JP2002185052A - Method of manufacturing thermoelectric semiconductor - Google Patents

Method of manufacturing thermoelectric semiconductor

Info

Publication number
JP2002185052A
JP2002185052A JP2000382644A JP2000382644A JP2002185052A JP 2002185052 A JP2002185052 A JP 2002185052A JP 2000382644 A JP2000382644 A JP 2000382644A JP 2000382644 A JP2000382644 A JP 2000382644A JP 2002185052 A JP2002185052 A JP 2002185052A
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
thermoelectric
alloy
thin plate
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000382644A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakakibara
務 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2000382644A priority Critical patent/JP2002185052A/en
Publication of JP2002185052A publication Critical patent/JP2002185052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the uniform material of the thermoelectric semiconductor in a bismuth-tellurium base with a large orientation degree. SOLUTION: This method of manufacturing a thermoelectric semiconductor 11 should include a process for fusing a bismuth-tellurium-based raw material, a process for cooling the fused raw material for obtaining an alloy, a process for grinding the alloy, a process for pressing the ground alloy by hot press for forming the thermoelectric semiconductor made of a thin plate, and a process for overlapping a plurality of thermoelectric semiconductors 1 for repressing by hot press from a vertical direction to the thin-plate surface of the thermoelectric semiconductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信用半導体レ
ーザモジュール、半導体増幅器モジュール、外部変調器
モジュール、受信モジュール等の熱電半導体の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric semiconductor such as a semiconductor laser module for optical communication, a semiconductor amplifier module, an external modulator module and a receiving module.

【0002】[0002]

【従来の技術】この種の従来技術として、特許第284
7123号公報がある。この技術は、ビスマス、テルル
及びセレンからなる群から選択される2種又は3種の元
素及びアンチモンを主成分とし、これらの元素に添加剤
を添加して成る熱電材料の製造方法に関するものであ
り、前記元素及び添加剤を溶解し粉砕して得られる合金
粉末をホットプレス密度比97%以上に焼結する熱電材
料の製造方法である。
2. Description of the Related Art As this kind of prior art, Japanese Patent No. 284 is disclosed.
No. 7123. This technology relates to a method for producing a thermoelectric material containing two or three elements selected from the group consisting of bismuth, tellurium, and selenium and antimony as main components and adding additives to these elements. A method for producing a thermoelectric material, comprising sintering an alloy powder obtained by dissolving and pulverizing the elements and additives to a hot press density ratio of 97% or more.

【0003】これは、上記ビスマスーテルル系の熱電材
料の量産性を改善するために、ゾーンメルティング法
(原材料又は合金をアンプルに入れ封止し、アンプル外
部からヒータによって合金の一部分を溶かし一方向凝固
材を作成する方法)等に変わる新しい工法としてホット
プレスを提案していものである。
In order to improve the mass productivity of the bismuth-tellurium-based thermoelectric material, a zone melting method (a method in which a raw material or an alloy is put in an ampule and sealed, and a part of the alloy is melted by a heater from the outside of the ampule and unidirectionally solidified). Hot press is proposed as a new method that can be used instead of the method of producing materials.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Bi2Te3
系の熱電半導体材料では、Proceeding of the Physical
Society Vol.78 p838-844(1961)に示されているよう
に、その結晶体の(0,0,15)面と平行に方向を流す場合
と、(0,0,15)面の垂直方向に電流を流す場合とでは、電
気伝導度がP型で1.4倍、N型では3倍も異なる。
[Problems to be solved by the invention] However, Bi2Te3
Proceeding of the Physical
As shown in Society Vol.78, p838-844 (1961), the crystal flows in a direction parallel to the (0,0,15) plane, and in a direction perpendicular to the (0,0,15) plane. The electric conductivity differs by 1.4 times for the P-type and 3 times for the N-type when a current is passed through the P-type.

【0005】それゆえ、同じ組成の一方向凝固材に比
べ、上記従来技術のホットプレス材料では、結晶配向度
が下がる事により性能指数は明らかに低下する。さら
に、配向度はパンチ面(ホットプレス押圧面)が一番大
きく、材料の中心部では小さくなるため、ホットプレス
により作製されたバルクの高さが高くなるほど、バルク
内での性能指数のばらつきは増加する。
[0005] Therefore, as compared with the unidirectionally solidified material having the same composition, the performance index of the above-mentioned hot press material of the prior art is clearly reduced due to the decrease in the degree of crystal orientation. Furthermore, since the degree of orientation is the largest on the punch surface (hot pressing surface) and becomes smaller at the center of the material, the higher the height of the bulk produced by hot pressing, the more the dispersion of the figure of merit within the bulk increases. To increase.

【0006】このような材料により作製された熱電半導
体をチップとして切り出しをすると性能のばらつきの第
一の原因となるという課題があった。
There has been a problem that cutting out a thermoelectric semiconductor made of such a material as a chip is a primary cause of performance variations.

【0007】本発明は、上記課題を解決したもので、従
来技術のホットプレスした時の配向度はパンチ面が一番
大きく、パンチ面から材料の中心にかけて小さくなり、
最小の配向度は材料の厚さに逆比例して小さくなるとい
う熱電半導体の課題を解決するため、ホットプレスによ
り例えば3mm以下の薄板を作製し、それらを重ねて再度
ホットプレスすることにより、配向度の大きい均一な材
料を得ることができる熱電半導体の製造方法を提供する
ものである。
The present invention has solved the above-mentioned problems, and the orientation degree when hot pressing in the prior art is the largest on the punch surface and decreases from the punch surface to the center of the material.
In order to solve the problem of thermoelectric semiconductors, in which the minimum degree of orientation becomes smaller in inverse proportion to the thickness of the material, a thin plate of, for example, 3 mm or less is produced by hot pressing, and they are stacked and hot-pressed again. An object of the present invention is to provide a method of manufacturing a thermoelectric semiconductor capable of obtaining a uniform material having a large degree.

【0008】[0008]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた請求項1の発明は、ホットプレスによ
り得られた複数枚の薄板状の熱電半導体を再度ホットプ
レスにより押圧して得られる熱電半導体の製造方法であ
る。
Means for Solving the Problems In order to solve the above-mentioned technical problem, the invention of claim 1 is to provide a plurality of thin plate-like thermoelectric semiconductors obtained by hot pressing by pressing again by hot pressing. This is a method for manufacturing a thermoelectric semiconductor.

【0009】請求項1の発明により、配向度の大きい均
一な材料を得ることができる。
According to the first aspect of the present invention, a uniform material having a high degree of orientation can be obtained.

【0010】上記技術的課題を解決するためになされた
請求項2の発明は、ビスマス−テルル系の原材料を溶融
する工程と、該溶融された原材料を冷却して合金を得る
工程と、該合金を粉砕する工程と、該粉砕され合金をホ
ットプレスにより押圧して薄板からなる熱電半導体を形
成する工程と、該熱電半導体を複数枚重ねて、該熱電半
導体の薄板面に対して垂直方向から再度ホットプレスに
より押圧する工程とから形成されることを特徴とする熱
電半導体の製造方法である。
[0010] In order to solve the above technical problems, the invention of claim 2 comprises a step of melting a bismuth-tellurium-based raw material, a step of cooling the molten raw material to obtain an alloy, Pulverizing, pressing the pulverized alloy by hot pressing to form a thermoelectric semiconductor composed of a thin plate, stacking a plurality of the thermoelectric semiconductors, and again from a direction perpendicular to the thin plate surface of the thermoelectric semiconductor. And a pressing step by a hot press.

【0011】請求項2の発明により、ビスマス−テルル
系の配向度の大きい熱電半導体の均一な材料を得ること
ができる。
According to the second aspect of the present invention, a uniform material of a thermoelectric semiconductor having a large degree of orientation of a bismuth-tellurium system can be obtained.

【0012】上記技術的課題を解決するためになされた
請求項3の発明は、前記薄板からなる熱電半導体の厚さ
は3mm以下であることを特徴とする請求項1あるいは
請求項2記載の熱電半導体の製造方法である。
According to a third aspect of the present invention, there is provided a thermoelectric semiconductor according to the first or second aspect, wherein the thickness of the thermoelectric semiconductor formed of the thin plate is 3 mm or less. This is a method for manufacturing a semiconductor.

【0013】請求項3の発明により、請求項1、請求項
2の効果に加えて、より配向度が高い均一な熱電半導体
が得られるといった効果がある。
According to the third aspect of the present invention, in addition to the effects of the first and second aspects, there is an effect that a uniform thermoelectric semiconductor having a higher degree of orientation can be obtained.

【0014】上記技術的課題を解決するためになされた
請求項4の発明は、前記薄板からなる熱電半導体の厚さ
は0.5〜3mmであることを特徴とする請求項3記載
の熱電半導体の製造方法である。
According to a fourth aspect of the present invention, there is provided a thermoelectric semiconductor according to the third aspect, wherein the thickness of the thermoelectric semiconductor is 0.5 to 3 mm. It is a manufacturing method of.

【0015】請求項4の発明により、請求項3の効果に
加えて、さらにより配向度が高い均一な熱電半導体が得
られるといった効果がある。0.5mmより薄いとホッ
トプレスする場合、熱電半導体に欠けが現れ焼結されに
くい。3mmより大きいと焼結体全体の配向度が下が
る。
According to the invention of claim 4, in addition to the effect of claim 3, there is an effect that a uniform thermoelectric semiconductor having a higher degree of orientation can be obtained. If the thickness is less than 0.5 mm, when hot pressing is performed, chipping appears in the thermoelectric semiconductor and sintering is difficult. If it is larger than 3 mm, the degree of orientation of the whole sintered body is reduced.

【0016】上記技術的課題を解決するためになされた
請求項5の発明は、前記複数枚の薄板からなる熱電半導
体は 〜 枚重ねたこと特徴とする請求項1ある
いは請求項2記載の熱電半導体の製造方法である。
According to a fifth aspect of the present invention, there is provided a thermoelectric semiconductor according to the first or second aspect, wherein the thermoelectric semiconductor comprising a plurality of thin plates is stacked. It is a manufacturing method of.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施について図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】ビスマス、テルル、セレンの純度99.9
99%以上の原材料を所定の比で調合しSbI3(三ヨウ化
アンチモン)を添加し、石英管に入れ10-3Paの真空度で
封管する。
Bismuth, tellurium, selenium purity 99.9
Raw materials of 99% or more are mixed at a predetermined ratio, SbI 3 (antimony triiodide) is added, and the mixture is put in a quartz tube and sealed at a vacuum of 10 −3 Pa.

【0019】この石英管を温度800℃で1時間溶融攪
拌後、炉内冷却して合金を得る。なおこの800℃の温
度は、Bi(Te1−xSeの最大の融点は、
Bi Seの700℃で100℃のマージンを見て決
定した。
The quartz tube was melt-stirred at 800 ° C. for 1 hour.
After stirring, the furnace is cooled to obtain an alloy. The temperature of 800 ° C
The degree is Bi2(Te1-xSex)3The maximum melting point of
Bi 2Se3At 100 ° C at 700 ° C
Specified.

【0020】合金をカッターミル等で粉砕し、ふるいに
より90ミクロン以下の粉のみをダイスに入れビスマ
ス、テルル、セレンの融点590℃近傍の480℃の温
度で、300〜500kg/cm3の圧力で押圧する。300
kg/cm3より小さいと焼結体の密度が低くなり、500kg
/cm3より大きいとダイス、パンチ等の型の耐力において
強度不足となる。
The alloy was pulverized by a cutter mill or the like, bismuth placed only below the powder 90 micron die by a sieve, tellurium, at a temperature of 480 ° C. of melting point 590 ° C. vicinity of selenium, a pressure of 300~500kg / cm 3 Press. 300
If less than kg / cm 3 , the density of the sintered body will be low,
If it is larger than / cm 3 , the strength of a die such as a die or a punch will be insufficient.

【0021】上下のパンチによるホットプレスを行うこ
とで直径φ20mm、高さ1mmの薄板状の焼結体1を得
る。この薄板状の焼結体からなる熱電半導体1は薄板表
面部は上下のパンチにより表面部と内部も結晶が潰され
結晶配向度が高い状態となっている。
By performing hot pressing using upper and lower punches, a thin plate-shaped sintered body 1 having a diameter of 20 mm and a height of 1 mm is obtained. The thermoelectric semiconductor 1 made of the thin plate-shaped sintered body has a state in which the surface and the inside of the thin plate are crushed by the upper and lower punches and the crystal is crushed, and the degree of crystal orientation is high.

【0022】この薄板状の焼結体からなる熱電半導体1
を図1に示すようにしてパンチ3の下パンチ3Bの上に
20枚重ね、複数の熱電半導体1が載置可能なダイス2
に挿入する。
The thermoelectric semiconductor 1 made of the thin plate-like sintered body
As shown in FIG. 1, 20 dies are stacked on the lower punch 3B of the punch 3 and a plurality of dies 2 on which a plurality of thermoelectric semiconductors 1 can be mounted.
Insert

【0023】下パンチ3Bの上に載置された熱電半導体
1は、上パンチ3Aにより、480℃、400kg/cm3
ホットプレスする。この場合、焼結体である熱電半導体
1の薄板面1Aに対して垂直方向から再度ホットプレス
により押圧する。このため、高さ20mmの薄板からな
る押圧された熱電半導体10は約19.2〜3mmの高
さに圧縮された状態となる。
The thermoelectric semiconductor 1 placed on the lower punch 3B is hot-pressed at 480 ° C. and 400 kg / cm 3 by the upper punch 3A. In this case, the thermoelectric semiconductor 1 which is a sintered body is pressed again by a hot press from a direction perpendicular to the thin plate surface 1A. Therefore, the pressed thermoelectric semiconductor 10 made of a thin plate having a height of 20 mm is in a state of being compressed to a height of about 19.2 to 3 mm.

【0024】さらにこの熱電半導体11の上面部から少
し下がった近傍部、内部、下面部から少し上がった近傍
部から切り出した2mm×2mm×13 mmの長方体
を取出し、得られた熱電半導体試料Sについて配向度、
ゼーベック係数、電気伝導度、熱伝導度を測定し、次式
の (性能指数)=(ゼーベック係数)2×(電気伝導度)
/(熱伝導度) より、性能指数を計算すると、次の実施例1、2より本
発明の製造方法から得られた本発明の熱電半導体は、配
向度が高く、性能指数は高くなり、熱電半導体として適
している。
Further, a rectangular body of 2 mm × 2 mm × 13 mm cut out from the vicinity of the thermoelectric semiconductor 11 slightly lowered from the upper surface, the inside, and the vicinity slightly raised from the lower surface, was taken out, and the obtained thermoelectric semiconductor sample was obtained. Degree of orientation for S,
The Seebeck coefficient, electrical conductivity, and thermal conductivity were measured, and the following equation (performance index) = (Seebeck coefficient) 2 × (electric conductivity)
When the figure of merit is calculated from the following formulas, the thermoelectric semiconductor of the present invention obtained from the production method of the present invention from the following Examples 1 and 2 has a high degree of orientation, a high figure of merit, and a thermoelectric semiconductor. Suitable as a semiconductor.

【0025】この理由は薄板状の焼結体からなる熱電半
導体は、その1枚1枚の配向度が高く、それらを重ね合
せてホットプレスしたため、全体の熱電半導体の配向度
は、パンチ面以外の熱電半導体内部まで配向度が高いた
めである。
The reason for this is that the thermoelectric semiconductor made of a thin plate-shaped sintered body has a high degree of orientation one by one, and is hot-pressed by superimposing them. This is because the degree of orientation is high even inside the thermoelectric semiconductor.

【0026】<実施例1>ビスマス、テルル、セレンの
純度99.999%以上の原材料をBi2Te2.85Se 0.15
の比で調合し0.1wt%のSbI3を添加し、石英管に入れ1
0-3Paの真空度で封管した。
Example 1 Bismuth, tellurium and selenium
Bi materials with a purity of 99.999% or moreTwoTe2.85Se 0.15
0.1% SbIThreeAnd put in a quartz tube
0-3The tube was sealed at a vacuum of Pa.

【0027】この石英管を800℃で1時間溶融攪拌、
炉冷して合金を得た。合金をカッターミルで粉砕し、ふ
るいにより90ミクロン以下の粉のみをダイスに入れ4
80℃、400kg/cm3でホットプレスする事でφ20m
m、高さ1mmの焼結体からなる熱電半導体1を得た。
This quartz tube was melted and stirred at 800 ° C. for 1 hour,
The furnace was cooled to obtain an alloy. The alloy is pulverized with a cutter mill, and only the powder having a size of 90 μm or less is sieved into a die.
Φ20m by hot pressing at 80 ℃, 400kg / cm 3
m, a thermoelectric semiconductor 1 made of a sintered body having a height of 1 mm was obtained.

【0028】この焼結体からなる熱電半導体1を図1に
示すようにして20枚重ね、同一条件で再度ホットプレ
スを行い、φ20mm、高さ20mmの焼結体からなる熱電
半導体11を得た。
As shown in FIG. 1, twenty thermoelectric semiconductors 1 made of this sintered body were stacked and hot pressed again under the same conditions to obtain a thermoelectric semiconductor 11 made of a sintered body having a diameter of 20 mm and a height of 20 mm. .

【0029】さらにこの熱電半導体10の上面部から少
し下がった近傍部、内部、下面部から少し上がった近傍
部から切り出した2mm×2mm×13 mmの長方体
を取出し、得られた熱電半導体試料Sについて配向度、
ゼーベック係数、電気伝導度、熱伝導度を次式により性
能指数を計算した。
Further, a 2 mm × 2 mm × 13 mm rectangular body cut out from the vicinity of the thermoelectric semiconductor 10 slightly lowered from the upper surface, the inside, and the vicinity slightly raised from the lower surface, was taken out, and the obtained thermoelectric semiconductor sample was obtained. Degree of orientation for S,
The performance index of the Seebeck coefficient, the electric conductivity, and the thermal conductivity was calculated by the following equation.

【0030】(性能指数)=(ゼーベック係数)2×
(電気伝導度)/(熱伝導度) <実施例2>ビスマス、テルル、セレンの純度99.9
99%以上の原材料をBiSb2.85Te 0.15の比で調合し、
0.1wt%のSbIを添加し、石英管に入れ、10
−3Paの真空度で封管した。
(Performance index) = (Seebeck coefficient)Two×
(Electrical conductivity) / (Thermal conductivity) <Example 2> Bismuth, tellurium, selenium purity 99.9
Bi over 99% of raw materials2Sb2.85Te 0.15Mix at the ratio of
0.1 wt% SbI3, And put in a quartz tube.
-3The tube was sealed at a vacuum of Pa.

【0031】この石英管を800℃で1時間溶融攪拌、
炉冷して合金を得た。合金をカッターミルで粉砕し、ふ
るいにより90ミクロン以下の粉のみをダイスに入れ4
80℃、400kg/cm3でホットプレスする事でφ20m
m、高さ1mmの焼結体からなる熱電半導体を得た。
The quartz tube was melted and stirred at 800 ° C. for 1 hour,
The furnace was cooled to obtain an alloy. The alloy is pulverized with a cutter mill, and only powder having a size of 90 μm or less is put into a die by a sieve.
Φ20m by hot pressing at 80 ℃, 400kg / cm3
A thermoelectric semiconductor made of a sintered body having a height of 1 mm and a height of 1 mm was obtained.

【0032】この焼結体を図1に示すようにして20枚
重ね、20%の水素を含むアルゴンガス中、480℃、
400kg/cm3でホットプレスを行い、φ20mm、高さ2
0mmの熱電半導体12を得た。
As shown in FIG. 1, 20 such sintered bodies were stacked, and were placed in an argon gas containing 20% hydrogen at 480 ° C.
Hot press at 400kg / cm3, φ20mm, height 2
A thermoelectric semiconductor 12 of 0 mm was obtained.

【0033】さらに実施例1と同様に、この焼結体から
なる熱電半導体12の上面部から少し下がった近傍部、
内部、下面部から少し上がった近傍部から切り出した2
mm×2mm×13 mmの長方体を取出し、得られた
熱電半導体試料Sについて配向度、ゼーベック係数、電
気伝導度、熱伝導度を次式により性能指数を計算した。
Further, in the same manner as in Example 1, a portion slightly lower than the upper surface portion of the thermoelectric semiconductor 12 made of this sintered body,
2 cut out from the inner, slightly raised from the lower part
A rectangular body of mm × 2 mm × 13 mm was taken out, and the performance index of the obtained thermoelectric semiconductor sample S was calculated for the degree of orientation, Seebeck coefficient, electric conductivity, and thermal conductivity according to the following equation.

【0034】<比較例1>ビスマス、テルル、セレンの
純度99.999%以上の原材料をBi2Te2.85Se0.15
の比で調合し0.1wt%のSbI3を添加し、石英管に入れ
10−3Paの真空度で封管した。この石英管を800
℃で1時間溶融攪拌、炉冷して合金を得た。
<Comparative Example 1> Bi 2 Te 2.85 Se 0.15 was used as a raw material having a purity of 99.999% or more of bismuth, tellurium, and selenium.
Of added SbI 3 of 0.1 wt% were blended in a ratio, and sealed tube in a vacuum of 10-3Pa placed in a quartz tube. This quartz tube is 800
The mixture was melt-stirred at a temperature of 1 hour and cooled in a furnace to obtain an alloy.

【0035】合金をカッターミルで粉砕し、ふるいによ
り90ミクロン以下の粉のみをダイスに入れ480℃、
400kg/cm3でホットプレスする事でφ20mm、高さ2
0mmの焼結体からなる熱電半導体1を得た。
The alloy is pulverized with a cutter mill, and only a powder having a size of 90 μm or less is put into a die by a sieve, and the powder is placed at 480 ° C.
Φ20mm, height 2 by hot pressing at 400kg / cm3
A thermoelectric semiconductor 1 made of a 0 mm sintered body was obtained.

【0036】さらに実施例1、2と同様に、この焼結体
からなる熱電半導体13の上面部から少し下がった近傍
部、内部、下面部から少し上がった近傍部から切り出し
た2mm×2mm×13 mmの長方体を取出し、得ら
れた熱電半導体試料S3について配向度、ゼーベック係
数、電気伝導度、熱伝導度を次式により性能指数を計算
した。
Further, as in Examples 1 and 2, 2 mm × 2 mm × 13 cut out from the vicinity of the thermoelectric semiconductor 13 made of this sintered body, which is slightly lowered from the upper surface, the inside, and the vicinity which is slightly raised from the lower surface. mm was taken out, and for the obtained thermoelectric semiconductor sample S3, the degree of orientation, the Seebeck coefficient, the electric conductivity, and the thermal conductivity were calculated by the following formulas.

【0037】表1に、実施例1、2と比較例1の特性評
価結果を示し、各実施例、比較例の数値は熱電半導体1
1、12、13からそれぞれ3個づつ切り出した3個の
平均値を示す。
Table 1 shows the characteristic evaluation results of Examples 1 and 2 and Comparative Example 1. The numerical values of each Example and Comparative Example are those of the thermoelectric semiconductor 1.
The average value of three pieces, each of which is cut out from 1, 12, and 13, respectively, is shown.

【0038】[0038]

【表1】 表1からわかるように、比較例1の焼結体に比べ、実施
例1では配向度が上昇した事によりゼーベック係数、電
気伝導度とも上昇し性能指数が10%向上した。また、
実施例2では比較例2に比べ配向度は同じであるが、酸
素含有量が減少したことで性能が向上したと考えられ
る。(Proceedings,ICT99, 18th International Confer
ence on Thermoelectrics(1999) p717-720)これは、酸
素が混入すると電子の移動度が下がるということが、上
記文献により記載されている。つまり水素還元すると酸
素の混入量が減り、性能指数が向上したと考えられる。
[Table 1] As can be seen from Table 1, in Example 1, the Seebeck coefficient and the electrical conductivity increased, and the figure of merit improved by 10%, as compared with the sintered body of Comparative Example 1 because the degree of orientation increased. Also,
In Example 2, although the degree of orientation was the same as in Comparative Example 2, it is considered that the performance was improved due to the decrease in the oxygen content. (Proceedings, ICT99, 18th International Confer
ence on Thermoelectrics (1999) p717-720) It is described in the above literature that the mobility of electrons decreases when oxygen is mixed. That is, it is considered that the reduction of hydrogen reduces the amount of mixed oxygen and improves the figure of merit.

【0039】これはZ∝m*3/2μ/kphの式から
導かれる。ここでmは有効質量、μは電子の移動度、k
phは格子伝導度である。
[0039] This is derived from the formula of Zαm * 3/2 μ / k ph. Where m is the effective mass, μ is the electron mobility, k
ph is the lattice conductivity.

【0040】[0040]

【発明の効果】以上説明したように、本発明は、ホット
プレスにより得られた複数枚の薄板状の熱電半導体を再
度ホットプレスにより押圧して得られる熱電半導体の製
造方法であるので、配向度の大きい均一な材料を得るこ
とができる。
As described above, the present invention relates to a method for manufacturing a thermoelectric semiconductor obtained by pressing a plurality of thin plate-like thermoelectric semiconductors obtained by hot pressing again by hot pressing. And a uniform material having a large value can be obtained.

【0041】さらに具体的には、ビスマス−テルル系の
原材料を溶融する工程と、該溶融された原材料を冷却し
て合金を得る工程と、該合金を粉砕する工程と、該粉砕
され合金をホットプレスにより押圧して薄板からなる熱
電半導体を形成する工程と、該熱電半導体を複数枚重ね
て、該熱電半導体の薄板面に対して垂直方向から再度ホ
ットプレスにより押圧する工程とから形成されることを
特徴とする熱電半導体の製造方法であるので、ビスマス
−テルル系の配向度の大きい熱電半導体の均一な材料を
得ることができる。
More specifically, a step of melting a bismuth-tellurium raw material, a step of cooling the molten raw material to obtain an alloy, a step of pulverizing the alloy, and a step of hot-dipping the pulverized alloy Forming a thermoelectric semiconductor formed of a thin plate by pressing with a press, and pressing again by hot pressing from a direction perpendicular to the thin plate surface of the thermoelectric semiconductor by stacking a plurality of the thermoelectric semiconductors Therefore, a uniform material of a thermoelectric semiconductor having a high degree of orientation in a bismuth-tellurium system can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱電半導体の製造方法を示す断面図。FIG. 1 is a cross-sectional view illustrating a method for manufacturing a thermoelectric semiconductor according to the present invention.

【図2】本発明の製造方法から得られた熱電半導体から
切り出される熱電半導体試料の概念図。
FIG. 2 is a conceptual diagram of a thermoelectric semiconductor sample cut out from a thermoelectric semiconductor obtained by the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1…薄板状の熱電半導体 2…ダイス 2A…ダイス穴 3…パンチ 3A…上パンチ 3B…下パンチ 12、13…熱電半導体 S1、S2、S3…熱電半導体試料 DESCRIPTION OF SYMBOLS 1 ... Thermoelectric semiconductor of a thin plate shape 2 ... Dice 2A ... Die hole 3 ... Punch 3A ... Upper punch 3B ... Lower punch 12, 13 ... Thermoelectric semiconductor S1, S2, S3 ... Thermoelectric semiconductor sample

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホットプレスにより得られた複数枚の薄
板状の熱電半導体を再度ホットプレスにより押圧して得
られる熱電半導体の製造方法。
1. A method for manufacturing a thermoelectric semiconductor obtained by pressing a plurality of thin plate-like thermoelectric semiconductors obtained by hot pressing again by hot pressing.
【請求項2】 ビスマス−テルル系の原材料を溶融する
工程と、該溶融された原材料を冷却して合金を得る工程
と、該合金を粉砕する工程と、該粉砕され合金をホット
プレスにより押圧して薄板からなる熱電半導体を形成す
る工程と、該熱電半導体を複数枚重ねて、該熱電半導体
の薄板面に対して垂直方向から再度ホットプレスにより
押圧する工程とから形成されることを特徴とする熱電半
導体の製造方法。
2. A step of melting a bismuth-tellurium raw material, a step of cooling the molten raw material to obtain an alloy, a step of pulverizing the alloy, and pressing the pulverized alloy by a hot press. And forming a plurality of thermoelectric semiconductors by laminating the thermoelectric semiconductors, and pressing the thermoelectric semiconductors again by hot pressing from a direction perpendicular to the thin plate surface of the thermoelectric semiconductors. Manufacturing method of thermoelectric semiconductor.
【請求項3】 前記薄板からなる熱電半導体の厚さは3
mm以下であることを特徴とする請求項1あるいは請求
項2記載の熱電半導体の製造方法。
3. The thermoelectric semiconductor comprising the thin plate has a thickness of 3
3. The method for producing a thermoelectric semiconductor according to claim 1, wherein the diameter is not more than mm. 4.
【請求項4】 前記薄板からなる熱電半導体の厚さは
0.5〜3mmであることを特徴とする請求項3記載の
熱電半導体の製造方法。
4. The method for producing a thermoelectric semiconductor according to claim 3, wherein the thickness of the thermoelectric semiconductor formed of the thin plate is 0.5 to 3 mm.
JP2000382644A 2000-12-15 2000-12-15 Method of manufacturing thermoelectric semiconductor Pending JP2002185052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382644A JP2002185052A (en) 2000-12-15 2000-12-15 Method of manufacturing thermoelectric semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382644A JP2002185052A (en) 2000-12-15 2000-12-15 Method of manufacturing thermoelectric semiconductor

Publications (1)

Publication Number Publication Date
JP2002185052A true JP2002185052A (en) 2002-06-28

Family

ID=18850434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382644A Pending JP2002185052A (en) 2000-12-15 2000-12-15 Method of manufacturing thermoelectric semiconductor

Country Status (1)

Country Link
JP (1) JP2002185052A (en)

Similar Documents

Publication Publication Date Title
KR101616109B1 (en) Thermoelectric materials and Chalcogenide compounds
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US6525260B2 (en) Thermoelectric conversion material, and method for manufacturing same
JP2829415B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
CN107074666A (en) The porous thermoelectric generator of nanostructured
US9115420B2 (en) Thermoelectric material formed of Mg2Si-based compound and production method therefor
EP2662331A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric apparatus including the thermoelectric material
KR102059674B1 (en) P type skutterudite thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same
JP4374578B2 (en) Thermoelectric material and manufacturing method thereof
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
CN113421959A (en) N-type bismuth telluride-based room temperature thermoelectric material and preparation method thereof
JP3458587B2 (en) Thermoelectric conversion material and its manufacturing method
JP2000106460A (en) Thermoelectric semiconductor material and manufacture thereof
JP2002185052A (en) Method of manufacturing thermoelectric semiconductor
JPH08186294A (en) Thermoelectric material
JPH06144825A (en) Production of thermoelectric element
JP2003031860A (en) Thermoelectric material and thermoelectric conversion module
WO2021131408A1 (en) Thermoelectric conversion element, thermoelectric conversion module, joining material, and method for manufacturing thermoelectric conversion element
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
KR101322779B1 (en) Bismuth doped Magnesium Silicide composition for thermoelectric material and the manufacturing method of the same
JP2020167317A (en) Polycrystalline magnesium silicide, sintered body, and use of the same
JP2887468B2 (en) Manufacturing method of thermoelectric semiconductor material
JPH0341780A (en) Manufacture of thermoelectric material
JPH10308538A (en) Thermoelectric element and its manufacture
KR102134306B1 (en) P-type thermoelectric composite and process for preparing the same