JP2002181771A - Controller and method for controlling heater of oxygen sensor - Google Patents

Controller and method for controlling heater of oxygen sensor

Info

Publication number
JP2002181771A
JP2002181771A JP2000382715A JP2000382715A JP2002181771A JP 2002181771 A JP2002181771 A JP 2002181771A JP 2000382715 A JP2000382715 A JP 2000382715A JP 2000382715 A JP2000382715 A JP 2000382715A JP 2002181771 A JP2002181771 A JP 2002181771A
Authority
JP
Japan
Prior art keywords
heater
value
oxygen sensor
voltage
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000382715A
Other languages
Japanese (ja)
Inventor
Motoaki Iio
元昭 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000382715A priority Critical patent/JP2002181771A/en
Publication of JP2002181771A publication Critical patent/JP2002181771A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controller and method for controlling the heater of an oxygen sensor by which the temperature of the oxygen sensor can be maintained accurately at a preset prescribed value by adjusting the driving voltage of the heater to the voltage value corresponding to the optimum temperature value without using any additional structural parts. SOLUTION: The controller is composed of a variable power source E2, a current detecting section 21, an arithmetic section 22, and an adjusting section 23. The power source E2 impresses the driving voltage upon the heater 15 of the oxygen section 10. The current detecting section 21 detects the current flowing to the heater 15. The arithmetic section 22 calculates the static resistance value of the heater 15 at a room temperature and a plurality of dynamic resistance values of the heater 15 when different voltages are impressed upon the heater 15 based on the voltage value from the power source E2 and current value from the current detecting section 21 and decides the optimum driving voltage of the heater 14 corresponding to the optimum operating temperature value. The adjusting section 23 adjusts the power source E2 to the optimum driving voltage decided by means of the arithmetic section 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素センサのヒー
タの加熱を制御する酸素センサ用ヒータ制御装置及び制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater control device and control method for an oxygen sensor for controlling heating of a heater of an oxygen sensor.

【0002】[0002]

【従来の技術】限界電流式酸素センサは、一般に、作動
温度を維持するヒータ部と、センサ特性を発現するセン
サプレート部とにより構成されている。この限界電流式
酸素センサの一例として、ヒータ部及びセンサプレート
部に加えて、センサプレート部の温度を検知する熱電対
部を設けた構造を有するものがある(たとえば、特開昭
61−124862号公報参照)。このような構造のも
のでは、熱電対部で発生した起電力により検出器に出力
電圧が現れ、この出力電圧により、例えばセンサプレー
ト部の印加電圧を補正したり、ヒータ部を制御すること
により、センサ出力の温度補正が可能である。
2. Description of the Related Art A limiting current type oxygen sensor generally comprises a heater section for maintaining an operating temperature and a sensor plate section for exhibiting sensor characteristics. As an example of the limiting current type oxygen sensor, there is a sensor having a structure in which a thermocouple section for detecting the temperature of the sensor plate section is provided in addition to the heater section and the sensor plate section (for example, Japanese Patent Application Laid-Open No. 61-124882). Gazette). In such a structure, an output voltage appears on the detector due to the electromotive force generated in the thermocouple portion, and the output voltage corrects, for example, the applied voltage of the sensor plate portion or controls the heater portion, Temperature correction of the sensor output is possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
構造を有する酸素センサは、追加した熱電対部に接続す
るための電極を必要とするため、電極数が増加し、アッ
センブル性の低下が問題となる。
However, the oxygen sensor having the above-described structure requires an electrode for connecting to the additional thermocouple, so that the number of electrodes increases and the assemblability deteriorates. Become.

【0004】そこで、本発明は、上記のような問題点に
着目し、構造上の追加部品なしにヒータの駆動電圧を最
適温度値に対応する電圧値に調整し、酸素センサの温度
を正確に予め定めた所定温度に保つことができる酸素セ
ンサ用ヒータ制御装置及び制御方法を提供することを課
題とする。
In view of the above, the present invention adjusts the driving voltage of the heater to a voltage value corresponding to the optimum temperature value without additional structural parts, thereby accurately adjusting the temperature of the oxygen sensor. An object of the present invention is to provide a heater control device and a control method for an oxygen sensor that can maintain a predetermined temperature.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
になされた請求項1記載の発明は、酸素センサのヒータ
へ駆動電圧を印加する可変電源と、上記ヒータに流れる
電流を検出する電流検出部と、上記可変電源の電圧値と
上記電流検出部からの電流値とに基づき、上記ヒータに
おける室温時の静抵抗値と、異なるヒータ電圧印加時の
複数の動抵抗値とを算出し、算出された上記静抵抗値と
動抵抗値とに基づいて、最適動作温度値に対応する最適
駆動電圧を決定する演算部と、上記可変電源を、上記演
算部で決定された最適駆動電圧に調整する調整部と、か
らなることを特徴とする酸素センサ用ヒータ制御装置に
存する。
According to a first aspect of the present invention, there is provided a variable power supply for applying a drive voltage to a heater of an oxygen sensor, and a current detection for detecting a current flowing through the heater. And calculating a static resistance value of the heater at room temperature and a plurality of dynamic resistance values when different heater voltages are applied, based on the voltage value of the variable power supply and the current value from the current detection unit. A calculating unit that determines an optimum driving voltage corresponding to an optimum operating temperature value based on the obtained static resistance value and dynamic resistance value, and adjusts the variable power supply to the optimum driving voltage determined by the calculating unit. And an adjusting unit.

【0006】請求項1記載の発明によれば、構造上の追
加部品なしにヒータの駆動電圧を最適動作温度値に対応
する最適駆動電圧値に調整し、酸素センサの温度を正確
に最適動作温度に保つことができる。
According to the first aspect of the invention, the driving voltage of the heater is adjusted to the optimum driving voltage value corresponding to the optimum operating temperature value without additional structural parts, and the temperature of the oxygen sensor is accurately adjusted to the optimum operating temperature. Can be kept.

【0007】請求項2記載の発明は、前記酸素センサ
は、酸素イオン伝導性を有する固体電解質と、該固体電
解質の両面の少なくとも一部に設けられた電極対と、前
記固体電解質の一面に前記電極対の一方を挟んで設けら
れ、拡散律速された酸素ガスを供給する酸素ガス律速体
と、前記固体電解質を加熱するヒータとを備えているこ
とを特徴とする請求項1記載の酸素センサ用ヒータ制御
装置に存する。
According to a second aspect of the present invention, in the oxygen sensor, the solid electrolyte having oxygen ion conductivity, an electrode pair provided on at least a part of both surfaces of the solid electrolyte, and the solid electrolyte being provided on one surface of the solid electrolyte. 2. The oxygen sensor according to claim 1, further comprising: an oxygen gas rate controlling member provided to sandwich one of the electrode pairs to supply diffusion-limited oxygen gas; and a heater for heating the solid electrolyte. In the heater control device.

【0008】請求項2記載の発明によれば、固体電解質
の温度を最適動作温度に維持することができる。
According to the second aspect of the present invention, the temperature of the solid electrolyte can be maintained at the optimum operating temperature.

【0009】請求項3記載の発明は、酸素センサのヒー
タにおける室温時の静抵抗値を算出するステップと、酸
素センサのヒータにおける異なるヒータ電圧印加時の複
数の動抵抗値を算出するステップと、上記静抵抗値及び
動抵抗値に基づき、異なるヒータ電圧印加時のヒータ温
度を算出するステップと、異なるヒータ電圧値と算出さ
れた上記ヒータ温度値とに基づいて最適動作温度値に対
応する最適駆動電圧を算出するステップと、上記ヒータ
の駆動電圧を算出された最適駆動電圧に調整するステッ
プと、からなることを特徴とする酸素センサ用ヒータ制
御方法に存する。
According to a third aspect of the present invention, a step of calculating a static resistance value of the heater of the oxygen sensor at room temperature, a step of calculating a plurality of dynamic resistance values of the heater of the oxygen sensor when different heater voltages are applied, Calculating a heater temperature when a different heater voltage is applied based on the static resistance value and the dynamic resistance value; and optimal driving corresponding to an optimum operating temperature value based on the different heater voltage value and the calculated heater temperature value A method of controlling a heater for an oxygen sensor, comprising: calculating a voltage; and adjusting a drive voltage of the heater to the calculated optimum drive voltage.

【0010】請求項3記載の発明によれば、ヒータの駆
動電圧を最適動作温度値に対応する最適駆動電圧値に調
整し、酸素センサの温度を正確に最適動作温度に保つこ
とができる。
According to the third aspect of the invention, the driving voltage of the heater is adjusted to the optimum driving voltage value corresponding to the optimum operating temperature value, and the temperature of the oxygen sensor can be accurately maintained at the optimum operating temperature.

【0011】[0011]

【発明の実施の形態】以下、本発明の酸素センサ用ヒー
タ制御装置及び制御方法について図面に基づいて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heater control device and control method for an oxygen sensor according to the present invention will be described with reference to the drawings.

【0012】図1は、本発明による酸素センサ用ヒータ
制御装置の一実施形態を組み込んだ酸素濃度検出装置の
概略構成図である。酸素センサ10において、安定化ジ
ルコニアからなる固体電解質11の両面の少なくとも一
部には、白金等からなる多孔質のアノード電極12a及
びカソード電極12b(=電極対)が設けられ、さら
に、固体電解質11の一面にはカソード電極12bを挟
んで、拡散律速された酸素ガスを供給する酸素ガス律速
体としてのアルミナ多孔質基板13が設けられている。
そして、アルミナ多孔質基板13には、固体電解質11
を400[℃]以上に加熱して、酸素イオンの伝導率を良
くするためのヒータ15が設けられている。
FIG. 1 is a schematic configuration diagram of an oxygen concentration detecting device incorporating an embodiment of an oxygen sensor heater control device according to the present invention. In the oxygen sensor 10, a porous anode electrode 12a and a cathode electrode 12b (= electrode pair) made of platinum or the like are provided on at least a part of both surfaces of the solid electrolyte 11 made of stabilized zirconia. On one surface, an alumina porous substrate 13 is provided as an oxygen gas rate controlling member for supplying diffusion-controlled oxygen gas with the cathode electrode 12b interposed therebetween.
Then, the solid electrolyte 11 is provided on the alumina porous substrate 13.
The heater 15 is provided for heating the substrate to 400 [° C.] or more to improve the conductivity of oxygen ions.

【0013】また、上述した酸素センサ10のアノード
電極12a及びカソード電極12bには、電圧を印加す
るための直流電源部E1がそれぞれ接続され、さらに、
該直流電源部E1には固体電解質11内の酸素イオンの
伝導をキャリアとして流れる電流を検出する電流検出部
20が直列に接続されている。
A direct-current power supply E1 for applying a voltage is connected to the anode electrode 12a and the cathode electrode 12b of the oxygen sensor 10, respectively.
The DC power supply unit E1 is connected in series with a current detection unit 20 for detecting a current flowing using the conduction of oxygen ions in the solid electrolyte 11 as a carrier.

【0014】また、ヒータ15には、可変電源E2、電
流検出部21、演算部22及び調整部23からなるヒー
タ制御装置が接続されている。すなわち、ヒータ15に
駆動電圧を印加するための可変電源E2と、ヒータ15
を流れる電流を検出する電流検出部21とが直列に接続
されている。可変電源E2からの駆動電圧値と、電流検
出部21からの電流値は、演算部22に入力され、演算
部22の出力は、可変電源E2の駆動電圧を調整する調
整部23に供給されている。演算部22及び調整部23
は、例えばマイクロコンピュータ等で構成される。
The heater 15 is connected to a heater control device including a variable power supply E 2, a current detection unit 21, a calculation unit 22, and an adjustment unit 23. That is, a variable power source E2 for applying a drive voltage to the heater 15 and a heater 15
And a current detection unit 21 for detecting a current flowing through the power supply is connected in series. The drive voltage value from the variable power supply E2 and the current value from the current detection unit 21 are input to the calculation unit 22, and the output of the calculation unit 22 is supplied to the adjustment unit 23 that adjusts the drive voltage of the variable power supply E2. I have. Arithmetic unit 22 and adjustment unit 23
Is composed of, for example, a microcomputer.

【0015】上述した構成の酸素濃度検出装置の動作を
以下説明する。アルミナ多孔質板13により律速された
酸素ガスは、カソード電極12bを介して固体電解質1
1に対して供給されている。このとき、直流電源部E1
によりアノード電極12a−カソード電極12b間に電
圧を印加すると、酸素ガスはカソード電極12bと固体
電解質11との境界面にて直流電源部E1から供給され
る電子を受け取って酸素イオン(=O2-陰イオン)に変
換される。変換された酸素イオンは固体電解質11中を
伝導し、アノード電極12aに到達し、アノード電極1
2aと固体電解質11との境界面にて、電子を放出して
再び酸素ガスに戻る。
The operation of the oxygen concentration detecting device having the above configuration will be described below. The oxygen gas controlled by the alumina porous plate 13 is supplied to the solid electrolyte 1 via the cathode electrode 12b.
1 is supplied. At this time, the DC power supply unit E1
When a voltage is applied between the anode electrode 12a and the cathode electrode 12b, the oxygen gas receives electrons supplied from the DC power supply unit E1 at the boundary between the cathode electrode 12b and the solid electrolyte 11, and receives oxygen ions (= O 2−). Anions). The converted oxygen ions conduct in the solid electrolyte 11 and reach the anode electrode 12a, where
At the interface between the solid electrolyte 2a and the solid electrolyte 11, electrons are emitted and return to oxygen gas again.

【0016】上述した固体電解質11中を伝導する酸素
イオンをキャリアとして発生する電流は、アノード電極
12a−カソード電極12b間に所定値以上の電圧が印
加されると、飽和して所定電流を越えて流れることはな
い。これは、カソード電極12bに対する酸素ガスの供
給量がアルミナ多孔質基板13により律速され、電流の
キャリアとなる酸素イオン数が制限されるためである。
上述した飽和時の電流を限界電流という。この限界電流
は、周囲の酸素ガスの濃度に対応した値となるため、電
流検出部20により固体電解質11に流れる電流である
酸素センサ10の出力電流を検出することにより酸素濃
度を検出することができる。
The above-mentioned current generated by using oxygen ions conducted in the solid electrolyte 11 as a carrier is saturated when the voltage of a predetermined value or more is applied between the anode electrode 12a and the cathode electrode 12b and exceeds the predetermined current. It does not flow. This is because the supply amount of oxygen gas to the cathode electrode 12b is limited by the alumina porous substrate 13, and the number of oxygen ions serving as current carriers is limited.
The above-mentioned current at the time of saturation is called a limiting current. Since this limit current has a value corresponding to the concentration of the surrounding oxygen gas, it is possible to detect the oxygen concentration by detecting the output current of the oxygen sensor 10 which is the current flowing through the solid electrolyte 11 by the current detection unit 20. it can.

【0017】次に、ヒータ15の制御方法について説明
する。本発明では、ヒータ15が、何らかの事由(たと
えば、経時変化)により劣化してその抵抗値が上昇し、
ヒータ15の駆動電圧を一定に保ってもヒータ15の駆
動温度を一定に維持できなくなることに起因する、固体
電解質11の最適動作温度のバラツキを低減し、ヒータ
15の駆動温度を安定化するように、ヒータ15に接続
された上述の構成のヒータ制御装置を動作させる。
Next, a method of controlling the heater 15 will be described. In the present invention, the heater 15 is deteriorated due to some reason (for example, aging), and its resistance increases.
Even if the driving voltage of the heater 15 is kept constant, the variation in the optimum operating temperature of the solid electrolyte 11 due to the inability to keep the driving temperature of the heater 15 constant can be reduced, and the driving temperature of the heater 15 can be stabilized. Next, the heater control device having the above-described configuration connected to the heater 15 is operated.

【0018】すなわち、ヒータ制御装置により、ヒータ
15の室温時の静抵抗値Rsと、2点のヒータ駆動電圧
点(好適には、最適動作温度値に対応するヒータ駆動電
圧付近の電圧点を選択する)での動抵抗値R1,R2と
を検出し、これらの抵抗値に基づいて最適動作温度値に
対応するヒータ駆動電圧値を算出し、算出したヒータ駆
動電圧値でヒータ15を駆動するように制御する。
That is, the heater controller selects a static resistance value Rs of the heater 15 at room temperature and two heater drive voltage points (preferably, a voltage point near the heater drive voltage corresponding to the optimum operating temperature value). ), The heater driving voltage value corresponding to the optimum operating temperature value is calculated based on these resistance values, and the heater 15 is driven with the calculated heater driving voltage value. To control.

【0019】以下、上述のヒータ15の制御方法を図2
に示すフローチャートに基づいて説明する。
Hereinafter, the control method of the heater 15 will be described with reference to FIG.
This will be described based on the flowchart shown in FIG.

【0020】まず、ヒータ15の室温(例えば、25℃
とする)時の静抵抗値Rsを算出する(ステップS
1)。この静抵抗値Rsの算出時には、電圧印加自体に
よるヒータ15の温度上昇を避けるため、調整部23に
より可変電源E2の電圧値を、静抵抗値Rs(オーム)
の1/100程度以下の電圧に調整するのが望ましい。
この例では、ヒータ15の静抵抗値は約5〜6オーム程
度なので、可変電源E2の電圧値を0.05ボルト(=
50mV)に調整して、室温時の静抵抗値Rsを算出す
る。
First, the room temperature of the heater 15 (for example, 25 ° C.)
) Is calculated (step S).
1). When calculating the static resistance value Rs, the voltage value of the variable power supply E2 is adjusted by the adjusting unit 23 to prevent the temperature of the heater 15 from rising due to the voltage application itself.
It is desirable to adjust the voltage to about 1/100 or less.
In this example, since the static resistance value of the heater 15 is about 5 to 6 ohms, the voltage value of the variable power source E2 is set to 0.05 volt (=
The static resistance value Rs at room temperature is calculated by adjusting to 50 mV).

【0021】次に、調整部23により可変電源E2の電
圧値を予め決められた第1のヒータ駆動電圧V1とし
て、たとえば6.0ボルトをヒータ15に印加し、その
ときのヒータ15の動抵抗値R1を、電流検出部21で
検出した電流値I1と印加電圧値V1とに基づいて演算
部22で算出する(ステップS2)。次に、調整部23
により可変電源E2の電圧値を予め決められた第2のヒ
ータ駆動電圧V2として、たとえば6.5ボルトをヒー
タ15に印加し、そのときのヒータ15の動抵抗値R2
を、電流検出部21で検出した電流値I2と印加電圧値
V2とに基づいて演算部22で算出する(ステップS
3)。
Next, the adjusting section 23 applies, for example, 6.0 volts to the heater 15 as a predetermined first heater drive voltage V1 with the voltage value of the variable power supply E2, and the dynamic resistance of the heater 15 at that time is applied. The calculation unit 22 calculates the value R1 based on the current value I1 detected by the current detection unit 21 and the applied voltage value V1 (step S2). Next, the adjusting unit 23
For example, 6.5 volts is applied to the heater 15 as a predetermined second heater drive voltage V2 with the voltage value of the variable power supply E2, and the dynamic resistance value R2 of the heater 15 at that time is applied.
Is calculated by the calculation unit 22 based on the current value I2 and the applied voltage value V2 detected by the current detection unit 21 (step S
3).

【0022】ここで使用する酸素センサ10のヒータ1
5のTCR温度係数αは、ヒータ15の材質により予め
わかっており、たとえばα=0.0036とする。そこ
で次に、この温度係数αを用いてV1=6.0ボルト印
加時のヒータ15の動作温度T1を、以下の(1)式に
基づいて演算部22で算出する(ステップS4)。
The heater 1 of the oxygen sensor 10 used here
The TCR temperature coefficient α of 5 is known in advance depending on the material of the heater 15, and is set to, for example, α = 0.0036. Therefore, next, using the temperature coefficient α, the operating unit 22 calculates the operating temperature T1 of the heater 15 when V1 = 6.0 volts is applied, based on the following equation (1) (step S4).

【0023】 T1={R1×(1+0.0036×25)−Rs}/(0.0036× Rs)・・・(1)T1 = {R1 × (1 + 0.0036 × 25) −Rs} / (0.0036 × Rs) (1)

【0024】次に、この温度係数αを用いてV2=6.
5ボルト印加時のヒータ15の動作温度T2を、以下の
(2)式に基づいて演算部22で算出する(ステップS
5)。
Next, using this temperature coefficient α, V2 = 6.
The operation unit 22 calculates the operating temperature T2 of the heater 15 when 5 volts is applied based on the following equation (2) (step S2).
5).

【0025】 T2={R2×(1+0.0036×25)−Rs}/(0.0036× Rs)・・・(2)T2 = {R2 × (1 + 0.0036 × 25) −Rs} / (0.0036 × Rs) (2)

【0026】次に、ヒータ駆動電圧と動作温度は比例関
係にあるので、上述の(1)及び(2)式で求めた動作
温度T1,T2と、ヒータ駆動電圧値V1,V2とを連
立し、最適動作温度Tmに対応する最適駆動電圧値Vm
を以下の(3)式または(4)式に基づいて算出する
(ステップS6)。
Next, since the heater driving voltage and the operating temperature are in a proportional relationship, the operating temperatures T1 and T2 obtained by the above equations (1) and (2) and the heater driving voltage values V1 and V2 are simultaneously set. , The optimal driving voltage value Vm corresponding to the optimal operating temperature Tm
Is calculated based on the following equation (3) or (4) (step S6).

【0027】 Vm={(V2−V1)/(T2−T1)}×(Tm−T1)+V1・・ ・(3)Vm = {(V2−V1) / (T2−T1)} × (Tm−T1) + V1 (3)

【0028】 Vm={(V2−V1)/(T2−T1)}×(Tm−T2)+V2・・ ・(4)Vm = {(V2−V1) / (T2−T1)} × (Tm−T2) + V2 (4)

【0029】次に、(3)または(4)式で求めた最適
駆動電圧値Vmが、演算部22より調整部23に入力さ
れ、調整部23は、可変電源E2の電圧を上述の最適駆
動電圧値Vmになるように調整する。
Next, the optimum driving voltage value Vm obtained by the equation (3) or (4) is inputted from the calculating section 22 to the adjusting section 23, and the adjusting section 23 adjusts the voltage of the variable power source E2 to the above-mentioned optimum driving voltage. Adjustment is made so that the voltage value becomes Vm.

【0030】ここで、具体的な算出例を示すと、Rs=
5.58オーム、R1=15.90オーム、R2=1
6.56オームのとき、(1)、(2)式によりT1=
585℃、T2=621℃となる。
Here, a specific calculation example will be described.
5.58 ohm, R1 = 15.90 ohm, R2 = 1
At 6.56 ohms, T1 =
585 ° C. and T2 = 621 ° C.

【0031】したがって、たとえば最適動作温度値を6
30℃とすれば、この温度に対応する最適駆動電圧値V
630 を(4)式により求める。
Therefore, for example, when the optimum operating temperature value is 6
If the temperature is 30 ° C., the optimum driving voltage value V corresponding to this temperature
m 630 is determined by equation (4).

【0032】 Vm630 ={(6.5−6.0)/(621−585)}×(630−6 21)+6.5 =6.63(ボルト)Vm 630 = {(6.5-6.0) / (621-585)} × (630-621) + 6.5 = 6.63 (volts)

【0033】したがって、調整部23により、可変電源
E2の電圧を6.63ボルトに調整することにより、ヒ
ータ15の温度は630℃になり、酸素センサ10を最
適動作温度に加熱することができる。
Therefore, by adjusting the voltage of the variable power supply E2 to 6.63 volts by the adjusting unit 23, the temperature of the heater 15 becomes 630 ° C., and the oxygen sensor 10 can be heated to the optimum operating temperature.

【0034】このように、ヒータ15の室温時の静抵抗
値Rsと、2点のヒータ駆動電圧点における2つの動抵
抗値R1,R2とを求めることにより、最終的に酸素セ
ンサ10の最適動作温度を630℃に維持することがで
きる。
As described above, by obtaining the static resistance value Rs of the heater 15 at room temperature and the two dynamic resistance values R1 and R2 at two heater drive voltage points, the optimum operation of the oxygen sensor 10 is finally achieved. The temperature can be maintained at 630 ° C.

【0035】以上の通り、本発明の実施の形態について
説明したが、本発明はこれに限らず、種々の変形、応用
が可能である。
As described above, the embodiment of the present invention has been described. However, the present invention is not limited to this, and various modifications and applications are possible.

【0036】たとえば、上述の実施の形態で説明したヒ
ータ15の制御方法は、図1の酸素濃度検出装置におけ
る大気校正(技術上周知であり、ここでは説明を省略す
る)時に同時に自動的に行われるように構成しても良
い。この場合、酸素濃度検出装置の使用中に、何らかの
事由(例えば、経時変化)により酸素センサ10のヒー
タ15の静抵抗値Rsが変化し、動作温度が最適動作温
度から変動した場合でも、常に校正後の動作温度を最適
動作温度に校正することが可能である。また、このこと
により、ヒータ劣化による動作温度の低下も抑制するこ
とが可能となる。
For example, the control method of the heater 15 described in the above embodiment is automatically performed at the same time as the atmospheric calibration (which is well known in the art and the description is omitted here) in the oxygen concentration detecting apparatus of FIG. You may be comprised so that it may be performed. In this case, even when the static resistance value Rs of the heater 15 of the oxygen sensor 10 changes due to some reason (for example, a change over time) during use of the oxygen concentration detection device, and the operating temperature fluctuates from the optimum operating temperature, calibration is always performed. The subsequent operating temperature can be calibrated to the optimal operating temperature. This also makes it possible to suppress a decrease in operating temperature due to heater deterioration.

【0037】[0037]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、構造上の追加部品なしにヒータの駆動電圧
を最適動作温度値に対応する電圧値に調整し、酸素セン
サの温度を正確に最適動作温度に保つことができる。
As described above, according to the first aspect of the present invention, the driving voltage of the heater is adjusted to a voltage value corresponding to the optimum operating temperature value without additional structural parts, and the temperature of the oxygen sensor is adjusted. Can be accurately maintained at the optimum operating temperature.

【0038】請求項2記載の発明によれば、固体電解質
の温度を最適動作温度に維持することができる。
According to the second aspect of the present invention, the temperature of the solid electrolyte can be maintained at the optimum operating temperature.

【0039】請求項3記載の発明によれば、ヒータの駆
動電圧を最適動作温度値に対応する電圧値に調整し、酸
素センサの温度を正確に最適動作温に保つことができ
る。
According to the third aspect of the invention, the driving voltage of the heater is adjusted to a voltage value corresponding to the optimum operating temperature value, and the temperature of the oxygen sensor can be accurately maintained at the optimum operating temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による酸素センサ用ヒータ制御装置の一
実施形態を組み込んだ酸素濃度検出装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of an oxygen concentration detection device incorporating one embodiment of a heater control device for an oxygen sensor according to the present invention.

【図2】図1における酸素センサのヒータの制御方法を
示すフローチャートである。
FIG. 2 is a flowchart showing a control method of a heater of the oxygen sensor in FIG.

【符号の説明】[Explanation of symbols]

11 固体電解質 12a アノード電極(電極対) 12b カソード電極(電極対) 13 アルミナ多孔質基板(酸素ガス律速体) 15 ヒータ 20 電流検出部(電流検出手段) 21 電流検出部 22 演算部 23 調整部 E1 直流電源部(直流電源) E2 可変電源 DESCRIPTION OF SYMBOLS 11 Solid electrolyte 12a Anode electrode (electrode pair) 12b Cathode electrode (electrode pair) 13 Porous alumina substrate (oxygen gas rate controlling body) 15 Heater 20 Current detection unit (current detection means) 21 Current detection unit 22 Operation unit 23 Adjustment unit E1 DC power supply (DC power supply) E2 Variable power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸素センサのヒータへ駆動電圧を印加す
る可変電源と、 上記ヒータに流れる電流を検出する電流検出部と、 上記可変電源の電圧値と上記電流検出部からの電流値と
に基づき、上記ヒータにおける室温時の静抵抗値と、異
なるヒータ電圧印加時の複数の動抵抗値とを算出し、算
出された上記静抵抗値と動抵抗値とに基づいて、最適動
作温度値に対応する最適駆動電圧を決定する演算部と、 上記可変電源を、上記演算部で決定された最適駆動電圧
に調整する調整部と、 からなることを特徴とする酸素センサ用ヒータ制御装
置。
A variable power supply for applying a drive voltage to a heater of the oxygen sensor; a current detection unit for detecting a current flowing through the heater; and a voltage value of the variable power supply and a current value from the current detection unit. Calculating a static resistance value of the heater at room temperature and a plurality of dynamic resistance values when different heater voltages are applied, and corresponding to an optimum operating temperature value based on the calculated static resistance value and dynamic resistance value. An oxygen sensor heater control device, comprising: a calculation unit that determines an optimum drive voltage to be adjusted; and an adjustment unit that adjusts the variable power supply to the optimum drive voltage determined by the calculation unit.
【請求項2】 前記酸素センサは、酸素イオン伝導性を
有する固体電解質と、該固体電解質の両面の少なくとも
一部に設けられた電極対と、前記固体電解質の一面に前
記電極対の一方を挟んで設けられ、拡散律速された酸素
ガスを供給する酸素ガス律速体と、前記固体電解質を加
熱するヒータとを備えていることを特徴とする請求項1
記載の酸素センサ用ヒータ制御装置。
2. The oxygen sensor includes: a solid electrolyte having oxygen ion conductivity; an electrode pair provided on at least a part of both surfaces of the solid electrolyte; and one of the electrode pairs sandwiched on one surface of the solid electrolyte. And a heater for heating the solid electrolyte, the oxygen gas controlling member for supplying oxygen gas diffusion-controlled, and a heater for heating the solid electrolyte.
A heater control device for an oxygen sensor as described in the above.
【請求項3】 酸素センサのヒータにおける室温時の静
抵抗値を算出するステップと、 酸素センサのヒータにおける異なるヒータ電圧印加時の
複数の動抵抗値を算出するステップと、 上記静抵抗値及び動抵抗値に基づき、異なるヒータ電圧
印加時のヒータ温度を算出するステップと、 異なるヒータ電圧値と算出された上記ヒータ温度値とに
基づいて最適動作温度値に対応する最適駆動電圧を算出
するステップと、 上記ヒータの駆動電圧を算出された最適駆動電圧に調整
するステップと、 からなることを特徴とする酸素センサ用ヒータ制御方
法。
A step of calculating a static resistance value of the heater of the oxygen sensor at room temperature; a step of calculating a plurality of dynamic resistance values of the heater of the oxygen sensor when different heater voltages are applied; Calculating a heater temperature at the time of applying a different heater voltage based on the resistance value; calculating an optimum drive voltage corresponding to the optimum operating temperature value based on the different heater voltage value and the calculated heater temperature value; Adjusting the drive voltage of the heater to the calculated optimum drive voltage. A heater control method for an oxygen sensor, comprising:
JP2000382715A 2000-12-15 2000-12-15 Controller and method for controlling heater of oxygen sensor Withdrawn JP2002181771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382715A JP2002181771A (en) 2000-12-15 2000-12-15 Controller and method for controlling heater of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382715A JP2002181771A (en) 2000-12-15 2000-12-15 Controller and method for controlling heater of oxygen sensor

Publications (1)

Publication Number Publication Date
JP2002181771A true JP2002181771A (en) 2002-06-26

Family

ID=18850495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382715A Withdrawn JP2002181771A (en) 2000-12-15 2000-12-15 Controller and method for controlling heater of oxygen sensor

Country Status (1)

Country Link
JP (1) JP2002181771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257104A (en) * 2007-04-09 2008-10-23 Mitsubishi Electric Corp Variable dispersion compensator
WO2011006345A1 (en) * 2009-07-14 2011-01-20 深圳市奋达电器有限公司 Temperature calibration device for hair straightener and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257104A (en) * 2007-04-09 2008-10-23 Mitsubishi Electric Corp Variable dispersion compensator
WO2011006345A1 (en) * 2009-07-14 2011-01-20 深圳市奋达电器有限公司 Temperature calibration device for hair straightener and method thereof

Similar Documents

Publication Publication Date Title
US20180299404A1 (en) Sensor apparatus and sensor unit
US7872480B2 (en) Gas sensor control apparatus
JP2009168798A (en) Gas sensor control device and nitrogen oxide concentration detecting method
JP5465263B2 (en) NOx sensor control device
US20160305898A1 (en) Arrangement and method for measuring and controlling the heating temperature in a semiconductor gas sensor
JPH07209245A (en) Evaluating device for sensor signal of heated current-measuring type oxygen sensor
JP2018013057A (en) Control device and abnormality detection method for air-fuel ratio sensor
JP4819838B2 (en) Gas sensor control device
JP2002181771A (en) Controller and method for controlling heater of oxygen sensor
CN109632914B (en) Sensor control device and sensor unit
JPH0915197A (en) Air/fuel ratio controller for external combustion engine
JP3736445B2 (en) Gas concentration detection device for internal combustion engine
JP2020003264A (en) Nitrous oxide concentration detector
JP6889079B2 (en) Sensor control device
JP2002372514A (en) Gas concentration detection apparatus
US10920700B2 (en) Sensor control apparatus
JP3779881B2 (en) Limit current type oxygen sensor and control method thereof
JP2008292307A (en) Gas concentration detector
JP2003166967A (en) Gas concentration-detecting apparatus of internal engine
JP2003166970A (en) Gas concentration detector for internal combustion engine
JP3779884B2 (en) Limit current type oxygen sensor unit and low oxygen concentration measurement method
JPH08247814A (en) Heat-sensitive flow rate sensor
JP2845608B2 (en) Airflow sensor
JPH0278942A (en) Method for compensating temperature of air to fuel ratio sensor
JP3424784B2 (en) Solid electrolyte type carbon dioxide sensor control device for carbon dioxide concentration measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304