JP2002184598A - High-frequency power source unit for icp - Google Patents

High-frequency power source unit for icp

Info

Publication number
JP2002184598A
JP2002184598A JP2000377304A JP2000377304A JP2002184598A JP 2002184598 A JP2002184598 A JP 2002184598A JP 2000377304 A JP2000377304 A JP 2000377304A JP 2000377304 A JP2000377304 A JP 2000377304A JP 2002184598 A JP2002184598 A JP 2002184598A
Authority
JP
Japan
Prior art keywords
power
frequency power
power supply
voltage
icp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000377304A
Other languages
Japanese (ja)
Inventor
Toshiya Habu
俊也 土生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000377304A priority Critical patent/JP2002184598A/en
Publication of JP2002184598A publication Critical patent/JP2002184598A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lower the failure rate of elements in a high-frequency power source unit for an ICP and stand the reflected power in plasma lighting at a small rated value. SOLUTION: For the high-frequency power source unit for the ICP, which supplies high-frequency power to an induction coil, the unit comprises a high-frequency power amplifier and a control means for controlling the high-frequency power amplifier. In the first embodiment, supply voltage is changed over, thereby preventing build up of voltage before plasma lighting, in the second embodiment, bias voltage is changed over, thereby preventing power loss before plasma lighting, and in the third embodiment, an input power control is made an open loop in a state that the supply voltage is kept constant, thereby enhancing power efficiency before plasma lighting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波電源に関
し、特にICP(高周波誘導結合プラズマ)に電力を供
給するICP用高周波電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency power supply, and more particularly to a high-frequency power supply for an ICP (Inductively Coupled Plasma) which supplies power to the ICP.

【0002】[0002]

【従来の技術】高周波プラズマ発光分析装置等のICP
(高周波誘導結合プラズマ)を用いる装置では、ICP
用高周波電源装置から高周波電力を供給することによっ
てプラズマを点灯させ、該プラズマを維持している。一
般に、ICP用高周波電源装置は高周波パワーアンプを
備え、該高周波パワーアンプで電力増幅した高周波電力
をインピーダンスマッチング回路を介して誘導コイルに
供給している。ICP用高周波電源装置の出力電力の大
きさは高周波パワーアンプに印加する電源電圧によって
定め、また、電力増幅特性は高周波パワーアンプが備え
る電力増幅用素子に加えるバイアス電圧によって定って
おり、通常、予め定められた定格値(例えば定格電力
等)を満すように設定している。
2. Description of the Related Art ICP such as a high frequency plasma emission analyzer
(RF Inductively Coupled Plasma)
The plasma is turned on by supplying high-frequency power from the high-frequency power supply device for use, and the plasma is maintained. Generally, a high-frequency power supply device for ICP includes a high-frequency power amplifier, and supplies high-frequency power amplified by the high-frequency power amplifier to an induction coil via an impedance matching circuit. The magnitude of the output power of the ICP high-frequency power supply is determined by the power supply voltage applied to the high-frequency power amplifier, and the power amplification characteristic is determined by the bias voltage applied to the power amplification element provided in the high-frequency power amplifier. It is set so as to satisfy a predetermined rated value (for example, rated power or the like).

【0003】ICP用高周波電源装置を使用する場合に
は、必要とする高周波電力以上の定格値を備えたICP
用高周波電源装置を選択し、該ICP用高周波電源装置
の電源電圧及びバイアス電圧を固定して常に定格値の出
力電力を供給すると共に、誘導コイルとの間にインピー
ダンスマッチング回路を設けることによって、誘導コイ
ルに高周波電力を効率良く供給し、発生したプラズマを
安定して維持している。誘導コイルは、プラズマが点灯
する前は単なるコイルで2次側が開放されたトランスと
見なせるのに対して、プラズマが点灯した後は2次側に
負荷が接続されたトランスと見なせる。したがって、I
CP用高周波電源装置側から誘導コイル側を見たときの
インダクタンスは、プラズマ点灯前後で大きく異なる。
When using a high-frequency power supply device for ICP, an ICP having a rated value higher than the required high-frequency power is required.
By selecting a high-frequency power supply for the ICP, fixing the power supply voltage and the bias voltage of the high-frequency power supply for the ICP and always supplying the output power of the rated value, and providing an impedance matching circuit between the induction coil and the induction coil, High-frequency power is efficiently supplied to the coil to stably maintain the generated plasma. Before the plasma is turned on, the induction coil can be regarded as a transformer having a simple coil and a secondary side opened, whereas after the plasma is turned on, it can be regarded as a transformer having a load connected to the secondary side. Therefore, I
The inductance when the induction coil side is viewed from the CP high-frequency power supply side largely differs before and after plasma lighting.

【0004】そこで、インピーダンスマッチング回路
は、通常、プラズマを安定して維持するために、プラズ
マ点灯後のマッチングが取り易いように回路定数を設定
し、点灯状態における反射電力を低減させている。
Therefore, in order to maintain stable plasma, the impedance matching circuit usually sets circuit constants so that matching can be easily performed after plasma lighting, and reduces reflected power in the lighting state.

【0005】[0005]

【発明が解決しようとする課題】前記したように、IC
P用高周波電源装置による高周波電力の供給において
は、プラズマ点灯後においてプラズマ状態が安定して維
持されるように、ICP用高周波電源装置の出力電力を
設定し、インピーダンスマッチング回路の回路定数を設
定しているため、プラズマ点灯時にはインピーダンスマ
ッチングが十分にとることができず、高周波入力電力の
多くが電源側に反射される。誘導コイル側から電源側に
反射された反射電力は、ICP用高周波電源装置を構成
する素子に印加される電圧を高めたり熱として消費され
るため、素子の負荷を増加させ、最悪の場合には破壊す
るという問題がある。
As described above, as described above, IC
In the supply of high-frequency power by the high-frequency power supply for P, the output power of the high-frequency power supply for ICP is set and the circuit constant of the impedance matching circuit is set so that the plasma state is stably maintained after the plasma is turned on. Therefore, sufficient impedance matching cannot be achieved during plasma lighting, and most of the high-frequency input power is reflected to the power supply side. The reflected power reflected from the induction coil side to the power supply side increases the voltage applied to the elements constituting the high-frequency power supply device for ICP or is consumed as heat, so that the load on the elements increases, and in the worst case, There is a problem of destruction.

【0006】そこで、従来においては、プラズマ点灯時
に電源側に戻される反射電力の分だけ耐圧電圧や耐圧電
力を高くした定格値の大きなICP用高周波電源装置を
用いることによって、プラズマ点灯時の反射電力による
電圧上昇や電力増加による影響を回避している。しかし
ながら、定格値の大きなICP用高周波電源装置は、大
型となるといった問題の他、価格も高額となるという問
題もある。
Therefore, conventionally, by using a high-frequency ICP high-frequency power supply having a higher withstand voltage and a higher withstand voltage by the amount of the reflected power returned to the power supply during plasma lighting, the reflected power during plasma lighting is increased. To avoid the effects of voltage rise and power increase. However, the high-frequency power supply device for ICP having a large rated value has a problem that the price is high in addition to a problem that the size is large.

【0007】そこで、本発明は前記した従来の問題点を
解決し、ICP用高周波電源装置の素子の故障率を低減
することを目的とし、また、小さな定格値でプラズマ点
灯時の反射電力に耐え得るICP用高周波電源装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has an object to reduce the failure rate of elements of a high-frequency power supply device for ICP. It is an object of the present invention to provide a high frequency power supply for ICP that can be obtained.

【0008】[0008]

【課題を解決するための手段】本発明は、ICP用高周
波電源装置の素子を反射電力による電圧上昇や電力損失
増加に耐えるには、ICP用高周波電源装置の定格電圧
(耐圧電圧)がICP用高周波電源装置自体の印加電圧
と反射電力による電圧上昇の和よりも大きいという条
件、及びICP用高周波電源装置の定格電力損失(耐圧
電力)がICP用高周波電源装置自体の電力損失と反射
電力による電力損失の和よりも大きいという条件を満足
する必要がある点、及び誘導コイルからICP用高周波
電源装置に戻る反射電力は、プラズマ点灯前とプラズマ
点灯後とではその大きさに差があり、プラズマ点灯前の
反射電力はプラズマ点灯後の反射電力よりも大きい点に
着目し、反射電力の大きなプラズマ点灯前における電圧
上昇及び電力損失を抑制させることによって、素子の故
障率を低減させ、また、定格値を下げるものである。
SUMMARY OF THE INVENTION According to the present invention, a rated voltage (withstand voltage) of an ICP high-frequency power supply device is required for an element of the ICP high-frequency power supply device to withstand an increase in voltage or an increase in power loss due to reflected power. The condition that the value is larger than the sum of the applied voltage of the high-frequency power supply itself and the voltage rise due to the reflected power, and the rated power loss (withstand voltage) of the high-frequency power supply for ICP is the power due to the power loss and the reflected power of the high-frequency power supply for ICP itself The point that it is necessary to satisfy the condition of being larger than the sum of the losses and the reflected power returning from the induction coil to the high-frequency power supply device for ICP have a difference in the magnitude before and after the plasma lighting. Focusing on the fact that the reflected power before is larger than the reflected power after lighting the plasma, the voltage rise and the power loss before the lighting of the plasma with large reflected power are considered. By control, reduce the failure rate of the device, also those which lower the rated value.

【0009】そこで、本発明は、誘導コイルに高周波電
力を供給するICP用高周波電源装置において、高周波
パワーアンプと前記高周波パワーアンプを制御する制御
手段とを備えた構成とし、第1の態様では電源電圧を切
換えることでプラズマ点灯前における電圧上昇を抑制
し、第2の態様ではバイアス電圧を切換えることでプラ
ズマ点灯前における電力損失を抑制し、また、第3の態
様では電源電圧を一定とした状態で入力電力制御をオー
プンループとすることでプラズマ点灯前における電源効
率を高めるものである。
Therefore, the present invention provides an ICP high-frequency power supply for supplying high-frequency power to an induction coil, comprising a high-frequency power amplifier and control means for controlling the high-frequency power amplifier. By switching the voltage, a voltage rise before plasma lighting is suppressed, in the second mode, the power loss before plasma lighting is suppressed by switching the bias voltage, and in the third mode, the power supply voltage is kept constant. Thus, the power efficiency before the plasma is turned on is enhanced by making the input power control an open loop.

【0010】本発明の第1の態様において、制御手段は
高周波パワーアンプに印加する電源電圧をプラズマ発生
前とプラズマ発生後とで切換え、プラズマ発生前の電源
電圧をプラズマ発生後の電源電圧よりも低電圧とする。
これによって、プラズマ発生前の定格電圧を低下させる
ことができる。したがって、反射電力による電圧上昇は
プラズマ発生後よりもプラズマ発生前の方が大きいた
め、ICP用高周波電源装置の定格電圧を低下させるこ
とができる。
In the first aspect of the present invention, the control means switches the power supply voltage to be applied to the high-frequency power amplifier between before and after the plasma generation, so that the power supply voltage before the plasma generation is higher than the power supply voltage after the plasma generation. Low voltage.
As a result, the rated voltage before plasma generation can be reduced. Therefore, the voltage rise due to the reflected power is greater before the plasma is generated than after the plasma is generated, so that the rated voltage of the high frequency power supply for ICP can be reduced.

【0011】本発明の第2の態様において、制御手段は
高周波パワーアンプが備える電力増幅用素子のバイアス
電圧をプラズマ発生前とプラズマ発生後とで切換え、プ
ラズマ発生前のバイアス電圧をプラズマ発生後のバイア
ス電圧よりも低電圧とする。これによって、プラズマ発
生前の電源効率を高めて電力損失を低下させることがで
きる。したがって、反射電力による電力損失はプラズマ
発生後よりもプラズマ発生前の方が大きいため、ICP
用高周波電源装置の定格電力を低下させることができ
る。
In the second aspect of the present invention, the control means switches the bias voltage of the power amplifying element included in the high-frequency power amplifier between before and after plasma generation, and changes the bias voltage before plasma generation after plasma generation. The voltage is lower than the bias voltage. As a result, power supply efficiency before plasma generation can be increased and power loss can be reduced. Therefore, the power loss due to the reflected power is larger before plasma generation than after plasma generation.
Rated power of the high-frequency power supply device can be reduced.

【0012】本発明の第3の態様において、制御手段
は、プラズマ発生前において高周波パワーアンプに印加
する電源電圧をプラズマ発生に必要な高周波電力を供給
する最小の電圧に固定した状態で、最大入力電力を供給
する。通常、ICP用高周波電源装置の最大出力電力
は、高周波パワーアンプに印加する電源電圧で定まるた
め、電源電圧の電圧値をプラズマ点灯に必要な高周波電
力を供給できる最小の電圧値まで下げ、この電圧値に固
定する。このとき、ICP用高周波電源装置から出力さ
れる高周波電力は、ほぼ印加した電源電圧で定まり、か
つ、高い電源効率を維持することができる。
In a third aspect of the present invention, the control means controls the maximum input in a state where the power supply voltage applied to the high-frequency power amplifier is fixed to the minimum voltage for supplying the high-frequency power required for plasma generation before the plasma generation. Supply power. Normally, since the maximum output power of the high frequency power supply for ICP is determined by the power supply voltage applied to the high frequency power amplifier, the voltage value of the power supply voltage is reduced to the minimum voltage capable of supplying the high frequency power required for plasma lighting. Fix to a value. At this time, the high-frequency power output from the high-frequency power supply device for ICP is substantially determined by the applied power supply voltage, and high power efficiency can be maintained.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、図
を参照しながら詳細に説明する。図1は本発明のプラズ
マ用高周波電源を説明するための概略図である。ICP
用高周波電源装置1は、高周波パワーアンプ2と、高周
波パワーアンプ2を制御する制御手段3を備える。制御
手段3は、電圧源4を介して高周波パワーアンプ2に印
加する電源電圧VDD、電力増幅用素子(例えば、トラ
ンジスタやFET)のバイアス電圧V を制御し、ま
た、高周波パワーアンプ5を介して高周波パワーアンプ
2に供給する入力電力(入力電流I )を制御する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram for explaining a high frequency power supply for plasma of the present invention. ICP
The high frequency power supply device 1 includes a high frequency power amplifier 2 and a control unit 3 for controlling the high frequency power amplifier 2. Control means 3, the power supply voltage V DD applied to the high frequency power amplifier 2 through a voltage source 4, a power amplifying element (e.g., a transistor or FET) controls the bias voltage V B of, also, the high frequency power amplifier 5 The input power (input current I D ) supplied to the high-frequency power amplifier 2 via the power supply is controlled.

【0014】高周波パワーアンプ2には整合回路7を介
して誘導コイル6が接続され、該誘導コイル6に高周波
電力を供給することによってプラズマを点灯させる。高
周波パワーアンプ2からは誘導コイル6側に向かって出
力電力Poutが供給される。このとき、高周波パワーア
ンプ2から整合回路7側を見たときのインピーダンス整
合が不十分である場合には、整合回路7側から高周波パ
ワーアンプ2に向かって反射電力Prefが戻される。こ
の反射電力Prefの大きさは、プラズマ点灯前とプラズ
マ点灯後とで異なる。通常、整合回路7は点灯後のプラ
ズマ状態が維持されるようにインピーダンス整合の回路
定数を定めているため、プラズマ点灯前の反射電力Pre
fはプラズマ点灯後の反射電力Prefよりも大きくなる。
An induction coil 6 is connected to the high-frequency power amplifier 2 via a matching circuit 7, and the plasma is lit by supplying high-frequency power to the induction coil 6. Output power Pout is supplied from the high frequency power amplifier 2 toward the induction coil 6 side. At this time, if the impedance matching when the matching circuit 7 is viewed from the high-frequency power amplifier 2 is insufficient, the reflected power Pref is returned from the matching circuit 7 toward the high-frequency power amplifier 2. The magnitude of the reflected power Pref differs between before plasma lighting and after plasma lighting. Normally, since the matching circuit 7 determines the circuit constant of impedance matching so that the plasma state after lighting is maintained, the reflected power Pre before plasma lighting is set.
f becomes larger than the reflected power Pref after plasma lighting.

【0015】この反射電力Prefによって、ICP用高
周波電源装置1の負荷電圧が上昇し、電力損失Plossも
増加する。戻された反射電力Prefは、最終的にはIC
P用高周波電源装置内において熱となる。そこで、IC
P用高周波電源装置1は、この反射電力Prefによる電
源電圧の電圧上昇分Vref、及び電力損失の増加分Plos
srefに耐えるに十分な定格電圧V 、及び定格電力損
失Ploss を備える必要がある。
Due to the reflected power Pref, the load voltage of the ICP high frequency power supply 1 increases, and the power loss Ploss also increases. The returned reflected power Pref finally becomes IC
Heat is generated in the high-frequency power supply device for P. So, IC
The high-frequency power supply device 1 for P uses the reflected power Pref to increase the power supply voltage Vref and the power loss Plos.
It is necessary to provide a rated voltage V 0 and a rated power loss Ploss 0 sufficient to withstand sref.

【0016】定格電圧V についてはほぼ以下の関係
式(1)を満足し、定格電力損失Ploss については
以下の関係式(2)を満足する必要がある。 VDD+Vref>V …(1) Ploss+Plossref>Ploss …(2) なお、VDDは印加する電源電圧、Vrefは反射電力に
よる電圧上昇分、Vは定格電圧であり、また、Ploss
はICP用高周波電源装置内自体の電力損失分、Ploss
refは反射電力による電力損失分、Ploss は定格電
力損失である。
It is necessary that the rated voltage V 0 substantially satisfies the following relational expression (1), and the rated power loss Ploss 0 must satisfy the following relational expression (2). V DD + Vref> V 0 (1) Ploss + Plossref> Ploss 0 (2) where V DD is an applied power supply voltage, Vref is a voltage rise due to reflected power, V 0 is a rated voltage, and P loss is a rated voltage.
Is the power loss in the RF power supply for ICP itself, Ploss
ref is the power loss due to the reflected power, and Ploss 0 is the rated power loss.

【0017】上記関係式(1),(2)は、プラズマ点
灯前及びプラズマ点灯後の何れの状態においても満足す
る必要があるが、プラズマ点灯前の反射電力Prefはプ
ラズマ点灯後の反射電力Prefよりも大きいため、プラ
ズマ点灯前について上記関係式(1),(2)を満足す
れば十分となる。そこで、以下、定格電圧V の低減
について図2,3を用いて説明し、定格電力損失Ploss
の低減について図4,5を用いて説明し、また、電
源効率の高効率について図6,7,8を用いて説明す
る。なお、図2,4,6は本発明の場合を示し、図3,
5,8は本発明と比較するための従来の場合を示してい
る。
The above-mentioned relational expressions (1) and (2) need to be satisfied both before and after plasma lighting, but the reflected power Pref before plasma lighting is the reflected power Pref after plasma lighting. Therefore, it is sufficient to satisfy the above relational expressions (1) and (2) before plasma lighting. Therefore, the reduction of the rated voltage V 0 will be described below with reference to FIGS.
The reduction of 0 will be described with reference to FIGS. 4 and 5, and the high power efficiency will be described with reference to FIGS. FIGS. 2, 4, and 6 show the case of the present invention, and FIGS.
Reference numerals 5 and 8 denote conventional cases for comparison with the present invention.

【0018】はじめに、図2,3を用いて定格電圧V
の低減について説明する。図2,3において、(a)
は印加電源電圧VDDと出力電力Poutとの相関関係を
示す図であり、(b)は入力電力Pinと出力電力Pout
との相関関係を示す図であり、(c)は定格電圧V
に対する印加電源電圧VDDと反射電力による電圧上昇
分Vrefとの関係をプラズマ点灯前とプラズマ点灯後で
比較する図である。
First, the rated voltage V 0 will be described with reference to FIGS.
The reduction will be described. 2 and 3, (a)
FIG. 3 is a diagram showing a correlation between an applied power supply voltage VDD and an output power Pout, and FIG. 4B is a diagram showing an input power Pin and an output power Pout.
FIG. 7C is a diagram showing a correlation with the rated voltage V 0.
FIG. 4 is a diagram comparing the relationship between the applied power supply voltage V DD and the voltage increase Vref due to the reflected power before and after plasma lighting.

【0019】高周波パワーアンプにおいて、入力電力P
inを一定としたとき、最大出力電力Pout(max)は図2
(a)に示すように印加電源電圧VDDに対してほぼ2
乗に比例する特性を備える。また、印加電源電圧VDD
と一定としたとき、出力電力Poutは該印加電源電圧V
DDで定まる最大出力電力Pout(max)を上限として、図
2(b)に示すように入力電力Pinに対して比例する特
性を備える。通常、プラズマ点灯に要する電力とプラズ
マの点灯後に要する電力との間には差があり、プラズマ
点灯に要する電力はプラズマの点灯後に要する電力より
も小さい。そこで、本発明では、プラズマ点灯前及びプ
ラズマ点灯後とにおいて、プラズマの点灯に要する電力
に基づいて最大出力電力Pout(max1)を定め(図2
(a)中の)、プラズマの維持に要する電力に基づい
て最大出力電力Pout(max2)を定める(図2(a)中の
)。
In a high frequency power amplifier, the input power P
When in is constant, the maximum output power Pout (max) is as shown in FIG.
As shown in (a), the applied power supply voltage V DD is almost 2
It has a characteristic that is proportional to the power. In addition, the applied power supply voltage V DD
And the output power Pout is the applied power supply voltage V
With the maximum output power Pout (max) determined by the DD as an upper limit, a characteristic proportional to the input power Pin is provided as shown in FIG. Normally, there is a difference between the power required for plasma lighting and the power required after plasma lighting, and the power required for plasma lighting is smaller than the power required after plasma lighting. Therefore, in the present invention, the maximum output power Pout (max1) is determined before and after plasma lighting based on the power required for plasma lighting (FIG. 2).
(In (a)), the maximum output power Pout (max2) is determined based on the power required to maintain the plasma (in (a) in FIG. 2).

【0020】図2(a)に示す印加電源電圧VDDと出
力電力Poutの相関図から、プラズマの点灯に要する最
大出力電力Pout(max1)に対応する印加電源電圧V
DD1(図2(a)中の)は、プラズマの維持に要す
る最大出力電力Pout(max2)に対応する印加電源電圧V
DD2(図2(a)中の)よりも小電圧となる。そこ
で、プラズマ点灯前の印加電源電圧VDDをVDD1
設定すると(図2(a)中の)、このときに出力され
る最大出力電力Pout(max)は印加電源電圧VDD1で定
まるPout(max1)となる(図2(a),(b)中の
)。ICP用高周波電源装置から出力される高周波電
力は、図2(b)に示す入力電力Pinと出力電力Pout
の相関図から、この最大出力電力Pout(max1)を最大と
し、入力電力Pinに対してほぼ比例する出力特性Aに従
って変化する。点灯前の入力電力Pin1に対しては出力
電力Pout1を出力する(図2(b)中の)。
From the correlation diagram between the applied power supply voltage VDD and the output power Pout shown in FIG. 2A, the applied power supply voltage Vout corresponding to the maximum output power Pout (max1) required for plasma lighting is obtained.
DD1 (in FIG. 2A) is the applied power supply voltage Vout corresponding to the maximum output power Pout (max2) required for maintaining the plasma.
The voltage becomes smaller than DD2 (in FIG. 2A). Therefore, when the applied power supply voltage V DD before plasma lighting is set to V DD1 (in FIG. 2A), the maximum output power Pout (max) output at this time is Pout (Pout (max) determined by the applied power supply voltage V DD1. max1) (in FIGS. 2A and 2B). The high-frequency power output from the high-frequency power supply for ICP includes an input power Pin and an output power Pout shown in FIG.
The maximum output power Pout (max1) is maximized and changes according to the output characteristic A which is almost proportional to the input power Pin. Output power Pout1 is output for input power Pin1 before lighting (in FIG. 2B).

【0021】また、プラズマ点灯後においては、プラズ
マ点灯後の印加電源電圧VDDをV DD2に設定すると
(図2(a)中の)、このときに出力される最大出力
電力Pout(max)は印加電源電圧VDD2で定まるPout
(max2)となる(図2(a),(b)中の)。ICP用
高周波電源装置から出力される高周波電力は、図2
(b)に示す入力電力Pinと出力電力Poutの相関図か
ら、この最大出力電力Pout(max2)を最大とし、入力電
力Pinに対してほぼ比例する出力特性Bに従って変化す
る。点灯後の入力電力Pin2に対して出力電力Pout2を
出力する(図2(b)中の)。
After the plasma is turned on, the plasma
Power supply voltage V after lightingDDTo V DD2If set to
(In FIG. 2A), the maximum output output at this time
Power Pout (max) is applied power supply voltage VDD2Pout determined by
(max2) (in FIGS. 2A and 2B). For ICP
The high frequency power output from the high frequency power supply is shown in FIG.
(B) is a correlation diagram between the input power Pin and the output power Pout
From this, the maximum output power Pout (max2) is maximized and the input power
It changes according to the output characteristic B which is almost proportional to the force Pin.
You. Output power Pout2 for input power Pin2 after lighting
Output (in FIG. 2B).

【0022】ICP用高周波電源装置の定格電圧V
は、前記式(1)の関係から印加電源電圧VDDと反射
電力による電圧上昇分Vrefの和で表されるから、点灯
前においては(VDD1+Vref1)(図2(c)中の
a)に基づいて設定され、点灯後においては(VDD2
+Vref2)(図2(c)中のb)に基づいて設定され
る。通常、点灯前の反射電力は点灯後の反射電力よりも
大きいため、Vref1はVref2よりも大きくなるため、I
CP用高周波電源装置の定格電圧V は(VDD+V
ref1)に基づいて設定される(図2(c))。
Rated voltage V 0 of high frequency power supply for ICP
Is represented by the sum of the applied power supply voltage V DD and the voltage rise Vref due to the reflected power from the relationship of the above equation (1). Therefore, before lighting, (V DD1 + V ref1 ) (a in FIG. 2C) And after lighting, ( VDD2
+ Vref2) (b in FIG. 2C). Normally, since the reflected power before lighting is larger than the reflected power after lighting, Vref1 becomes larger than Vref2,
The rated voltage V 0 of the CP high-frequency power supply is (V DD + V
ref1) (FIG. 2 (c)).

【0023】これに対して、従来のICP用高周波電源
装置では、点灯前及び点灯後に対して、プラズマの維持
に要する電力に基づいて1つの最大出力電力Pout(max)
を定め(図3(a)中の)、図3(a)に示す印加電
源電圧VDDと出力電力Poutの相関図から、プラズマ
を点灯し維持するに要する最大出力電力Pout(max)に対
応する印加電源電圧VDDを求める(図3(a)中の
)。
On the other hand, in the conventional high frequency power supply for ICP, one maximum output power Pout (max) is determined before and after lighting based on the power required to maintain the plasma.
(In FIG. 3A), and corresponds to the maximum output power Pout (max) required to turn on and maintain the plasma from the correlation diagram between the applied power supply voltage V DD and the output power Pout shown in FIG. The applied power supply voltage V DD to be applied is obtained (in FIG. 3A).

【0024】印加電源電圧VDDを設定すると(図3
(a),(b)中の)、このときに出力される最大出
力電力Pout(max)は印加電源電圧VDDで定まるPout
(max)となる(図3(b)中の)。ICP用高周波電
源装置から出力される高周波電力は、図3(b)に示す
入力電力Pinと出力電力Poutの相関図から、この最大
出力電力Pout(max)を最大とし、入力電力Pinに対して
ほぼ比例する出力特性Cに従って変化する。点灯前の入
力電力Pin1(図3(b)中の)に対しては出力電力
Pout1を出力し(図3(b)中の)、点灯後の入力電
力Pin2(図3(b)中の)に対しては出力電力Pout
2を出力する(図3(b)中の)。
When the applied power supply voltage V DD is set (FIG. 3
(In (a) and (b)), the maximum output power Pout (max) output at this time is Pout determined by the applied power supply voltage VDD.
(max) (in FIG. 3B). The high-frequency power output from the high-frequency power supply device for ICP has the maximum output power Pout (max) as the maximum from the correlation diagram between the input power Pin and the output power Pout shown in FIG. It changes according to the output characteristic C which is approximately proportional. Output power Pout1 is output (in FIG. 3 (b)) for input power Pin1 (in FIG. 3 (b)) before lighting, and input power Pin2 (in FIG. 3 (b)) after lighting. Output power Pout
2 is output (in FIG. 3B).

【0025】このとき、ICP用高周波電源装置の定格
電圧V は、前記と同様に式(1)の関係から印加電
源電圧VDDと反射電力による電圧上昇分Vrefの和で
表される。この場合には、印加電源電圧VDDは一定で
あるから、点灯前及び点灯後に関わらず(VDD+Vre
f1)あるいは(VDD+Vref2)に基づいて設定される
が、通常、点灯前の反射電力は点灯後の反射電力よりも
大きいため、Vref1はVref2よりも大きくなる。そのた
め、ICP用高周波電源装置の定格電圧Vは(VDD
+Vref1)に基づいて設定される(図3(c))。
At this time, the rated voltage V 0 of the ICP high-frequency power supply is expressed by the sum of the applied power supply voltage V DD and the voltage rise Vref due to the reflected power from the relationship of the equation (1) as described above. In this case, since the applied power supply voltage V DD is constant, regardless of before and after lighting, (V DD + Vre
f1) or (V DD + Vref2). Usually, the reflected power before lighting is larger than the reflected power after lighting, so that Vref1 is larger than Vref2. Therefore, the rated voltage V 0 which ICP high-frequency power supply (V DD
+ Vref1) (FIG. 3 (c)).

【0026】図2(c)において、本発明による定格電
圧V (図2(c)中のa)と従来の定格電圧V
(図2(c)中の破線で表示するc)を比較すると、共
通分として反射電力による電圧上昇分Vrefを備えると
共に、本発明による定格電圧V は点灯前の印加電源
電圧VDD1を備え、従来による定格電圧V は点灯
前後に共通する印加電源電圧VDDを備える。点灯前の
印加電源電圧VDD1は点灯前後に共通する印加電源電
圧VDDよりも小電圧とすることができるため、ICP
用高周波電源装置の定格電圧を低減することができる。
In FIG. 2C, the rated voltage V 0 according to the present invention (a in FIG. 2C) and the conventional rated voltage V 0 are shown.
Comparing (c to be displayed in broken lines in FIG. 2 (c)), provided with a voltage rise Vref by the reflected power as a common component, the rated voltage V 0 according to the present invention comprises an applied supply voltage V DD1 of the previously lighted rated voltage V 0 by conventionally comprises applying power source voltage V DD which is common to the front and rear lights. Since the applied power supply voltage V DD1 before lighting can be smaller than the applied power supply voltage V DD common before and after lighting, ICP
Rated voltage of the high-frequency power supply device can be reduced.

【0027】次に、図4,5を用いて電力損失Plossの
低減について説明する。図4,5において、(a)は出
力電力Poutと電源効率ηの相関関係を示す図であり、
(b)は入力電力Pinと出力電力Poutとの相関関係を
示す図であり、(c)は定格損失電力Ploss0に対する
ICP用高周波電源装置自体の電力損失分Plossと反射
電力による電力損失分Prefとの関係をプラズマ点灯前
とプラズマ点灯後で比較する図である。高周波パワーア
ンプにおいて、印加電源電圧VDDを一定としたとき、
電源効率ηは図4(a)に示すように出力電力Poutに
対してほぼ比例し、バイアス電圧V によって変化す
る特性を備える。
Next, the reduction of the power loss Ploss will be described with reference to FIGS. 4A and 5A are diagrams showing the correlation between the output power Pout and the power efficiency η.
(B) is a diagram showing a correlation between the input power Pin and the output power Pout, and (c) is a diagram illustrating a power loss Ploss of the ICP high-frequency power supply itself and a power loss Pref due to the reflected power with respect to the rated loss power Ploss0. FIG. 4 is a diagram comparing the relationship before and after plasma lighting. In a high-frequency power amplifier, when the applied power supply voltage V DD is constant,
Power efficiency η is almost proportional to the output power Pout as shown in FIG. 4 (a), provided with a characteristic that varies with the bias voltage V B.

【0028】ここで、電源効率η、及び電力損失分Plo
ssは以下の式で表される。 η=Pout/(VDD×IDD) …(3) Ploss=Pout((1/η)−1) …(4) したがって、印加電源電圧VDDと一定としたとき、図
4(b)に示すように、電力損失Plossはバイアス電圧
(電力効率η)で変化し、出力電力Poutに対し
て比例する特性を備える。なお、図4(a),(b)に
おいて、バイアス電圧V にVB1 <VB2 の関
係があるとき、同一の出力電力Poutに対して電源効率
ηはη <η の関係となり、また、同一の出力電
力Poutに対して電力損失PlossはPloss <Ploss
の関係となる。上記の関係から、バイアス電圧V
によって電源効率ηを制御し、該電源効率ηの制御に
よって電力損失Plossを制御することができる。
Here, the power supply efficiency η and the power loss Plo
ss is represented by the following equation. η = Pout / (V DD × I DD ) (3) Ploss = Pout ((1 / η) −1) (4) Therefore, when the applied power supply voltage V DD is constant, FIG. As shown, the power loss Ploss changes with the bias voltage V B (power efficiency η) and has a characteristic proportional to the output power Pout. Incidentally, FIG. 4 (a), the (b), the time that the bias voltage V B is related to V B1 <V B2, the power efficiency eta for the same output power Pout becomes a relationship of η 21, the power loss for the same output power Pout Ploss is Ploss 1 <Ploss
2 is obtained. From the above relationship, the bias voltage V B
And the power loss Ploss can be controlled by controlling the power efficiency η.

【0029】そこで、プラズマ点灯前における出力電力
Pout1(図4(a)中の)に対して低いバイアス電圧
B1 を設定すると、電源効率ηは高い電源効率η1
となる(図4(a)中の)。このときの電力損失Plo
ssは、図4(b)に示すように、出力電力Pout1の変化
に対して電源効率η1で示される特性(図4(b)中の
)で定まる電力損失Ploss1となる(図4(b)中の
)。
Therefore, if a low bias voltage VB1 is set for the output power Pout1 (in FIG. 4A) before the plasma is turned on, the power supply efficiency η becomes higher than the power supply efficiency η1.
(In FIG. 4A). Power loss Plo at this time
As shown in FIG. 4B, ss becomes a power loss Ploss1 determined by a characteristic (in FIG. 4B) indicated by the power supply efficiency η1 with respect to a change in the output power Pout1 (FIG. 4B). In).

【0030】また、プラズマ点灯後においては、出力電
力Pout2(図4(a)中の)に対して高いバイアス電
圧VB2 (VB1 <VB2 )を設定すると、電源
効率ηは低い電源効率η2となる(図4(a)中の
)。このときの電力損失Plossは、図4(b)に示す
ように、出力電力Pout2の変化に対して電源効率η2で
示される特性(図4(b)中の)で定まる電力損失P
loss2となる(図4(b)中の)。
After the plasma is turned on, if a high bias voltage V B2 (V B1 <V B2 ) is set with respect to the output power Pout 2 (in FIG. 4A), the power efficiency η becomes low and the power efficiency η 2 becomes low. (In FIG. 4A). The power loss Ploss at this time is, as shown in FIG. 4B, the power loss Ploss determined by the characteristic (in FIG. 4B) indicated by the power supply efficiency η2 with respect to the change in the output power Pout2.
loss2 (in FIG. 4B).

【0031】ICP用高周波電源装置の定格損失電力P
lossは、前記式(2)の関係からICP用高周波電源
装置自体の損失電力Plossと反射電力による損失電力分
Plossrefの和で表されるから、点灯前においては(Pl
oss1+Plossref1)(図4(c)中のa)に基づいて設
定され、点灯後においては(Ploss2+Plossref2)
(図4(c)中のb)に基づいて設定される(図4
(c))。通常、点灯前の反射電力は点灯後の反射電力
よりも大きいため、反射電力による電力損失分はPloss
ref1がPlossref2よりも大きくなる。また、ICP用高
周波電源装置自体の電力損失Plossは、点灯前と点灯後
とでバイアス電圧を切換えることによって、点灯前の電
力損失Ploss1を点灯後の電力損失Ploss2よりも小さく
抑えることができる。これによって、ICP用高周波電
源装置の定格電力損失Ploss は(Ploss1+Plossr
ef1)(図4(c)中のa)あるいは(Ploss2+Ploss
ref2)(図4(c)中のb)に設定される。
Rated power loss P of high frequency power supply for ICP
Since the loss 0 is represented by the sum of the loss power Ploss of the ICP high-frequency power supply itself and the loss power Plossref due to the reflected power from the relationship of the equation (2), (Pl
oss1 + Plossref1) (a in FIG. 4 (c)). After lighting, (Ploss2 + Plossref2)
(B in FIG. 4 (c)).
(C)). Normally, the reflected power before lighting is larger than the reflected power after lighting, so the power loss due to the reflected power is Ploss
ref1 becomes larger than Plossref2. Further, the power loss Ploss of the ICP high-frequency power supply device itself can be suppressed to be smaller than the power loss Ploss2 after lighting by switching the bias voltage between before and after lighting. As a result, the rated power loss Ploss 0 of the high frequency power supply device for ICP becomes (Ploss1 + Plossr
ef1) (a in FIG. 4 (c)) or (Ploss2 + Ploss
ref2) (b in FIG. 4C).

【0032】これに対して、従来のICP用高周波電源
装置では、点灯後の出力特性に合わせてバイアス電圧を
固定している。そのため、点灯前の出力電力Pout1(図
5(a)中の)に対しては低い電源効率η1となり
(図5(a)中の)、点灯後の出力電力Pout2(図5
(a)中の)に対しては高い電源効率η2(図5
(a)中の)となる。そのため、点灯前においては、
電源効率η1が低いため、電力損失Ploss1は大きくなる
(図5(a)中の,)。このとき、ICP用高周波
電源装置の定格電力損失Ploss は、前記と同様に式
(2)の関係からICP用高周波電源装置自体の損失電
力Plossと反射電力による損失電力分Plossrefの和で
表される。
On the other hand, in the conventional high frequency power supply for ICP, the bias voltage is fixed in accordance with the output characteristics after lighting. Therefore, the output power Pout1 before lighting (in FIG. 5A) has a low power supply efficiency η1 (in FIG. 5A), and the output power after lighting Pout2 (in FIG. 5A).
(In (a)) has high power efficiency η2 (FIG. 5).
(In (a)). Therefore, before lighting,
Since the power efficiency η1 is low, the power loss Ploss1 increases (in FIG. 5A). At this time, the rated power loss Ploss 0 of the ICP high-frequency power supply device is represented by the sum of the loss power Ploss of the ICP high-frequency power supply device itself and the loss power component Plossref due to the reflected power from the relationship of Expression (2) as described above. You.

【0033】通常、点灯前の反射電力は点灯後の反射電
力よりも大きいため、この反射電力による点灯前の電力
損失分Plossref1は点灯後の電力損失分Plossref2より
も大きくなる。また、ICP用高周波電源装置自体の電
力損失分についても、点灯前の電源効率が低いため、点
灯前の電力損失分Ploss1も大きなものとなり、ICP
用高周波電源装置の定格電力損失Ploss は(Ploss
1+Plossref1)(図5(c)中のa)あるいは(Plos
s2+Plossref2)(図5(c)中のb)に基づいて設定
される。
Normally, the reflected power before lighting is greater than the reflected power after lighting, so the power loss Plossref1 before lighting due to this reflected power is greater than the power loss Plossref2 after lighting. Also, regarding the power loss of the high frequency power supply device for ICP itself, since the power efficiency before lighting is low, the power loss Ploss1 before lighting becomes large, and the ICP
Power loss Ploss 0 of the high frequency power supply for
1 + Plossref1) (a in FIG. 5 (c)) or (Plos
s2 + Plossref2) (b in FIG. 5C).

【0034】図4(c)において、本発明による定格電
力損失Ploss (図4(c)中のa)と従来の定格電
圧定格電力損失Ploss (図4(c)中の破線で表示
するc)を比較すると、反射電力による電力損失分Plo
ssref1を共通して備える他、本発明はバイアス電圧V
B1 で定まる定格電力損失Ploss1 を備え、他方従
来ではバイアス電圧VB2 で定まる定格電力損失Plo
ss2 を備える。本発明においては、点灯前にバイアス
電圧をVB1 に切換えることによって、定格電力損失
Ploss1を定格電力損失Ploss2よりも小さくすることが
できるため、ICP用高周波電源装置の定格電力損失を
低減することができる。
In FIG. 4C, the rated power loss Ploss 0 according to the present invention (a in FIG. 4C) and the conventional rated voltage rated power loss Ploss 0 (shown by broken lines in FIG. 4C). c), the power loss Plo due to the reflected power
In addition to having the common ssref1, the present invention provides a bias voltage V
It has a rated power loss Ploss1 determined by B1 , while a conventional power loss Plo determined by the bias voltage VB2.
ss2. In the present invention, the rated power loss Ploss1 can be made smaller than the rated power loss Ploss2 by switching the bias voltage to VB1 before lighting, so that the rated power loss of the high frequency power supply device for ICP can be reduced. it can.

【0035】次に、本発明による電源効率の高効率につ
いて図6,7,8を用いて説明する。プラズマ点灯前の
高周波電源では出力電力Poutをさほど正確に制御する
必要がないため、以下の方式が可能となる。図6(a)
に示す印加電源電圧VDDと出力電力Poutとの相関関
係を示す図において、プラズマを点灯するに必要な出力
電力Poutmax(図6(c)中の)となるまで(ステッ
プS2)電源電圧V を下げていき(ステップS
1)、電源電圧VDD1を定め、固定する(図6(c)
中の)(ステップS3)。
Next, the high power supply efficiency according to the present invention will be described with reference to FIGS. Since the output power Pout does not need to be controlled very accurately in the high-frequency power supply before plasma lighting, the following method is possible. FIG. 6 (a)
In the diagram showing the correlation between the applied power supply voltage V DD and the output power Pout shown in FIG. 6, the power supply voltage V D is obtained until the output power Poutmax (in FIG. 6C) necessary for lighting the plasma is reached (step S2). Lower D (Step S
1) The power supply voltage V DD1 is determined and fixed (FIG. 6 (c)).
(Step S3).

【0036】図6(b)の入力電力Pinと出力電力Pou
tとの相関関係を示す図において、出力電力Poutは、電
源電圧VDD1で定まる最大出力電力Poutmaxを上限と
し、入力電力Pinにほぼ比例して増減する出力電力特性
となる。そこで、本発明は、出力電力の最大値が入力電
力Pinによらず電源電圧VDD1で定まる特性を利用し
て、出力電力Poutの制御を、誘導コイル側からのフィ
ードバック制御を行うことなく、入力電力Pinを前段パ
ワーアンプの最大出力に設定する(図6(c)中の,
)(ステップS4,5,6)。
The input power Pin and the output power Pou in FIG.
In the graph showing the correlation between the t, the output power Pout is the maximum output power Poutmax determined by the supply voltage V DD1 to the upper limit, the output power characteristic to increase or decrease approximately in proportion to the input power Pin. Therefore, the present invention utilizes the characteristic that the maximum value of the output power is determined by the power supply voltage VDD1 without depending on the input power Pin, and controls the output power Pout without performing feedback control from the induction coil side. The power Pin is set to the maximum output of the preceding power amplifier (see FIG. 6 (c)).
) (Steps S4, 5, 6).

【0037】これに対して、図8は従来の点灯前におけ
る出力電力安定化制御の例を示している。この出力電力
安定化制御では、電源電圧VDD1で定まる最大出力電
力(図8(c)中の)を有する出力電力特性におい
て、誘導コイル側からのフィードバックによって入力電
力Pinを制御して(図8(c)中の)、出力電力Pou
tを制御するものである(図8(c)中の)。これに
よれば、パワーアンプの電源効率を高めることができ
る。
On the other hand, FIG. 8 shows an example of conventional output power stabilization control before lighting. In the output power stabilization control, in the output power characteristic having the maximum output power (in FIG. 8C) determined by the power supply voltage VDD1 , the input power Pin is controlled by feedback from the induction coil side (see FIG. 8). (In (c)), the output power Pou
It controls t (in FIG. 8C). According to this, the power supply efficiency of the power amplifier can be improved.

【0038】[0038]

【発明の効果】以上説明したように、本発明のプラズマ
用高周波電源によれば、ICP用高周波電源装置の素子
の故障率を低減することができ、また、小さな定格値で
プラズマ点灯時の反射電力に耐え得ることができる。
As described above, according to the high-frequency power supply for plasma of the present invention, the failure rate of the elements of the high-frequency power supply for ICP can be reduced, and the reflection at the time of plasma lighting can be reduced with a small rated value. Can withstand power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプラズマ用高周波電源を説明するため
の概略図である。
FIG. 1 is a schematic diagram illustrating a high-frequency power supply for plasma according to the present invention.

【図2】本発明のICP用高周波電源装置の定格電圧の
低減を説明するための図である。
FIG. 2 is a diagram for explaining a reduction in the rated voltage of the high-frequency power supply device for ICP of the present invention.

【図3】従来のICP用高周波電源装置の定格電圧を説
明するための図である。
FIG. 3 is a diagram for explaining a rated voltage of a conventional high frequency power supply for ICP.

【図4】本発明のICP用高周波電源装置の定格電力損
失の低減を説明するための図である。
FIG. 4 is a diagram for explaining a reduction in rated power loss of the high-frequency power supply device for ICP of the present invention.

【図5】従来のICP用高周波電源装置の定格電力損失
を説明するための図である。
FIG. 5 is a diagram for explaining a rated power loss of a conventional high frequency power supply device for ICP.

【図6】本発明のICP用高周波電源装置の電源効率の
高効率を説明するための図である。
FIG. 6 is a diagram for explaining high power efficiency of the high frequency power supply device for ICP of the present invention.

【図7】本発明のICP用高周波電源装置の電源効率の
高効率を説明するためのフローチャートである。
FIG. 7 is a flowchart for explaining high power efficiency of the high frequency power supply device for ICP of the present invention.

【図8】従来のICP用高周波電源装置の動作を説明す
るためのフローチャートである。
FIG. 8 is a flowchart for explaining the operation of the conventional ICP high-frequency power supply device.

【符号の説明】[Explanation of symbols]

1…ICP用高周波電源装置、2…高周波パワーアン
プ、3…制御手段、4…電圧源、5…高周波パワーアン
プ、6…誘導コイル、7…整合回路。
DESCRIPTION OF SYMBOLS 1 ... High frequency power supply device for ICP, 2 ... High frequency power amplifier, 3 ... Control means, 4 ... Voltage source, 5 ... High frequency power amplifier, 6 ... Induction coil, 7 ... Matching circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 誘導コイルに高周波電力を供給するIC
P用高周波電源装置において、高周波パワーアンプと前
記高周波パワーアンプを制御する制御手段とを備え、前
記制御手段は、前記高周波パワーアンプに印加する電源
電圧をプラズマ発生前とプラズマ発生後とで切換え、プ
ラズマ発生前の電源電圧をプラズマ発生後の電源電圧よ
りも低電圧とすることを特徴とするICP用高周波電源
装置。
An IC for supplying high frequency power to an induction coil
A high-frequency power supply for P, comprising a high-frequency power amplifier and control means for controlling the high-frequency power amplifier, wherein the control means switches a power supply voltage applied to the high-frequency power amplifier between before and after plasma generation, A high frequency power supply for ICP, wherein a power supply voltage before plasma generation is lower than a power supply voltage after plasma generation.
【請求項2】 誘導コイルに高周波電力を供給するIC
P用高周波電源装置において、高周波パワーアンプと前
記高周波パワーアンプを制御する制御手段とを備え、前
記制御手段は、前記高周波パワーアンプが備える電力増
幅用素子のバイアス電圧をプラズマ発生前とプラズマ発
生後とで切換え、プラズマ発生前のバイアス電圧をプラ
ズマ発生後のバイアス電圧よりも低電圧とすることを特
徴とするICP用高周波電源装置。
2. An IC for supplying high frequency power to an induction coil.
A high-frequency power supply device for P, comprising: a high-frequency power amplifier and control means for controlling the high-frequency power amplifier, wherein the control means adjusts a bias voltage of a power amplifying element included in the high-frequency power amplifier before and after plasma generation. Wherein the bias voltage before plasma generation is lower than the bias voltage after plasma generation.
【請求項3】 誘導コイルに高周波電力を供給するIC
P用高周波電源装置において、高周波パワーアンプと前
記高周波パワーアンプを制御する制御手段とを備え、前
記制御手段は、プラズマ発生前において、前記高周波パ
ワーアンプへの入力電力を最大とし、印加する電源電圧
をプラズマ発生に必要な高周波電力を供給する最小電圧
に固定することにより、前記高周波パワーアンプの電源
効率を高めることを特徴とするICP用高周波電源装
置。
3. An IC for supplying high frequency power to an induction coil
A high-frequency power supply device for P, comprising a high-frequency power amplifier and control means for controlling the high-frequency power amplifier, wherein the control means maximizes input power to the high-frequency power amplifier before plasma generation, and applies a power supply voltage to be applied. A high frequency power supply for ICP, wherein the power supply efficiency of the high frequency power amplifier is increased by fixing the voltage to a minimum voltage for supplying high frequency power required for plasma generation.
JP2000377304A 2000-12-12 2000-12-12 High-frequency power source unit for icp Pending JP2002184598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000377304A JP2002184598A (en) 2000-12-12 2000-12-12 High-frequency power source unit for icp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000377304A JP2002184598A (en) 2000-12-12 2000-12-12 High-frequency power source unit for icp

Publications (1)

Publication Number Publication Date
JP2002184598A true JP2002184598A (en) 2002-06-28

Family

ID=18846045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000377304A Pending JP2002184598A (en) 2000-12-12 2000-12-12 High-frequency power source unit for icp

Country Status (1)

Country Link
JP (1) JP2002184598A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269869A (en) * 2004-03-22 2005-09-29 Daihen Corp High-frequency power supply unit
JP2010508638A (en) * 2006-10-31 2010-03-18 エム ケー エス インストルメンツ インコーポレーテッド Method and apparatus for preventing instability in radio frequency plasma processing
JP2015167070A (en) * 2014-03-03 2015-09-24 株式会社島津製作所 high-frequency power supply device
JP2020526881A (en) * 2017-07-07 2020-08-31 アドバンスト・エナジー・インダストリーズ・インコーポレイテッドAdvanced Energy Industries, Inc. Periodic control system for plasma power delivery system and method for operating it
US11615943B2 (en) 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269869A (en) * 2004-03-22 2005-09-29 Daihen Corp High-frequency power supply unit
JP4593948B2 (en) * 2004-03-22 2010-12-08 株式会社ダイヘン High frequency power supply
JP2010508638A (en) * 2006-10-31 2010-03-18 エム ケー エス インストルメンツ インコーポレーテッド Method and apparatus for preventing instability in radio frequency plasma processing
JP2015167070A (en) * 2014-03-03 2015-09-24 株式会社島津製作所 high-frequency power supply device
JP2020526881A (en) * 2017-07-07 2020-08-31 アドバンスト・エナジー・インダストリーズ・インコーポレイテッドAdvanced Energy Industries, Inc. Periodic control system for plasma power delivery system and method for operating it
US11450510B2 (en) 2017-07-07 2022-09-20 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
US11610763B2 (en) 2017-07-07 2023-03-21 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating the same
US11615943B2 (en) 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same

Similar Documents

Publication Publication Date Title
US9088205B2 (en) Stabilizing a power combining power supply system
JP5035054B2 (en) Semiconductor laser drive circuit
US6466595B2 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
US8134348B2 (en) DC-DC converter
JP2004040769A (en) Power amplifier including bias current control circuit
US20090096379A1 (en) Power supply apparatus and high-frequency circuit system
TW201025812A (en) DC-DC converter providing soft-start function
JP2001053377A (en) Semiconductor laser driver
JP2002184598A (en) High-frequency power source unit for icp
US6577076B2 (en) Adaptive control for half-bridge universal lamp drivers
TW391081B (en) 087101810
US7888873B2 (en) Dynamic depressed collector
JP2001197749A (en) High-frequency power supply
US7573248B2 (en) Step-up switching voltage regulator circuit
US20090091392A1 (en) Bias circuit for the wireless transceiver
JP3139442B2 (en) Optical transmitter
JP3653658B2 (en) Power supply step-down circuit
JP2005116549A (en) Semiconductor laser drive circuit
JP4109815B2 (en) Laser diode driving apparatus and laser diode driving method
JP2005268338A (en) Laser drive circuit
US6281639B1 (en) Cold cathode discharge lamp lighting circuit
KR100524629B1 (en) Circuit for driving liquid crystal display back light inverter
US8259766B2 (en) Laser diode drive circuit, electronic circuit, method for controlling laser diode drive circuit, and method for controlling duty
JP2008205592A (en) Amplifier and doherty amplifier using the same
JP3280563B2 (en) Discharge lamp lighting circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804