.
 また、本開示は、前記記載の精製方法によりPASを精製する工程を有することを特徴とするPASの製造方法に関する。 The present disclosure also relates to a method for producing PAS, which includes a step of purifying PAS by the purification method described above.
 本発明によれば、比表面積が大きくかつ廃水のCODを削減した多孔質PASの精製方法、及び、比表面積が大きくかつ廃水のCODを削減した多孔質PASの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for purifying porous PAS that has a large specific surface area and reduced COD of wastewater, and a method for producing porous PAS that has a large specific surface area and reduced COD of wastewater.
 以下、本開示の一実施形態について詳細に説明するが、本開示の範囲はここで説明する一実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々の変更ができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。 Hereinafter, one embodiment of the present disclosure will be described in detail, but the scope of the present disclosure is not limited to the one embodiment described here, and various changes can be made without departing from the spirit of the present disclosure. Additionally, if multiple upper and lower limit values are listed for a specific parameter, any of these upper and lower limit values may be combined to form a suitable numerical range. can.
 本開示の実施形態の一つとしては、PASの精製方法に係るものである。すなわち、当該PASの精製方法に係る発明は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程(1)と、粗PASを含む混合物を、水及び炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)と、前記多孔質粒子を含む混合物から前記酸素原子含有溶媒を除去する工程(3)と、得られた多孔質粒子と炭酸水とを接触させる工程(4)とを有し、前記工程(3)における溶媒を除去する方法がスチームストリッピング法であること、かつ、スチーム量がPASの多孔質粒子100質量部に対して50質量部以上であること、を特徴とする。以下詳述する。 One embodiment of the present disclosure relates to a method for purifying PAS. That is, the invention related to the method for purifying PAS purifies crude PAS by desolventizing a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent. step (1) of obtaining a mixture containing crude PAS, and contacting the mixture containing crude PAS with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms so that the crude PAS has a specific surface area of 30 [m 2 /g] or more; Step (2) of forming porous particles into porous particles, Step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles, and Step (4) of bringing the obtained porous particles into contact with carbonated water. ), the method for removing the solvent in step (3) is a steam stripping method, and the amount of steam is 50 parts by mass or more based on 100 parts by mass of the PAS porous particles; It is characterized by The details will be explained below.
工程(1)
 本実施形態に係る精製方法は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程(1)を有する。
Process (1)
In the purification method according to the present embodiment, a mixture containing crude PAS is purified by desolventizing a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent. It has a step (1) of obtaining.
 PASは、通常、N-メチル-2-ピロリドンなどを代表とする有機極性溶媒中で、少なくとも1種のポリハロ芳香族化合物と少なくとも1種のスルフィド化剤とを適当な重合条件下で反応させて合成される。 PAS is usually produced by reacting at least one polyhaloaromatic compound and at least one sulfidating agent under appropriate polymerization conditions in an organic polar solvent such as N-methyl-2-pyrrolidone. be synthesized.
 本開示で用いられるポリハロ芳香族化合物とは、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p-ジクロルベンゼン、o-ジクロルベンゼン、m-ジクロルベンゼン、トリクロルベンゼン、テトラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、トリヨードベンゼン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルベンゼンを80モル%以上含むものである。 The polyhaloaromatic compound used in the present disclosure is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically includes p-dichlorobenzene, o- Dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromnaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone , dibrobenzophenone, dichlorodiphenyl ether, dibromidiphenyl ether, dichlordiphenyl sulfide, dibromidiphenyl sulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof, and these compounds can be used as block co-blocking agents. May be polymerized. Among these, preferred are dihalogenated benzenes, and particularly preferred are those containing 80 mol% or more of p-dichlorobenzene.
 また、枝分かれ構造とすることによってPASの粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロ芳香族化合物としては、例えば、1,2,4-トリクロルベンゼン、1,3,5-トリクロルベンゼン、1,4,6-トリクロルナフタレン等が挙げられる。 Furthermore, for the purpose of increasing the viscosity of PAS by creating a branched structure, a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used as a branching agent as desired. Examples of such polyhaloaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, and 1,4,6-trichloronaphthalene.
 更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロ芳香族化合物を挙げることが出来、具体的には、2,6-ジクロルアニリン、2,5-ジクロルアニリン、2,4-ジクロルアニリン、2,3-ジクロルアニリン等のジハロアニリン類;2,3,4-トリクロルアニリン、2,3,5-トリクロルアニリン、2,4,6-トリクロルアニリン、3,4,5-トリクロルアニリン等のトリハロアニリン類;2,2’-ジアミノ-4,4’-ジクロルジフェニルエーテル、2,4’-ジアミノ-2’,4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類及びこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。 Furthermore, polyhaloaromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, and hydroxyl groups can be mentioned, and specifically, 2,6-dichloroaniline, 2,5-dichloroaniline, etc. , 2,4-dichloroaniline, dihaloanilines such as 2,3-dichloroaniline; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether Examples include compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
 また、これらの活性水素含有ポリハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロ芳香族化合物も使用出来る。 In addition, active hydrogen-containing polyhaloaromatic compounds in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing polyhaloaromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups. Aromatic compounds can also be used.
 これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。 Among these various active hydrogen-containing polyhaloaromatic compounds, active hydrogen-containing dihaloaromatic compounds are preferred, and dichloroaniline is particularly preferred.
 ニトロ基を有するポリハロ芳香族化合物としては、例えば、2,4-ジニトロクロルベンゼン、2,5-ジクロルニトロベンゼン等のモノ又はジハロニトロベンゼン類;2-ニトロ-4,4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’-ジニトロ-4,4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5-ジクロル-3-ニトロピリジン、2-クロル-3,5-ジニトロピリジン等のモノ又はジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。 Examples of polyhaloaromatic compounds having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether, etc. dihalonitrodiphenyl ethers; dihalonitrodiphenyl sulfones such as 3,3'-dinitro-4,4'-dichlorodiphenylsulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - Mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
 本開示で用いられるスルフィド化剤としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物などの硫化アルカリ金属が含まれる。かかる硫化アルカリ金属は、水和物あるいは水性混合物あるいは無水物として使用することが出来る。また、硫化アルカリ金属は水硫化アルカリ金属と水酸化アルカリ金属との反応によっても導くことが出来る。 The sulfidating agents used in this disclosure include alkali metal sulfides such as lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates or aqueous mixtures or anhydrous. Furthermore, alkali metal sulfide can also be derived by reaction between alkali metal hydrosulfide and alkali metal hydroxide.
 尚、通常、硫化アルカリ金属中に微量存在する水硫化アルカリ金属、チオ硫酸アルカリ金属と反応させるために、少量の水酸化アルカリ金属を加えても差し支えない。 Incidentally, a small amount of alkali metal hydroxide may be added in order to react with the alkali metal hydrosulfide and alkali metal thiosulfate that are normally present in trace amounts in the alkali metal sulfide.
 本開示で用いられる有機極性溶媒としては、N-メチル-2-ピロリドン、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、テトラメチル尿素、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸のアミド尿素、及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることが出来る。 Organic polar solvents used in the present disclosure include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methyl-ε-caprolactam, and ε-caprolactam. , hexamethylphosphoramide, tetramethylurea, N-dimethylpropylene urea, amidourea of 1,3-dimethyl-2-imidazolidinonic acid, and lactams; sulfolanes such as sulfolane and dimethylsulfolane; benzonitrile, etc. Nitriles; ketones such as methyl phenyl ketone and mixtures thereof can be mentioned.
 これらの有機極性溶媒の存在下、上記のスルフィド化剤とポリハロ芳香族化合物との重合条件は一般に、温度200~330℃であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液層に保持するような範囲であるべきであり、一般には0.1~20MPa、好ましくは0.1~2MPaの範囲より選択される。反応時間は温度と圧力により異なるが、一般に10分ないし72時間の範囲であり、望ましくは1時間乃至48時間の範囲である。 In the presence of these organic polar solvents, the polymerization conditions for the above-mentioned sulfidating agent and the polyhaloaromatic compound are generally at a temperature of 200 to 330°C, and a pressure that substantially removes the polymerization solvent and the polyhaloaromatic compound as a polymerization monomer. The pressure should be within a range such that the pressure is maintained in the liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa. The reaction time varies depending on temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably in the range of 1 hour to 48 hours.
 本開示においては、粗反応生成物がスルフィド化剤及び有機極性溶媒の存在下に、ポリハロ芳香族化合物及び有機極性溶媒を連続的、乃至、断続的に加えながら反応させることにより得られる形態も包含する。 The present disclosure also includes a form in which the crude reaction product is obtained by reacting a polyhaloaromatic compound and an organic polar solvent in the presence of a sulfidating agent and an organic polar solvent while continuously or intermittently adding the polyhaloaromatic compound and the organic polar solvent. do.
 本開示においては、重合反応にて得られたPASを含有する粗反応生成物を適当な手段(減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により「脱溶媒」させて、有機極性溶媒を分離除去した後、粗PASを含む混合物を得ることができる。その際、有機極性溶媒の分離除去の程度は特に限定されないが、該混合物中の固形分の割合(固形分濃度)が、該混合物100質量部に対して、好ましくは40質量部以上、より好ましくは50質量部以上、更に好ましくは55質量部以上である。上限値は限定されないが、好ましくは100質量部以下であり、より好ましくは100質量部未満、さらに好ましくは99質量部以下である。 In the present disclosure, the crude reaction product containing PAS obtained from the polymerization reaction is processed by an appropriate method (such as a vacuum distillation method, a centrifugal separation method, a screw decanter method, a vacuum filtration method, a pressure filtration method, etc.). After separation and removal of the organic polar solvent, a mixture containing crude PAS can be obtained. At that time, the degree of separation and removal of the organic polar solvent is not particularly limited, but the proportion of solid content (solid content concentration) in the mixture is preferably 40 parts by mass or more, more preferably is 50 parts by mass or more, more preferably 55 parts by mass or more. Although the upper limit is not limited, it is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, and even more preferably 99 parts by mass or less.
工程(2)
 本実施形態に係る精製方法は、続いて、粗PASを含む混合物を、水及び炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)を有する。
Process (2)
In the purification method according to the present embodiment, the mixture containing crude PAS is then brought into contact with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms, so that the crude PAS has a specific surface area of 30 [m 2 /g] or more. (2) to form porous particles in the range of .
 ここで粗PASを含む混合物と接触させる炭素原子数1~3の酸素原子含有溶媒としては、例えば、アルコール系溶媒及びケトン系溶媒からなる群から選ばれる少なくとも一つが挙げられる。アルコール系溶媒(アルコール溶媒ともいう)としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等;2-メトキシエチルアルコール等;が例示される。また、ケトン系溶媒(ケトン溶媒ともいう)としては、アセトンが例示される。本開示において、炭素原子数3以下の一価アルコールが好ましい。また、炭素原子数1~3の酸素原子含有溶媒に水を加えた水溶液とし、濃度を低くした上で本工程を実施してもよい。 Here, the oxygen atom-containing solvent having 1 to 3 carbon atoms to be brought into contact with the mixture containing crude PAS includes, for example, at least one selected from the group consisting of alcohol-based solvents and ketone-based solvents. Examples of alcoholic solvents (also referred to as alcoholic solvents) include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, ethylene glycol, propylene glycol, and the like; 2-methoxyethyl alcohol, and the like. Moreover, acetone is exemplified as a ketone solvent (also referred to as a ketone solvent). In the present disclosure, monohydric alcohols having 3 or fewer carbon atoms are preferred. Alternatively, this step may be carried out using an aqueous solution prepared by adding water to a solvent containing an oxygen atom having 1 to 3 carbon atoms and reducing the concentration.
 炭素原子数1~3の酸素原子含有溶媒を加える際の温度としては特に限定されないが、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは90℃以下、より好ましくは70℃以下の範囲である。一回の洗浄に使用する該溶剤の量には特に制限は無いが、好ましくはPAS100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは100質量部以上から、好ましくは5000質量部以下、より好ましくは1800質量部以下、さらに好ましくは600質量部以下である。 The temperature at which the oxygen atom-containing solvent having 1 to 3 carbon atoms is added is not particularly limited, but is preferably 10°C or higher, more preferably 20°C or higher, preferably 90°C or lower, and more preferably 70°C or lower. range. There is no particular restriction on the amount of the solvent used for one cleaning, but preferably 20 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 100 parts by mass or more, per 100 parts by mass of PAS. , preferably 5,000 parts by mass or less, more preferably 1,800 parts by mass or less, still more preferably 600 parts by mass or less.
 本開示は、粗PASを、炭素原子数1~3の酸素原子含有溶媒と接触させることにより、粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子、好ましくは40〔m/g〕以上から、200〔m/g〕以下の範囲の多孔質粒子、より好ましくは60〔m/g〕以上から、120〔m/g〕以下の範囲の多孔質粒子とする。なお、比表面積は実施例の方法によって測定することができる。 In the present disclosure, the crude PAS is made into porous particles having a specific surface area of 30 [m 2 /g] or more, preferably 40 [m 2 /g], by contacting the crude PAS with an oxygen atom-containing solvent having 1 to 3 carbon atoms. 2 /g] or more and 200 [m 2 /g] or less, more preferably 60 [m 2 /g] or more and 120 [m 2 /g] or less. do. Note that the specific surface area can be measured by the method described in Examples.
工程(3)
 本実施形態に係る精製方法は、続いて、前記多孔質粒子を含む混合物から前記酸素原子含有溶媒を除去する工程(3)を有する。
Process (3)
The purification method according to the present embodiment subsequently includes a step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles.
 本工程において、前記多孔質粒子を含む混合物から前記酸素原子含有溶媒を除去する方法は、スチームストリッピング法を用いるものであれば特に限定されず、公知の装置や方法を用いることができる。すなわち、前記多孔質粒子を含む混合物とスチームを接触させ、混合物に含まれる前記酸素原子含有溶媒等の揮発性物質をスチームと共に揮発させて除去する方法で処理すればよい。例えば、スチームを供給しながら混合物を攪拌機で攪拌する装置(例えば、特開平4-292604号公報等)や、混合物に対して下部からスチームを供給し多段塔内で向流接触させる装置(例えば、特公昭58-44086号公報、特開2018-58025号公報等)、混合物の液面下にスチームノズルが配置された縦型装置(例えば、特開平9-220402号公報等)等が挙げられる。 In this step, the method for removing the oxygen atom-containing solvent from the mixture containing the porous particles is not particularly limited as long as it uses a steam stripping method, and any known device or method can be used. That is, the treatment may be performed by bringing the mixture containing the porous particles into contact with steam, and removing volatile substances such as the oxygen atom-containing solvent contained in the mixture by volatilizing them together with the steam. For example, there is a device that agitates the mixture using a stirrer while supplying steam (for example, JP-A-4-292604, etc.), or a device that supplies steam to the mixture from the bottom and brings it into countercurrent contact within a multistage column (for example, Examples include Japanese Patent Publication No. 58-44086, Japanese Patent Application Publication No. 2018-58025, etc.), and vertical devices in which a steam nozzle is arranged below the liquid level of the mixture (for example, Japanese Patent Application Publication No. 9-220402, etc.).
 スチームストリッピングの条件は特に限定されないが、例えば、接触させるスチームの量が前記多孔質粒子を含む混合物に含まれるPASの理論収率量100質量部に対して、50質量部以上が好ましく、100質量部以上がさらに好ましい。また、例えば、スチームの流量がPAS1kgあたり0.5kg/hr以上が好ましく、1.0kg/hr以上がより好ましい。かかる範囲において、酸素原子含有溶媒の除去を効率よく行うことができる。また、例えば、スチームを接触させる際の温度が100℃以上が好ましく、170℃以下が好ましい。かかる範囲において、混合物の含水量を適切な範囲に調整することができる。また、例えば、スチームを接触させる際の釜の圧力(ゲージ圧)が、0.5MPa以下が好ましく、0.3MPa以下がより好ましく、大気圧以下がさらに好ましい。スチームは、装置の下部から吹き込んでも良いし、装置の側面から吹き込んでも良く、同時に複数の箇所から吹き込んでも良い。また、前記多孔質粒子を含む混合物を装置に供給する配管中で混合させた後に蒸発タンクに入るようにしても良い。 The conditions for steam stripping are not particularly limited, but for example, the amount of steam to be contacted is preferably 50 parts by mass or more, and 100 parts by mass or more, based on 100 parts by mass of the theoretical yield of PAS contained in the mixture containing the porous particles. Parts by mass or more are more preferable. Further, for example, the flow rate of steam is preferably 0.5 kg/hr or more, more preferably 1.0 kg/hr or more per 1 kg of PAS. Within this range, the oxygen atom-containing solvent can be efficiently removed. Further, for example, the temperature at the time of contacting with steam is preferably 100°C or higher, and preferably 170°C or lower. Within this range, the water content of the mixture can be adjusted to an appropriate range. Further, for example, the pressure (gauge pressure) of the pot when contacting with steam is preferably 0.5 MPa or less, more preferably 0.3 MPa or less, and even more preferably atmospheric pressure or less. Steam may be blown from the bottom of the device, from the side of the device, or from multiple locations at the same time. Alternatively, the mixture containing the porous particles may be mixed in a pipe that supplies the apparatus and then enter the evaporation tank.
 本工程において、スチームストリッピングにより前記酸素原子含有溶媒を除去した後の混合物はスチーム由来の水を含む。混合物の含水量は、前記多孔質粒子の比表面積を維持する観点から、混合物100質量部に対して10質量部以上が好ましく、20質量部以上がさらに好ましい。また、工程(4)における洗浄効率の観点から、250質量部以下が好ましく、200質量部以下がさらに好ましい。 In this step, the mixture after the oxygen atom-containing solvent is removed by steam stripping contains water derived from steam. From the viewpoint of maintaining the specific surface area of the porous particles, the water content of the mixture is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, based on 100 parts by mass of the mixture. Moreover, from the viewpoint of cleaning efficiency in step (4), the amount is preferably 250 parts by mass or less, and more preferably 200 parts by mass or less.
 本工程においてスチームストリッピング処理により分離された揮発性物質中には、前記酸素原子含有溶媒の他に、未反応原料や有機極性溶媒、PASオリゴマー、副生成物などが含まれていてもよい。揮発性物質からこれらの物質をさらに分離及び回収し、別のPASの製造に再利用してもよい。 In addition to the oxygen atom-containing solvent, the volatile substances separated by the steam stripping process in this step may contain unreacted raw materials, organic polar solvents, PAS oligomers, byproducts, and the like. These materials may be further separated and recovered from the volatiles and reused in the production of other PAS.
工程(4)
 本実施形態に係る精製方法は、続いて、得られた多孔質粒子と炭酸水とを接触させる工程(4)を有する。
Process (4)
The purification method according to the present embodiment subsequently includes a step (4) of bringing the obtained porous particles into contact with carbonated water.
 本開示において、前工程(1)~(3)で得られた多孔質粒子を、炭酸水と接触させる際の条件は、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは100℃以下、より好ましくは80℃以下までの範囲であり、かつ、圧力(ゲージ圧)が0.1MPaより小さく、好ましくは0.05MPa以下の範囲、さらに好ましくは大気圧下である。 In the present disclosure, the conditions for contacting the porous particles obtained in the preceding steps (1) to (3) with carbonated water are preferably 10°C or higher, more preferably 20°C or higher, and preferably 100°C. Hereinafter, the temperature is more preferably 80° C. or less, and the pressure (gauge pressure) is less than 0.1 MPa, preferably 0.05 MPa or less, and even more preferably atmospheric pressure.
 前記多孔質粒子と接触させる際に用いる炭酸水の量についても特に制限は無いが、多孔質粒子と炭酸水との接触が良好に行われ、精製効率がさらに好適となることから、多孔質粒子100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上、さらに好ましくは200質量部以上から、好ましくは10000質量部以下、より好ましくは5000質量部以下、さらに好ましくは2000質量部以下の範囲である。 There is no particular restriction on the amount of carbonated water used when bringing the porous particles into contact with the porous particles. Based on 100 parts by mass, preferably 50 parts by mass or more, more preferably 100 parts by mass or more, still more preferably 200 parts by mass or more, preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, still more preferably 2,000 parts by mass. The range is below parts by mass.
 そして、本開示の他の実施形態の一つとしては、上記の精製方法によりPASを精製する工程を有する、PASの製造方法に係るものである。すなわち、当該PASの製造方法に係る発明は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程(1)と、
 粗PASを含む混合物を、水及び炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)と、
 前記多孔質粒子を含む混合物から前記酸素原子含有溶媒を除去する工程(3)と、
 得られた多孔質粒子と炭酸水とを接触させる工程(4)とを有し、
 前記工程(3)における溶媒を除去する方法がスチームストリッピング法であることを特徴とする。
Another embodiment of the present disclosure relates to a method for producing PAS, which includes a step of refining PAS by the above-described purification method. That is, the invention related to the method for producing PAS is to remove crude PAS by desolventizing a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent. Step (1) of obtaining a mixture comprising;
Step (2) of contacting a mixture containing crude PAS with water and an oxygen atom-containing solvent having 1 to 3 carbon atoms to form the crude PAS into porous particles having a specific surface area of 30 [m 2 /g] or more. and,
a step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles;
a step (4) of bringing the obtained porous particles into contact with carbonated water,
The method for removing the solvent in step (3) is a steam stripping method.
 本開示の精製方法ないし製造方法を経て得られたPASは、そのまま乾燥しても良いし、更に水洗や有機溶剤洗を適宜行った後、固液分離し、乾燥を行っても良い。 The PAS obtained through the purification method or manufacturing method of the present disclosure may be dried as is, or may be further washed with water or an organic solvent as appropriate, followed by solid-liquid separation and dried.
 乾燥は実質的に水等の溶媒が蒸発する温度に加熱して行う。乾燥は真空下で行っても良いし、空気中あるいは窒素のような不活性雰囲気下で行っても良い。 Drying is performed by heating to a temperature at which the solvent such as water substantially evaporates. Drying may be carried out under vacuum, in air or under an inert atmosphere such as nitrogen.
 上述した本開示の精製方法ないし製造方法を経て得られたPAS(単に、「精製PAS」ということがある)は以下の特徴を有する。すなわち、本開示の精製PASは、比表面積が、10〔m/g〕以上、好ましくは15〔m/g〕以上、より好ましくは20〔m/g〕以上から、好ましくは180〔m/g〕以下、より好ましくは150〔m/g〕以下までの範囲の多孔質粒子である。なお、比表面積は実施例の方法によって測定することができる。 PAS obtained through the purification method or manufacturing method of the present disclosure described above (sometimes simply referred to as "purified PAS") has the following characteristics. That is, the purified PAS of the present disclosure has a specific surface area of 10 [m 2 /g] or more, preferably 15 [m 2 /g] or more, more preferably 20 [m 2 /g] or more, and preferably 180 [m 2 /g] or more. m 2 /g] or less, preferably 150 [m 2 /g] or less. Note that the specific surface area can be measured by the method described in Examples.
 また、本開示の精製PASは、ナトリウム量が、100〔ppm〕以上、好ましくは150〔ppm〕以上、より好ましくは200〔ppm〕以上から、好ましくは500〔ppm〕以下、より好ましくは400〔ppm〕以下までの範囲の多孔質粒子である。なお、ナトリウム量は実施例の方法によって測定することができる。 Further, the purified PAS of the present disclosure has a sodium content of 100 [ppm] or more, preferably 150 [ppm] or more, more preferably 200 [ppm] or more, preferably 500 [ppm] or less, more preferably 400 [ppm] or more. ppm] or less. In addition, the amount of sodium can be measured by the method of the example.
 本開示の精製方法ないし製造方法を経て得られたPASは従来と同様、そのまま各種成形材料等に利用できるが、空気あるいは酸素富化空気中あるいは減圧下で熱処理することにより増粘することが可能であり、必要に応じてこのような増粘操作を行った後、各種成形材料等に利用しても良い。この熱処理温度は処理時間によっても異なるし処理する雰囲気によっても異なるので一概に規定できないが、通常は180℃以上で行うことが好ましい。熱処理温度が180℃未満では増粘速度が非常に遅く生産性が悪く好ましくない。熱処理は押出機等を用いて重合体の融点以上で、溶融状態で行っても良い。但し、重合体の劣化の可能性あるいは作業性等から、融点プラス100℃以下で行うことが好ましい。 The PAS obtained through the purification method or production method of the present disclosure can be used as it is in various molding materials as before, but it can be thickened by heat treatment in air, oxygen-enriched air, or under reduced pressure. After performing such a thickening operation as necessary, it may be used in various molding materials. This heat treatment temperature varies depending on the treatment time and the atmosphere in which the treatment is carried out, so it cannot be absolutely defined, but it is usually preferably carried out at 180° C. or higher. If the heat treatment temperature is less than 180° C., the rate of viscosity increase will be very slow and productivity will be poor, which is not preferable. The heat treatment may be performed in a molten state using an extruder or the like at a temperature above the melting point of the polymer. However, in view of the possibility of deterioration of the polymer, workability, etc., it is preferable to carry out the reaction at a temperature of 100° C. or less above the melting point.
 本開示により得られたPASは、従来と同様、充填剤や他の樹脂と配合して溶融混練後、直接又は一旦ペレットに成形した後、射出成形、押出成形、圧縮成形、ブロー成形のごとき各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形物にすることができる。しかしながら強度、耐熱性、寸法安定性等の性能をさらに改善するために、本発明の目的を損なわない範囲で各種充填材と組み合わせて使用することも可能である。充填材としては、繊維状充填材、無機充填材等が挙げられる。また、成形加工の際に添加剤として本発明の目的を逸脱しない範囲で少量の、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤を含有せしめることができる。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用できる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリレート、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、弗素ゴム、シリコーンゴム等が挙げられる。 As in the past, the PAS obtained according to the present disclosure can be blended with fillers and other resins, melt-kneaded, directly or once formed into pellets, and then subjected to various processes such as injection molding, extrusion molding, compression molding, and blow molding. By the melt processing method, it is possible to make molded products with excellent heat resistance, moldability, dimensional stability, etc. However, in order to further improve performance such as strength, heat resistance, and dimensional stability, it is also possible to use it in combination with various fillers as long as the purpose of the present invention is not impaired. Examples of the filler include fibrous fillers and inorganic fillers. In addition, small amounts of mold release agents, colorants, heat stabilizers, ultraviolet stabilizers, foaming agents, rust preventives, flame retardants, lubricants, and cups may be used as additives during molding without departing from the purpose of the present invention. A ring agent can be included. Furthermore, the following synthetic resins and elastomers can be mixed and used in the same manner. These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylate, polyethylene, polypropylene, polytetrafluoroethylene, Examples of the elastomer include polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, and liquid crystal polymer, and examples of the elastomer include polyolefin rubber, fluorine rubber, and silicone rubber.
 本開示により得られたPAS又はそれを含む樹脂組成物を溶融成形してなる成形品は、従来の方法で得られるPAS同様耐熱性、寸法安定性等が優れるので、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。また、多孔質であることを活かして、吸着剤やろ過剤、触媒の担体等にも好適である。 Molded products obtained by melt-molding PAS obtained according to the present disclosure or resin compositions containing the same have excellent heat resistance, dimensional stability, etc., as well as PAS obtained by conventional methods. Electrical and electronic parts such as encapsulation molded products, automotive parts such as lamp reflectors and various electrical components, interior materials for various buildings, aircraft, and automobiles, and precision parts such as OA equipment parts, camera parts, and clock parts, etc. It can be widely used as injection molded or compression molded products, or extrusion molded or pultruded products such as fibers, films, sheets, pipes, etc. Furthermore, by taking advantage of its porous nature, it is suitable for adsorbents, filter agents, catalyst carriers, and the like.
 以下、実施例、比較例を用いて説明するが、本開示はこれら実施例に限定されるものではない。なお、以下、特に断りが無い場合「%」や「部」は質量基準とする。 Hereinafter, the present disclosure will be explained using Examples and Comparative Examples, but the present disclosure is not limited to these Examples. In addition, hereinafter, unless otherwise specified, "%" and "part" are based on mass.
〔評価〕 〔evaluation〕
(1)混合物中の酸素原子含有溶媒量の測定
 スチームストリッピング処理後の混合物中に含まれる酸素原子含有溶媒量を評価した。まず、スチームストリッピング処理後のケーキを10g分取し、有機溶媒(NMP)15gを添加して希釈した。該溶液を遠心分離機を用いて500rpmで5分間処理した。得られた上澄み液に、標準物質としてモノクロロベンゼンを加えた溶液を測定試料として、株式会社島津製作所製「ガスクロマトグラフィーGC-2014」により測定した。
(1) Measurement of the amount of oxygen atom-containing solvent in the mixture The amount of oxygen atom-containing solvent contained in the mixture after steam stripping treatment was evaluated. First, 10 g of the cake after steam stripping was taken and diluted by adding 15 g of an organic solvent (NMP). The solution was processed using a centrifuge at 500 rpm for 5 minutes. A solution obtained by adding monochlorobenzene as a standard substance to the obtained supernatant liquid was used as a measurement sample, and the measurement was performed using "Gas Chromatography GC-2014" manufactured by Shimadzu Corporation.
(2)PPS中のナトリウム量の測定
 実施例1~5及び比較例1~4で得られたPPSを白金るつぼに秤取り、そこに濃硫酸(原子吸光グレード)を浸る程度に加えて、マイルストーンゼネラル株式会社製マイクロ波灰化装置で完全に灰化させた。そこに1%塩酸と及び純水を添加して灰分を溶解させ、その溶液を原子吸光光度計を用いてナトリウム量を分析し、得られた値からPPS中のナトリウム量を定量した。本操作で純水は導電度18.2MΩ・cmのものを使用した。
(2) Measurement of the amount of sodium in PPS The PPS obtained in Examples 1 to 5 and Comparative Examples 1 to 4 was weighed in a platinum crucible, and concentrated sulfuric acid (atomic absorption grade) was added thereto to cover the It was completely incinerated using a microwave ashing device manufactured by Stone General Co., Ltd. 1% hydrochloric acid and pure water were added thereto to dissolve the ash, and the solution was analyzed for sodium content using an atomic absorption spectrophotometer, and the sodium content in PPS was determined from the obtained value. In this operation, pure water with a conductivity of 18.2 MΩ·cm was used.
(3)比表面積(BET比表面積)の測定
 PPSの比表面積の測定は、株式会社 島津製作所製トライスターII3020を使用した。実施例1~5及び比較例1~4で得られたPPSをセルに入れて脱気した後、ヘリウム置換してから-196℃まで冷却し、さらに窒素置換することによって比表面積を測定した。
(3) Measurement of specific surface area (BET specific surface area) To measure the specific surface area of PPS, Tristar II3020 manufactured by Shimadzu Corporation was used. The PPS obtained in Examples 1 to 5 and Comparative Examples 1 to 4 was placed in a cell and degassed, then replaced with helium, cooled to -196°C, and further replaced with nitrogen to measure the specific surface area.
(4)廃水中の化学的酸素要求量(COD)の評価
 PPSを含む混合物を炭酸水と接触させた後、ろ過して得られた液相成分を廃水としてCODを測定した。廃水を10mL分取し、水を加えて100mLとした後、希硫酸(硫酸:水=1:2、体積比)10mL及び硝酸銀水溶液(1.18mol/L)5mLを加えて撹拌し、さらに過マンガン酸カリウム水溶液(5mmol/L)10mLを加えて、沸騰水浴中で30分間加熱した。加熱後、シュウ酸ナトリウム水溶液(12.5mmol/L)10mLを加え、60℃に保ちながら過マンガン酸カリウム水溶液(5mmol/L)で滴定することで廃水のCODを得た。以下の基準に従って評価を行った。
〇:廃水のCODの数値が300mg/L未満
×:廃水のCODの数値が300mg/L以上
(4) Evaluation of chemical oxygen demand (COD) in wastewater After contacting a mixture containing PPS with carbonated water, COD was measured using the liquid phase component obtained by filtration as wastewater. 10 mL of waste water was collected, water was added to make 100 mL, and 10 mL of dilute sulfuric acid (sulfuric acid: water = 1:2, volume ratio) and 5 mL of silver nitrate aqueous solution (1.18 mol/L) were added and stirred. 10 mL of potassium manganate aqueous solution (5 mmol/L) was added and heated in a boiling water bath for 30 minutes. After heating, 10 mL of sodium oxalate aqueous solution (12.5 mmol/L) was added, and COD of the wastewater was obtained by titrating with potassium permanganate aqueous solution (5 mmol/L) while maintaining the temperature at 60°C. Evaluation was performed according to the following criteria.
〇: COD value of wastewater is less than 300mg/L ×: COD value of wastewater is 300mg/L or more
〔合成例1〕 PPSの重合工程
 圧力計、温度計、コンデンサー、デカンター、精留塔を連結した撹拌翼付き150Lオートクレーブにp-ジクロロベンゼン(以下、DCBと略す)33.222kg(226mol)、NMP2.280kg(23mol)、47.23質量%NaSH水溶液27.300kg(NaSHとして230mol)、及び49.21質量%NaOH水溶液18.533g(NaOHとして228mol)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、釜を密閉した。脱水時に共沸により留出したDCBはデカンターで分離して、随時釜内に戻した。脱水終了後の釜内は無水硫化ナトリウム組成物がDCB中に分散した状態であった。上記脱水工程終了後に、内温を160℃に冷却し、NMP47.492kg(479mol)を仕込み、185℃まで昇温した。圧力が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したDCBと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、DCBは釜へ戻した。留出水量は179gであった。内温200℃から230℃まで3時間かけて昇温し、1時間撹拌した後、250℃まで昇温し1時間撹拌した。反応終了後、オートクレーブの底弁を開いて撹拌翼付き150L真空撹拌乾燥機にフラッシュさせてNMPを抜き取り、室温まで冷却した。固形分濃度が55%の粗PPS混合物を得た。
[Synthesis Example 1] Polymerization step of PPS 33.222 kg (226 mol) of p-dichlorobenzene (hereinafter abbreviated as DCB) and NMP2 were placed in a 150 L autoclave with stirring blades connected to a pressure gauge, thermometer, condenser, decanter, and rectification column. .280 kg (23 mol), 27.300 kg (230 mol as NaSH) of a 47.23 mass% NaSH aqueous solution, and 18.533 g (228 mol as NaOH) of a 49.21 mass% NaOH aqueous solution were charged and heated at 173°C under a nitrogen atmosphere while stirring. The temperature was raised over 5 hours until 27.300 kg of water was distilled out, and then the pot was sealed. DCB distilled azeotropically during dehydration was separated in a decanter and returned to the pot as needed. After the dehydration was completed, the anhydrous sodium sulfide composition was dispersed in the DCB inside the pot. After the above dehydration step was completed, the internal temperature was cooled to 160°C, 47.492 kg (479 mol) of NMP was charged, and the temperature was raised to 185°C. When the pressure reached 0.00 MPa, the valve connected to the rectification column was opened, and the internal temperature was raised to 200° C. over 1 hour. At this time, cooling and valve opening were controlled so that the temperature at the outlet of the rectifying column was 110° C. or less. The distilled mixed vapor of DCB and water was condensed in a condenser and separated in a decanter, and the DCB was returned to the pot. The amount of distilled water was 179 g. The internal temperature was raised from 200°C to 230°C over 3 hours and stirred for 1 hour, then the temperature was raised to 250°C and stirred for 1 hour. After the reaction was completed, the bottom valve of the autoclave was opened and the autoclave was flashed into a 150 L vacuum stirring dryer equipped with stirring blades to remove NMP, and the autoclave was cooled to room temperature. A crude PPS mixture with a solid content concentration of 55% was obtained.
〔実施例1〕
 合成例1で得た粗PPS混合物20kgとメタノール21kgを攪拌容器に入れ、25℃で30分間撹拌混合し、そのスラリーを濾過装置で濾過し、さらにメタノール32kgを数回に分けて注ぎろ過した。比表面積は95m/gであった。ろ過して作製したケーキをスチームストリッピング装置(株式会社大川原製作所製 リボコーン)に移して、スチームを11kg/hrで吹き込みながら60分間攪拌混合した。処理後の混合物に含まれるメタノール量を分析した結果、0.1%であった。当該混合物に32kgの炭酸水を注ぎ、25℃で30分間撹拌混合した。得られたスラリーを濾過装置で濾過し、さらに炭酸水42kgを数回に分けて注ぎろ過した。ろ過した液相成分を廃水としてCOD濃度を測定した。廃水のCOD評価及び得られた多孔質PPSの評価を表1に示す。
[Example 1]
20 kg of the crude PPS mixture obtained in Synthesis Example 1 and 21 kg of methanol were placed in a stirring container, stirred and mixed at 25° C. for 30 minutes, and the slurry was filtered with a filter device, and further 32 kg of methanol was poured in several portions and filtered. The specific surface area was 95 m 2 /g. The filtered cake was transferred to a steam stripping device (Ribocorn manufactured by Okawara Seisakusho Co., Ltd.), and stirred and mixed for 60 minutes while blowing steam at 11 kg/hr. As a result of analysis of the amount of methanol contained in the mixture after treatment, it was found to be 0.1%. 32 kg of carbonated water was poured into the mixture, and the mixture was stirred and mixed at 25° C. for 30 minutes. The obtained slurry was filtered using a filter device, and 42 kg of carbonated water was poured into the slurry in several portions and filtered. The COD concentration was measured using the filtered liquid phase component as wastewater. Table 1 shows the COD evaluation of the wastewater and the evaluation of the obtained porous PPS.
〔実施例2〕
 スチーム量を16kg/hrに、スチーム流量を3倍にした以外は実施例1と同様に実施した。スチームストリッピング処理を終えた混合物に含まれるメタノール量を分析した結果、0.02%であった。炭酸水と接触させる工程を終えて得られた廃水のCOD評価及び得られた多孔質PPSの評価を表1に示す。
[Example 2]
The same procedure as in Example 1 was carried out except that the steam amount was 16 kg/hr and the steam flow rate was tripled. Analysis of the amount of methanol contained in the mixture after the steam stripping process revealed that it was 0.02%. Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
〔実施例3〕
 洗浄溶媒をエタノールにした以外は実施例2と同様に実施した。エタノールと接触させる工程を終えて手に入れた樹脂の比表面積は92m/gであった。スチームストリッピング処理を終えた混合物に含まれるエタノール量を分析した結果、0.03%であった。炭酸水と接触させる工程を終えて得られた廃水のCOD評価及び得られた多孔質PPSの評価を表1に示す。
[Example 3]
The same procedure as in Example 2 was carried out except that ethanol was used as the washing solvent. The specific surface area of the resin obtained after the contacting step with ethanol was 92 m 2 /g. An analysis of the amount of ethanol contained in the mixture after the steam stripping process revealed that it was 0.03%. Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
〔実施例4〕
 洗浄溶媒をイソプロピルアルコールにした以外は実施例2と同様に実施した。イソプロピルアルコールと接触させる工程を終えて手に入れた樹脂の比表面積は90m/gであった。スチームストリッピング処理を終えた混合物に含まれるイソプロピルアルコール量を分析した結果、0.04%であった。炭酸水と接触させる工程を終えて得られた廃水のCOD評価及び得られた多孔質PPSの評価を表1に示す。
[Example 4]
The same procedure as in Example 2 was carried out except that isopropyl alcohol was used as the washing solvent. The specific surface area of the resin obtained after the contacting step with isopropyl alcohol was 90 m 2 /g. The amount of isopropyl alcohol contained in the mixture after the steam stripping process was analyzed and found to be 0.04%. Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
〔実施例5〕
 洗浄溶媒をアセトンにした以外は実施例2と同様に実施した。アセトンと接触させる工程を終えたPPSの比表面積は88m/gであった。スチームストリッピング処理を終えた混合物に含まれるアセトン量を分析した結果、0.03%であった。炭酸水と接触させる工程を終えて得られた廃水のCOD評価及び得られた多孔質PPSの評価を表1に示す。
[Example 5]
The same procedure as in Example 2 was carried out except that acetone was used as the washing solvent. The specific surface area of PPS after the step of contacting with acetone was 88 m 2 /g. The amount of acetone contained in the mixture after the steam stripping process was analyzed and found to be 0.03%. Table 1 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
〔比較例1〕
 合成例1で得たPPS混合物20kgとメタノール21kgを攪拌容器に入れ、25℃で30分間撹拌混合し、そのスラリーを濾過装置で濾過し、さらにメタノール32kgを数回に分けて注ぎろ過した。比表面積は95m/gであった。ろ過して作製したケーキを乾燥機に入れてメタノールを完全に除去した。乾燥後の混合物のメタノール量を分析した結果、0.1%であった。乾燥後の混合物に32kgの炭酸水を注ぎ、25℃で30分間撹拌混合して、スラリーを得た。当該スラリーを濾過装置で濾過し、さらに炭酸水42kgを数回に分けて注ぎろ過した。ろ過した液相成分を廃水としてCOD濃度を測定した。廃水のCOD評価及び得られた多孔質PPSの評価を表2に示す。
[Comparative example 1]
20 kg of the PPS mixture obtained in Synthesis Example 1 and 21 kg of methanol were placed in a stirring container, stirred and mixed at 25° C. for 30 minutes, and the slurry was filtered with a filtration device, and 32 kg of methanol was poured in several portions and filtered. The specific surface area was 95 m 2 /g. The filtered cake was placed in a dryer to completely remove methanol. Analysis of the amount of methanol in the mixture after drying revealed that it was 0.1%. 32 kg of carbonated water was poured into the dried mixture, and the mixture was stirred and mixed at 25° C. for 30 minutes to obtain a slurry. The slurry was filtered using a filtration device, and 42 kg of carbonated water was poured into the slurry in several portions and filtered. The COD concentration was measured using the filtered liquid phase component as wastewater. Table 2 shows the COD evaluation of the wastewater and the evaluation of the obtained porous PPS.
〔比較例2〕
 比較例1と同様に実施し、ろ過して作製したケーキを乾燥機に入れてメタノールを除去した。乾燥後の混合物に含まれるメタノール量を分析した結果、3.2%であった。比表面積は8m/gであった炭酸水と接触させる工程を終えて得られた廃水のCOD評価及び得られた多孔質PPSの評価を表2に示す。
[Comparative example 2]
It was carried out in the same manner as Comparative Example 1, and the cake produced by filtration was placed in a dryer to remove methanol. The amount of methanol contained in the mixture after drying was analyzed and found to be 3.2%. Table 2 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water, which had a specific surface area of 8 m 2 /g, and the evaluation of the obtained porous PPS.
〔比較例3〕
 合成例1で得たPPS混合物20kgとメタノール21kgを攪拌容器に入れ、25℃で30分間撹拌混合し、そのスラリーを濾過装置で濾過し、さらにメタノール32kgを数回に分けて注ぎろ過した。混合物中のPPSの比表面積は95m/gであった。ろ過した作製したケーキに21kgの水を注ぎ、25℃で30分間撹拌混合し、そのスラリーを濾過装置で濾過し、さらに水21kgを数回に分けて注ぎろ過した。手に入れた樹脂中のメタノール量を分析した結果、4.4%であった。そのろ過して作製したケーキに32kgの炭酸水を注ぎ、25℃で30分間撹拌混合してスラリーを得た。当該スラリーを濾過装置で濾過し、さらに炭酸水42kgを数回に分けて注ぎろ過した。ろ過した液相成分を廃水としてCOD濃度を測定した。廃水のCOD評価及び得られた多孔質PPSの評価を表2に示す。
[Comparative example 3]
20 kg of the PPS mixture obtained in Synthesis Example 1 and 21 kg of methanol were placed in a stirring container, stirred and mixed at 25° C. for 30 minutes, and the slurry was filtered with a filtration device, and 32 kg of methanol was poured in several portions and filtered. The specific surface area of PPS in the mixture was 95 m 2 /g. 21 kg of water was poured into the filtered cake, stirred and mixed at 25° C. for 30 minutes, the slurry was filtered with a filter, and 21 kg of water was poured in several portions and filtered. The amount of methanol in the obtained resin was analyzed and found to be 4.4%. 32 kg of carbonated water was poured into the filtered cake, and the mixture was stirred and mixed at 25° C. for 30 minutes to obtain a slurry. The slurry was filtered using a filtration device, and 42 kg of carbonated water was poured into the slurry in several portions and filtered. The COD concentration was measured using the filtered liquid phase component as wastewater. Table 2 shows the COD evaluation of the wastewater and the evaluation of the obtained porous PPS.
〔比較例4〕
 スチーム量を1.1kg/hrに、スチーム流量を0.2倍にした以外は実施例1と同様に実施した。スチームストリッピング処理を終えた混合物に含まれるメタノール量を分析した結果、30%であった。炭酸水と接触させる工程を終えて得られた廃水のCOD評価及び得られた多孔質PPSの評価を表2に示す。
[Comparative example 4]
The same procedure as in Example 1 was carried out except that the amount of steam was 1.1 kg/hr and the flow rate of steam was increased 0.2 times. An analysis of the amount of methanol contained in the mixture after the steam stripping process revealed that it was 30%. Table 2 shows the COD evaluation of the wastewater obtained after the step of contacting with carbonated water and the evaluation of the obtained porous PPS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~5と比較例1~2の対比から、スチームストリッピングを利用して溶媒除去を実施して製造したPPSが、より大きい比表面積と小さいナトリウム量を有することが示された。また、実施例1~5と比較例3との対比から、スチームストリッピングを利用した場合、廃水のCOD濃度を低減できることが示された。さらに、実施例1~5と比較例4の対比から、特定範囲のスチーム量で処理した場合に廃水のCOD濃度を低減できることが示された。 A comparison of Examples 1 to 5 and Comparative Examples 1 to 2 showed that PPS produced by removing the solvent using steam stripping had a larger specific surface area and a smaller amount of sodium. Furthermore, a comparison between Examples 1 to 5 and Comparative Example 3 showed that the COD concentration of wastewater can be reduced when steam stripping is used. Furthermore, a comparison between Examples 1 to 5 and Comparative Example 4 showed that the COD concentration of wastewater can be reduced when treated with a specific range of steam amount.

Claims (7)

  1.  有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるポリアリーレンスルフィドを含有する粗反応生成物を脱溶媒させることにより、粗ポリアリーレンスルフィドを含む混合物を得る工程(1)と、
     粗ポリアリーレンスルフィドを含む混合物を、水及び炭素原子数1~3の酸素原子含有溶媒と接触させて前記粗ポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)と、
     前記多孔質粒子を含む混合物から前記酸素原子含有溶媒を除去する工程(3)と、
     得られた多孔質粒子と炭酸水とを接触させる工程(4)とを有し、
     前記工程(3)における溶媒を除去する方法がスチームストリッピング法であること、かつ、スチーム量がポリアリーレンスルフィドの多孔質粒子100質量部に対して50質量部以上であること、を特徴とするポリアリーレンスルフィドの精製方法。
    Step (1) of obtaining a mixture containing crude polyarylene sulfide by desolvating the crude reaction product containing polyarylene sulfide obtained by reacting a polyhaloaromatic compound and a sulfidating agent in an organic polar solvent. and,
    A mixture containing crude polyarylene sulfide is brought into contact with water and a solvent containing an oxygen atom having 1 to 3 carbon atoms to form the crude polyarylene sulfide into porous particles having a specific surface area of 30 [m 2 /g] or more. Step (2) and
    a step (3) of removing the oxygen atom-containing solvent from the mixture containing the porous particles;
    a step (4) of bringing the obtained porous particles into contact with carbonated water,
    The method for removing the solvent in step (3) is a steam stripping method, and the amount of steam is 50 parts by mass or more based on 100 parts by mass of the porous polyarylene sulfide particles. Method for purifying polyarylene sulfide.
  2.  前記工程(3)において、溶媒を除去した後の混合物の含水量が混合物100質量部に対して10~250質量部である、請求項1記載の精製方法。 The purification method according to claim 1, wherein in the step (3), the water content of the mixture after removing the solvent is 10 to 250 parts by mass based on 100 parts by mass of the mixture.
  3.  前記工程(4)において、ポリアリーレンスルフィドの多孔質粒子と炭酸水とを0.1MPaより小さい圧力下で接触させる、請求項1又は2のいずれか一項記載の精製方法。 The purification method according to claim 1 or 2, wherein in the step (4), the porous particles of polyarylene sulfide and carbonated water are brought into contact under a pressure lower than 0.1 MPa.
  4.  前記工程(4)において、ポリアリーレンスルフィドの多孔質粒子と炭酸水とを100℃以下の温度で接触させる、請求項1又は2のいずれか一項記載の精製方法。 The purification method according to any one of claims 1 and 2, wherein in the step (4), the porous particles of polyarylene sulfide and carbonated water are brought into contact at a temperature of 100°C or less.
  5.  前記有機溶媒が、アルコール系溶媒又はケトン系溶媒である請求項1又は2のいずれか一項記載の精製方法。 The purification method according to claim 1 or 2, wherein the organic solvent is an alcohol solvent or a ketone solvent.
  6.  請求項1~3の何れか一項に記載の精製方法によりポリアリーレンスルフィドを精製する工程を有することを特徴とするポリアリーレンスルフィドの製造方法。 A method for producing polyarylene sulfide, comprising the step of purifying polyarylene sulfide by the purification method according to any one of claims 1 to 3.
  7.  精製されたポリアリーレンスルフィドは、比表面積10〔m/g〕以上の範囲の多孔質粒子である、請求項6記載のポリアリーレンスルフィドの製造方法。 7. The method for producing polyarylene sulfide according to claim 6, wherein the purified polyarylene sulfide is a porous particle having a specific surface area of 10 [ m2 /g] or more.
PCT/JP2023/007708 2022-05-10 2023-03-02 Purification method and production method for polyarylene sulfide WO2023218735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525062A JP7318843B1 (en) 2022-05-10 2023-03-02 Method for purifying and producing polyarylene sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-077455 2022-05-10
JP2022077455 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023218735A1 true WO2023218735A1 (en) 2023-11-16

Family

ID=88729920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007708 WO2023218735A1 (en) 2022-05-10 2023-03-02 Purification method and production method for polyarylene sulfide

Country Status (1)

Country Link
WO (1) WO2023218735A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503085A (en) * 1996-10-02 2001-03-06 ティコナ・ゲーエムベーハー Method for producing sulfur-containing polymer
JP2016183269A (en) * 2015-03-26 2016-10-20 株式会社クレハ Manufacturing method of manufacturing fine particle polyarylene sulfide and fine particle polyarylene sulfide
WO2020032171A1 (en) * 2018-08-10 2020-02-13 Dic株式会社 Method for purifying and method for producing polyarylene sulfide
WO2021117795A1 (en) * 2019-12-11 2021-06-17 Dic株式会社 Polyarylene sulfide, and purification method and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503085A (en) * 1996-10-02 2001-03-06 ティコナ・ゲーエムベーハー Method for producing sulfur-containing polymer
JP2016183269A (en) * 2015-03-26 2016-10-20 株式会社クレハ Manufacturing method of manufacturing fine particle polyarylene sulfide and fine particle polyarylene sulfide
WO2020032171A1 (en) * 2018-08-10 2020-02-13 Dic株式会社 Method for purifying and method for producing polyarylene sulfide
WO2021117795A1 (en) * 2019-12-11 2021-06-17 Dic株式会社 Polyarylene sulfide, and purification method and production method therefor

Similar Documents

Publication Publication Date Title
JP5794468B2 (en) Method for producing polyarylene sulfide resin
JP5888118B2 (en) Method for producing oligoarylene sulfide and carboxyalkylamino group-containing compound
JP6402971B2 (en) Sulfiding agent and method for producing polyarylene sulfide resin
JP7031797B2 (en) Polyarylene sulfide, its purification method and manufacturing method
WO2020032171A1 (en) Method for purifying and method for producing polyarylene sulfide
JP2017071752A (en) Method for producing polyarylene sulfide resin
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP2017210559A (en) Method for producing composition containing carboxyalkylamino group-containing compound and oligomer
JP2021084952A (en) Method for producing sulfidizing agent and polyarylene sulfide resin
JP7318843B1 (en) Method for purifying and producing polyarylene sulfide
JP6136292B2 (en) Process for producing polyarylene sulfide
JP6120054B2 (en) Method for producing polyarylene sulfide resin
WO2023218735A1 (en) Purification method and production method for polyarylene sulfide
JP7214998B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP5888142B2 (en) Method for producing solution containing carboxyalkylamino group-containing compound and aprotic polar solvent, and method for producing composition containing alkali metal-containing inorganic salt and aprotic polar solvent
JP6256734B2 (en) Process for producing polyarylene sulfide
KR102709321B1 (en) Polyarylene sulfide, purification method and manufacturing method thereof
JP7214996B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP2024021682A (en) Production method of polyarylene sulfide resin
JP5888143B2 (en) Method for producing aqueous solution containing alkali metal-containing inorganic salt and method for producing composition containing carboxyalkylamino group-containing compound and polyhaloaromatic compound
JP6194566B2 (en) Method for producing aqueous solution containing alkali metal-containing inorganic salt and method for producing solution containing carboxyalkylamino group-containing compound and water-insoluble solution
JP2022161191A (en) Method for producing sulfidizing agent and polyarylene sulfide resin
JP2024013930A (en) Method for producing polyarylene sulfide resin
JP2024022460A (en) Method for producing polyarylene sulfide resin

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023525062

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803222

Country of ref document: EP

Kind code of ref document: A1