JP2002181638A - Residual stress measuring device and method by x-ray - Google Patents

Residual stress measuring device and method by x-ray

Info

Publication number
JP2002181638A
JP2002181638A JP2000376190A JP2000376190A JP2002181638A JP 2002181638 A JP2002181638 A JP 2002181638A JP 2000376190 A JP2000376190 A JP 2000376190A JP 2000376190 A JP2000376190 A JP 2000376190A JP 2002181638 A JP2002181638 A JP 2002181638A
Authority
JP
Japan
Prior art keywords
ray
stress value
residual stress
measured
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000376190A
Other languages
Japanese (ja)
Inventor
Takashi Konishi
隆 小西
Takayuki Kurimura
隆之 栗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000376190A priority Critical patent/JP2002181638A/en
Publication of JP2002181638A publication Critical patent/JP2002181638A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a residual stress measuring device and a method by X-ray causing little measuring errors even if the grain size of a measured material is unknown. SOLUTION: This device or measuring residual stress by X-ray is provided with an X-ray tube 1, an X-ray detector 2, support members 5, 7, motors 6, 8 and a control device 11, and irradiates the measured material 3 with X-rays to measure residual stress. The X-ray detector 2 is installed to be able to scan along the support member 5 by the motor 6, and the X-ray tube 1 is fixed to the support member 5. The support member 5 is formed in circular arc shape around the X-ray incident position 4 on the surface of the measured material 3 as a central point and installed at the support member 7 so as to be able to scan by the motor 8. The support member 7 is also formed in circular arc shape centering on the X-ray incident position 4. The control device 11 is composed of a CPU, a motor driver, a memory and an I/F circuit, and rotates the motors 6, 8 according to pulse signals sent from the moor driver. Signals from the X-ray detector 2 are received by the I/F circuit to compute the signals. The motors 6, 8 are stepping motors or the like driven by pulse every fixed angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線残留応力測定
装置およびその測定方法に関し、さらに詳しくは、回折
強度曲線から求めた回折角を平均化、あるいは回折強度
曲線を合成化後回折角を求めて粗粒材のX線残留応力を
求めるX線残留応力測定装置およびその測定方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray residual stress measuring apparatus and a measuring method therefor, and more particularly, to averaging diffraction angles obtained from diffraction intensity curves or synthesizing diffraction intensity curves to obtain diffraction angles. The present invention relates to an X-ray residual stress measuring device for determining an X-ray residual stress of a coarse-grained material and a measuring method thereof.

【0002】[0002]

【従来の技術】X線法(Sinψ法)で粗粒材の残留
応力を精度よく測定するには、回折に寄与する結晶の数
を増やすため照射面積を大きくしたり、試料または入射
X線の揺動を行う必要がある。照射面積を大きくする、
あるいは試料を揺動する方法は試料側の制約が大きいた
め、一般には入射X線を揺動する方法が用いられてお
り、これは、X線の材料表面に対する入射角ψを変え、
回折角2θを測定し、Sinψを変数としてプロット
すると、2θとSinψの関係は理論的に直線とな
り、この直線の勾配は材料表面の応力に比例する。
2. Description of the Related Art In order to accurately measure the residual stress of a coarse-grained material by the X-ray method (Sin 2 ψ method), it is necessary to increase the irradiation area in order to increase the number of crystals contributing to diffraction, or to increase the sample or incident X-ray. It is necessary to swing the wire. Increase the irradiation area,
Alternatively, since the method of rocking the sample has a large restriction on the sample side, a method of rocking incident X-rays is generally used.
When the diffraction angle 2θ is measured and plotted with Sin 2変 数 as a variable, the relationship between 2θ and Sin 2と な り is theoretically a straight line, and the slope of this straight line is proportional to the stress on the material surface.

【0003】従来のX線応力測定装置では、この2θ−
Sinψ線図(回帰直線)を得るために、測定する材
料の表面の1点をX線ビームで照射しながらX線検出器
の位置を操作して検出強度のピークをさがし、その時の
回折角2θを求め、ついでX線管又は測定材料を動かし
てX線入射角ψを変えて上記と同様にして回折角2θを
求めている。また、測定する材料が粗粒の場合には揺動
法が用いられる。
In a conventional X-ray stress measuring device, this 2θ-
In order to obtain a Sin 2 ψ diagram (regression line), the position of the X-ray detector is operated while irradiating one point on the surface of the material to be measured with an X-ray beam, and the peak of the detected intensity is searched. The bending angle 2θ is determined, then the X-ray tube or the measurement material is moved to change the X-ray incident angle ψ, and the diffraction angle 2θ is determined in the same manner as described above. If the material to be measured is coarse, the swing method is used.

【0004】通常、X線の入射方向は0度から45度の
範囲で4乃至6方向の角度が設定され、それに対する最
適な揺動角度範囲は粗粒の程度に応じて決められるべき
ものであるが、それには予め測定部の粒度が既知である
ことが必要である。ところが、X線法が適用される場合
の多くは、受け入れたままの状態での測定であり、何ら
かの処理無しに測定部の粒度を測定することが困難なこ
とから、揺動角度範囲は経験的に、あるいは別途測定さ
れた結晶粒度を参考に決定しているのが現状である。特
公平6−54265号公報には、結晶粒が大きい材料や
集合組織を有する場合にも精度よく応力測定ができる装
置について開示されている。
Normally, the incident direction of X-rays is set at an angle of 4 to 6 directions within a range of 0 to 45 degrees, and an optimum swing angle range corresponding thereto is to be determined according to the degree of coarse grains. However, this requires that the particle size of the measuring unit be known in advance. However, in many cases where the X-ray method is applied, the measurement is performed as received, and it is difficult to measure the particle size of the measurement unit without any processing. At present, it is determined with reference to the crystal grain size measured separately or separately. Japanese Patent Publication No. 6-54265 discloses an apparatus capable of accurately measuring stress even when a material having a large crystal grain or a texture is used.

【0005】[0005]

【発明が解決しようとする課題】以上説明した従来例で
は、揺動角度範囲が不十分な場合は、揺動の効果が十分
得られず、また、揺動角度範囲が大きすぎる場合は、測
定誤差が大きくなるといった問題点があった。さらに、
公報における装置は、2軸揺動を行うため装置のコスト
アップに繋がる。
In the prior art described above, when the swing angle range is insufficient, the effect of the swing cannot be sufficiently obtained, and when the swing angle range is too large, the measurement is not performed. There was a problem that an error became large. further,
The device disclosed in the gazette performs biaxial swing, which leads to an increase in the cost of the device.

【0006】本発明の課題は、上述の従来例の問題点を
解決することであって、その目的は、小角度ピッチのX
線入射角で採取したデータから、信頼限界が最小になる
測定応力値を求めるようにして、精度のよい粗粒材のX
線残留応力の測定装置およびその測定法を提供すること
である。
An object of the present invention is to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a small angle pitch X
From the data collected at the line incident angle, the measured stress value at which the confidence limit is minimized is determined, and the X
It is an object of the present invention to provide an apparatus and a method for measuring a residual stress in a wire.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明によれば、被測定材料にX線を入射させるX
線管と、材料面で回折したX線を検出する検出器と、X
線管と検出器をX線の材料への入射点の周りに回転する
回転手段と、回転手段を制御する制御手段を備えたX線
残留応力測定装置において、制御手段は、X線管に対し
て検出器を移動させて回折X線を検出し、得られた回折
X線の回折強度曲線から回折角を求める手段と、その時
の測定応力値と当該測定応力値に対する信頼限界を求め
る手段と、回折角を順次平均化する手段と、その時の測
定応力値と当該測定応力値に対する信頼限界を求める手
段と、平均化したデータ数と測定応力値および信頼限界
の関係から残留応力値を求める手段を備えたことを特徴
とする。
In order to achieve the above object, according to the present invention, an X-ray is applied to a material to be measured.
A X-ray tube, a detector for detecting X-rays diffracted on the material surface,
In an X-ray residual stress measuring apparatus comprising a rotating means for rotating a X-ray tube and a detector around a point of incidence on an X-ray material, and a control means for controlling the rotating means, the control means comprises: Means for detecting a diffracted X-ray by moving the detector to obtain a diffraction angle from a diffraction intensity curve of the obtained diffracted X-ray; means for obtaining a measured stress value at that time and a confidence limit for the measured stress value; Means for sequentially averaging the diffraction angles, means for obtaining a measured stress value at that time and a reliability limit for the measured stress value, and means for obtaining a residual stress value from the relationship between the number of averaged data, the measured stress value, and the reliability limit. It is characterized by having.

【0008】また、上記の目的を達成するため、本発明
によれば、被測定材料にX線を入射させるX線管と、材
料面で回折したX線を検出する検出器と、X線管と検出
器をX線の材料への入射点の周りに回転する回転手段
と、回転手段を制御する制御手段を備えたX線残留応力
測定装置において、制御手段は、X線管に対して検出器
を移動させて回折X線を検出し、得られた回折X線の回
折強度曲線から回折角を求める手段と、その時の測定応
力値と当該測定応力値に対する信頼限界を求める手段
と、回折角を順次合成する手段と、合成する手段の結果
得られた回折強度曲線から回折角を決定する手段と、そ
の時の測定応力値と当該測定応力値に対する信頼限界を
求める手段と、合成したデータ数と測定応力値および信
頼限界の関係から残留応力値を求める手段を備えたこと
を特徴とする。
According to the present invention, there is provided an X-ray tube for irradiating an X-ray to a material to be measured, a detector for detecting X-rays diffracted on a material surface, and an X-ray tube. And an X-ray residual stress measuring device comprising: a rotating means for rotating the detector around an X-ray incident point on the material; and a control means for controlling the rotating means. Means for detecting a diffracted X-ray by moving a detector and obtaining a diffraction angle from a diffraction intensity curve of the obtained diffracted X-ray; means for obtaining a measured stress value at that time and a confidence limit for the measured stress value; Means for sequentially synthesizing, means for determining the diffraction angle from the diffraction intensity curve obtained as a result of the means for synthesizing, means for obtaining the measured stress value at that time and the confidence limit for the measured stress value, and the number of synthesized data Residue from the relationship between measured stress value and confidence limit Characterized by comprising means for determining the force values.

【0009】また、上記の目的を達成するため、本発明
によれば、[最大採取データ数−2個]までを上限とし
て回折強度曲線から求めた回折角を順次平均化、あるい
は回折強度曲線を順次合成後回折角を求めることを特徴
とする。これにより、各X線入射角毎の回折強度の差の
大小により、平均化するか合成化するかを使い分けて、
より精度の高い測定が可能となる。
In order to achieve the above object, according to the present invention, the diffraction angles obtained from the diffraction intensity curves are sequentially averaged up to [the maximum number of collected data -2], or the diffraction intensity curves are obtained. It is characterized in that diffraction angles are sequentially obtained after synthesis. Thereby, depending on the magnitude of the difference between the diffraction intensities for each X-ray incident angle, whether to perform averaging or combining is selectively used.
Higher precision measurement is possible.

【0010】また、上記の目的を達成するため、本発明
によれば、平均化したデータ数、あるいは合成したデー
タ数から求めた測定応力値および信頼限界において、信
頼限界が最小になる時のデータ数に対応する測定応力値
を、求める残留応力値とすることを特徴とする。これに
より、データ数と測定応力値および信頼限界の関係をプ
ロットできるため、信頼限界が最小になる時のデータ数
に対応する測定応力値を、容易に判定することができ
る。
In order to achieve the above object, according to the present invention, the data when the confidence limit is minimized in the measured stress value and the confidence limit obtained from the averaged data number or the combined data number A feature is that a measured stress value corresponding to the number is set as a residual stress value to be obtained. Thereby, since the relationship between the number of data, the measured stress value, and the reliability limit can be plotted, the measured stress value corresponding to the number of data when the reliability limit is minimized can be easily determined.

【0011】[0011]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
ている構成部品の寸法、材質、形状、その相対配置など
は特に特定的な記載がない限り、この発明の範囲をそれ
のみに限定する趣旨ではなく、単なる説明例にすぎな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It's just

【0012】図1は、本発明のX線残留応力測定装置の
概略を示す構成図である。X線残留応力測定装置は、X
線管1、X線検出器2、支持部材5、7、モータ6、
8、制御装置11を備え、被測定材料3にX線を照射し
て、残留応力を測定する。X線検出器2はモータ6によ
って支持部材5に沿って走査可能なように設置され、X
線管1は支持部材5に固定されている。支持部材5は被
測定材料3表面のX線入射位置4を中心点とする円弧状
に形成され、更に支持部材7に、モータ8によって走査
可能なように設置されている。
FIG. 1 is a block diagram schematically showing an X-ray residual stress measuring apparatus according to the present invention. X-ray residual stress measurement device
Ray tube 1, X-ray detector 2, support members 5, 7, motor 6,
8. The control device 11 is provided, and the material 3 to be measured is irradiated with X-rays to measure the residual stress. The X-ray detector 2 is installed so as to be scannable along the support member 5 by the motor 6,
The wire tube 1 is fixed to a support member 5. The support member 5 is formed in an arc shape with the X-ray incident position 4 on the surface of the material 3 to be measured as a center point, and is installed on the support member 7 so as to be scannable by a motor 8.

【0013】また、支持部材7もX線入射位置4を中心
とする円弧状に形成されている。制御装置11はCP
U、モータドライバ、メモリ、I/F回路等で構成さ
れ、モータドライバから送られるパルス信号に従ってモ
ータ6、8を回転させる。また、X線検出器2からの信
号をI/F回路で受信して信号の演算を行う。モータ
6、8はパルスで一定角度ごとに駆動するステッピング
モータ等である。
The support member 7 is also formed in an arc shape centering on the X-ray incident position 4. The control device 11 is a CP
U, a motor driver, a memory, an I / F circuit, and the like. The motors 6, 8 are rotated according to a pulse signal sent from the motor driver. In addition, a signal from the X-ray detector 2 is received by an I / F circuit to calculate a signal. The motors 6 and 8 are stepping motors or the like that are driven at regular intervals by pulses.

【0014】次に、図1の動作について詳細に説明す
る。X線管1により発生するX線はソーラスリット(図
示せず)により細かいビーム状となリ、測定の間中常に
材料3の表面のX線入射位置4を照射している。あるX
線入射角ψに対する回折角2θを求めるには、制御装置
11によってモータ6を駆動し、回折X線10の強度分
布が得られるようX線検出器2を走査する必要がある
が、この走査は初期位置から一定微小角度毎にステップ
状に行う。
Next, the operation of FIG. 1 will be described in detail. The X-ray generated by the X-ray tube 1 is formed into a fine beam by a solar slit (not shown), and constantly irradiates the X-ray incident position 4 on the surface of the material 3 during the measurement. An X
In order to obtain the diffraction angle 2θ with respect to the line incident angle ψ, it is necessary to drive the motor 6 by the control device 11 and scan the X-ray detector 2 so that the intensity distribution of the diffracted X-rays 10 is obtained. It is performed stepwise at a constant minute angle from the initial position.

【0015】図2を参照してこの入射X線の動きについ
て説明する。ψ〜ψはX線入射設定角度であり、本
実施例では0度から45度に設定され、45度を測定終
了角度にしている。まず、モータ6によりX線検出器2
を支持部材5に沿って初期位置から微小角度でステップ
走査し、回折X線10強度分布を求め、再び初期の位置
に戻り、X線入射角0度の測定を完了する。次に、モー
タ8により支持部材5を支持部材7に沿ってX線入射設
定角度を5度ステップする。これによりX線管と図示し
ないX線検出器は、その相対位置を保持したまま移動す
る。そして、ψ のステップをψと同様にくり返し、
X線入射角5度の測定を完了する。このようにしてψ
〜ψまでの測定を行いψが45度になるまで続け
る。
Referring to FIG. 2, the movement of the incident X-ray will be described.
Will be explained. ψ1~ ΨnIs the X-ray incidence setting angle.
In the embodiment, the angle is set from 0 degree to 45 degrees, and 45 degrees is measured when the measurement is completed.
Angle. First, the X-ray detector 2 is driven by the motor 6.
At a small angle from the initial position along the support member 5
Scan to find the intensity distribution of the diffracted X-rays 10
And the measurement of the X-ray incident angle of 0 degree is completed. Next,
The support member 5 is set along the support member 7 by the
Step the fixed angle by 5 degrees. This shows the X-ray tube and
X-ray detectors move while maintaining their relative positions.
You. And ψ 2ス テ ッ プ steps1Repeat as above,
The measurement of the X-ray incident angle of 5 degrees is completed. In this way ψ1
~ ΨnMeasure up to ψnUntil 45 degrees
You.

【0016】[0016]

【実施例】次に、本発明の第1の実施例について図面を
参照して詳細に説明する。図3は、本発明の粗粒材のX
線法による最碓応力算出のフローチャートである。ま
ず、X線入射角範囲(測定開始角度と終了角度)とピッ
チを設定する。ここではX線入射角範囲の測定開始角度
ψは0度、終了角度ψは45度に設定する。またピ
ッチは5度に設定する(ステップS1)。次に、測定器
を測定開始角度へ移動させる。つまりモータ8はX線管
1を図2のψの位置に設定し、支持部材5を0度の位
置に設定する(ステップS2)。次に、X線管1からX
線を放射して被測定材料3に照射して、その面からの回
折X線10をX線検出器2で検出して制御回路11へ入
力する。この時は当然、図2で説明したようにX線検出
器2をからまでの間に微小角度ずつ(細かい程よい
が、通常は回折線幅の1/20程度)ステップさせ、そ
の時得られたそれぞれの回折強度を制御装置11のメモ
リに記憶する(ステップS3)。
Next, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 3 shows X of the coarse-grained material of the present invention.
It is a flowchart of the calculation of the lowest Usui stress by the line method. First, an X-ray incident angle range (measurement start angle and end angle) and a pitch are set. Here the measurement start angle [psi 1 of X-ray incidence angle range is set to 0 °, end angle [psi n is 45 degrees. The pitch is set to 5 degrees (step S1). Next, the measuring instrument is moved to the measurement start angle. That motor 8, and the X-ray tube 1 to the position of the [psi 1 2, the supporting member 5 is set to 0 degree position (step S2). Next, X-ray tube 1
The X-ray detector 2 detects the diffracted X-rays 10 from the surface and irradiates the X-ray detector 10 with the X-rays. At this time, as described with reference to FIG. 2, the X-ray detector 2 is naturally stepped by a small angle (the smaller the better, but usually about 1/20 of the diffraction line width) between and after the X-ray detector 2 is obtained. Is stored in the memory of the control device 11 (step S3).

【0017】その後X検出器2を元の位置に戻す。次
に、X線入射角が終了角度45度になったかをチェック
する(ステップS4)。NOであればX線入射角を1ピ
ッチ、つまり5度移動し(ステップS5)、ステップS
3に戻る。YESであれば、各X線入射ごとの回折強度
曲線からそれぞれの回折角を求める(ステップS6)。
この回折角の決定法は、半価幅法、ピークトップ法、重
心法等いずれの方法によってもよい。各ψにおけるピー
ク位置2θをSinψに対してプロットすることによ
り2θ−Sinψ線図を作成する。
Thereafter, the X detector 2 is returned to the original position. Next, it is checked whether the X-ray incidence angle has reached the end angle of 45 degrees (step S4). If NO, the X-ray incident angle is moved by one pitch, that is, 5 degrees (step S5), and the step S5 is performed.
Return to 3. If YES, each diffraction angle is obtained from the diffraction intensity curve for each X-ray incidence (step S6).
The method of determining the diffraction angle may be any method such as a half width method, a peak top method, and a center of gravity method. To create a 2θ-Sin 2 ψ diagram by plotting the peak position 2 [Theta] relative to Sin 2 [psi in each [psi.

【0018】次に、その時の測定応力値と測定応力値に
対する信頼限界を求める。応力値は、2θ−Sinψ
線図の勾配[M=δ(2θ)/δ(Sinψ)(de
g)]を用いて下記数1により算出する(ステップS
7)。
Next, the measured stress value at that time and the confidence limit for the measured stress value are determined. The stress value is 2θ−Sin 2 ψ
The gradient of the diagram [M = δ (2θ) / δ (Sin 2 ψ) (de
g)] and the following equation (1) (Step S)
7).

【0019】[0019]

【数1】 (Equation 1)

【0020】また、測定応力値に対する信頼限界は、下
記数2により算出する(ステップS7)。
The confidence limit for the measured stress value is calculated by the following equation (Step S7).

【0021】[0021]

【数2】 (Equation 2)

【0022】尚、信頼限界は68.3%を標準とする
が、その他の50%あるいは90%等を用いてもよい。
[社団法人 日本材料学会 X線材料強度部門委員会
X線応力測定法標準による]。
The confidence limit is 68.3% as a standard, but another 50% or 90% may be used.
[The Japan Society for Materials Science, X-ray Material Strength Committee]
X-ray stress measurement method standard].

【0023】次に、各X線入射角毎の回折角をX線入射
角の小さい方から(大きい方からでも可)3個ずつ平均
し、その時の応力値と信頼限界を計算する。なお、その
時の入射角は平均した各回折強度曲線の入射角をψ
ψ〜ψとする時、Sin ψ、Sinψ〜S
inψの平均値をψmeanとして{Sin
−1(ψmean)}0.5を入射角とする(ステップ
S8)。次に、平均化数は(最大採取データ−2)より
大きいかを判断する(ステップS10)。NOであれば
平均化数を2個増し(ステップS11)、ステップS8
に戻る。YES(この場合は7)であれば平均化したデ
ータ数と応力値及び信頼限界の関係をプロットし、それ
ぞれの回帰線を求める(図5参照)(ステップS1
2)。最後に、信頼限界が最小になる測定応力値を、求
める残留応力値とする(ステップS13)。
Next, the diffraction angle for each X-ray incidence angle is
Average from three with smaller corners (even with larger corners)
Then, the stress value and the confidence limit at that time are calculated. In addition,
The angle of incidence is the average of the angles of incidence of each diffraction intensity curve.1,
ψ2~ ΨnAnd Sin 2ψ1, Sin2ψ2~ S
in2ψn{Sin with the mean of の mean
-1(Ψmean)} 0.5 is defined as the angle of incidence (step
S8). Next, the averaged number is calculated from (maximum sampling data-2)
It is determined whether it is larger (step S10). If NO
The averaging number is increased by two (step S11), and step S8 is performed.
Return to If YES (7 in this case), the averaged
Plot the relationship between the number of data and the stress value and confidence limit.
Find each regression line (see FIG. 5) (step S1)
2). Finally, the measured stress value that minimizes the confidence limit is determined.
(Step S13).

【0024】図4は、図3のフローチャートに基づいて
求めた平均数1、3、5、7の場合のX線入射角に対す
る回折角と、求めた測定応力値および68.3%の信頼
限界を表にしたものである。ただし、側傾法、応力定数
は−100MPa/2θ度とした。図5は、図4の表の
平均化したデータ数と応力値及び信頼限界の関係をプロ
ットした図である。この図から、平均数5個の時が最も
68.3%の信頼限界が小さい。つまりバラツキの幅が
狭いことを意味している。その時の測定応力値が求める
残留応力値となる。
FIG. 4 shows the diffraction angle with respect to the X-ray incident angle in the case of the average numbers 1, 3, 5, and 7 obtained based on the flowchart of FIG. 3, the measured stress value and the reliability limit of 68.3%. Is a table. However, the side inclination method and the stress constant were -100 MPa / 2θ degrees. FIG. 5 is a diagram in which the relationship between the number of averaged data in the table of FIG. 4, the stress value, and the confidence limit is plotted. From this figure, when the average number is five, the confidence limit of 68.3% is the smallest. In other words, it means that the width of the variation is narrow. The measured stress value at that time is the desired residual stress value.

【0025】次に、再び図3を用いて第2の実施例につ
いて説明する。ステップS7までは第1の実施例と同様
なので説明は省略する。平均数1の場合の応力値と信頼
限界を求めた後(ステップS7)、次に、各X線入射角
毎の回折強度曲線をX線入射角の小さい方から(大きい
方からでも可)3個ずつ合成し、その合成回折強度曲線
から回折角を求め、その時の応力値と信頼限界を計算す
る。なお、その時の入射角は第1の実施例のところで説
明した通りである。(ステップS9)。
Next, the second embodiment will be described with reference to FIG. Steps up to step S7 are the same as in the first embodiment, and a description thereof will be omitted. After obtaining the stress value and the reliability limit in the case of the average number 1 (step S7), the diffraction intensity curve for each X-ray incident angle is calculated from the smaller X-ray incident angle (even from the larger one). Each is synthesized, the diffraction angle is obtained from the synthesized diffraction intensity curve, and the stress value and the reliability limit at that time are calculated. The incident angle at that time is as described in the first embodiment. (Step S9).

【0026】次に、合成数は(最大採取データ−2)よ
り大きいかを判断する(ステップS10)。NOであれ
ば平均化数を2個増し(ステップS11)、ステップS
9に戻る。YES(この場合は7)であれば合成したデ
ータ数と応力値及び信頼限界の関係をプロットし、それ
ぞれの回帰線を求める(ステップS12)。最後に、信
頼限界が最小になる測定応力値を、求める残留応力値と
する(ステップS13)。
Next, it is determined whether or not the combined number is larger than (maximum sampling data-2) (step S10). If NO, the averaging number is increased by two (step S11), and
Return to 9. If YES (7 in this case), the relationship between the number of synthesized data, the stress value, and the confidence limit is plotted, and respective regression lines are obtained (step S12). Finally, a measured stress value at which the reliability limit is minimized is set as a residual stress value to be obtained (step S13).

【0027】以上、第1の実施例と第2の実施例につい
て説明したが、何れの場合も残留応力測定法として有力
な方法であるが、強いて両者の違いを述べると、第1の
実施例では、各X線入射角で測定した回折強度曲線毎に
回折角を求め、その回折角を平均するが、第2の実施例
では、回折強度曲線を合成した後回折角を求める。この
違いは各X線入射角における回折強度の大小の影響を考
慮するか否かの違いで、第1の実施例は回折強度に大き
な変化(差)がない場合、第2の実施例は回折強度に差
がある場合に有効である。
The first embodiment and the second embodiment have been described above. In each case, the method is effective as a method for measuring the residual stress. Then, the diffraction angle is obtained for each diffraction intensity curve measured at each X-ray incident angle, and the diffraction angles are averaged. In the second embodiment, the diffraction angle is obtained after the diffraction intensity curves are combined. The difference is whether or not the influence of the magnitude of the diffraction intensity at each X-ray incident angle is taken into consideration. In the first embodiment, when there is no large change (difference) in the diffraction intensity, the second embodiment uses the diffraction. This is effective when there is a difference in strength.

【0028】図6は、第1の実施例と、第2の実施例の
相違についての解説図である。第1の実施例では、入射
角における回折強度曲線の間に、大きな差は見られない
場合の手順である。つまりX線入射角A、B、Cのピー
ク値に大きな差がないので、それらの回折角を順次平均
化して回折角を求めても、結果に大きな誤差が出ること
はない。また、第2の実施例の算出手順は、入射角にお
ける回折強度曲線の間に、大きな差が見られる場合の手
順である。つまりX線入射角A、B、Cのピーク値に大
きな差があり、特にX線入射角AとBの間に大きなピー
ク値の差がある。このような場合、単純に平均化すると
結果に大きな誤差が出てしまう。そこで、各入射角にお
ける回折強度曲線を順次合成すると、波形合成の特性に
より、低い波形のピーク値は、より大きなピーク値側に
近づく。この特性を利用して波形合成していくことによ
り、誤差の少ない回折角を得ることができる。
FIG. 6 is a diagram for explaining the difference between the first embodiment and the second embodiment. The first embodiment is a procedure in the case where no large difference is observed between the diffraction intensity curves at the incident angle. That is, since there is no large difference between the peak values of the X-ray incident angles A, B, and C, even if the diffraction angles are sequentially averaged to obtain the diffraction angles, no large error is produced in the result. The calculation procedure of the second embodiment is a procedure in the case where a large difference is observed between the diffraction intensity curves at the incident angle. That is, there is a large difference between the peak values of the X-ray incident angles A, B, and C, and in particular, there is a large difference between the X-ray incident angles A and B. In such a case, simply averaging results in a large error in the result. Then, when the diffraction intensity curves at the respective incident angles are sequentially synthesized, the peak value of the low waveform approaches the larger peak value side due to the characteristics of the waveform synthesis. By combining the waveforms using this characteristic, a diffraction angle with a small error can be obtained.

【0029】以上、本発明の好ましい実施例について説
明したが、本発明は、これら実施例に限定されるもので
はなく、本発明の要旨を逸脱することのない範囲内にお
いて適宜の変更が可能なものである。例えば、本実施例
では、X線管のステップ角度を5度に分割したが、これ
よりも多くてもよいし、適宜設定が可能である。また、
平均化あるいは合成数を奇数としたが偶数を含めてもよ
い。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can be appropriately modified without departing from the gist of the present invention. Things. For example, in the present embodiment, the step angle of the X-ray tube is divided into 5 degrees, but may be larger or may be set as appropriate. Also,
Although the averaging or composite number is an odd number, an even number may be included.

【0030】[0030]

【発明の効果】以上説明したように、本発明によるX線
残留応力測定装置およびその測定方法は、各X線入射角
毎の回折角、あるいは回折強度曲線を3個ずつ平均、あ
るいは合成したものであるので、2軸揺動しなくても精
度よく、しかも簡単な装置で粗粒の残留応力を測定する
ことができる。
As described above, the X-ray residual stress measuring apparatus and the measuring method according to the present invention are obtained by averaging or synthesizing three diffraction angles or diffraction intensity curves for each X-ray incident angle. Therefore, the residual stress of the coarse particles can be measured accurately and with a simple device without swinging the two axes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のX線残留応力測定装置の概略を示す
構成図である。
FIG. 1 is a configuration diagram schematically showing an X-ray residual stress measuring device of the present invention.

【図2】 本発明の入射X線の動きについて説明する図
である。
FIG. 2 is a diagram illustrating the movement of incident X-rays according to the present invention.

【図3】 本発明の粗粒材のX線法による最碓応力算出
のフローチャートである。
FIG. 3 is a flowchart of the calculation of the minimum stress of the coarse-grained material of the present invention by the X-ray method.

【図4】 本発明のX線入射角に対する回折角と、求め
た測定応力値および68.3%の信頼限界を表にしたも
のである。
FIG. 4 is a table showing a diffraction angle with respect to an X-ray incident angle of the present invention, a measured stress value obtained, and a confidence limit of 68.3%.

【図5】 本発明の最碓残留応力値の求め方を説明する
図である。
FIG. 5 is a diagram for explaining a method of obtaining a minimum residual stress value according to the present invention.

【図6】 第1の実施例と、第2の実施例の相違につい
ての解説図である。
FIG. 6 is a diagram illustrating the difference between the first embodiment and the second embodiment.

【符号の説明】[Explanation of symbols]

1 X線管 2 X線検出器 3 被測定材料 4 X線入射位置 5 支持部材 6 モータ 7 支持部材 8 モータ 9 入射X線 10 回折X線 11 制御装置 DESCRIPTION OF SYMBOLS 1 X-ray tube 2 X-ray detector 3 Material to be measured 4 X-ray incident position 5 Support member 6 Motor 7 Support member 8 Motor 9 Incident X-ray 10 Diffracted X-ray 11 Controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定材料にX線を入射させるX線管
と、材料面で回折したX線を検出する検出器と、前記X
線管と検出器をX線の材料への入射点の周りに回転する
回転手段と、前記回転手段を制御する制御手段を備えた
X線残留応力測定装置において、 前記制御手段は、前記X線管に対して前記検出器を移動
させて回折X線を検出し、得られた回折X線の回折強度
曲線から回折角を求める手段と、その時の測定応力値と
当該測定応力値に対する信頼限界を求める手段と、前記
回折角を順次平均化する手段と、その時の測定応力値と
当該測定応力値に対する信頼限界を求める手段と、平均
化したデータ数と前記測定応力値および前記信頼限界の
関係から残留応力値を求める手段を備えたことを特徴と
するX線残留応力測定装置。
1. An X-ray tube for introducing X-rays into a material to be measured, a detector for detecting X-rays diffracted on a material surface,
An X-ray residual stress measuring apparatus comprising: a rotating unit configured to rotate a X-ray tube and a detector around an X-ray incident point on a material; and an X-ray residual stress measuring device including a control unit configured to control the rotating unit. Means for detecting the diffracted X-rays by moving the detector with respect to the tube, obtaining a diffraction angle from a diffraction intensity curve of the obtained diffracted X-rays, and determining a measured stress value at that time and a confidence limit for the measured stress value. Calculating means, means for sequentially averaging the diffraction angles, means for obtaining a measured stress value at that time and a confidence limit for the measured stress value, and a relationship between the number of averaged data, the measured stress value, and the confidence limit. An X-ray residual stress measurement device comprising means for determining a residual stress value.
【請求項2】 被測定材料にX線を入射させるX線管
と、材料面で回折したX線を検出する検出器と、前記X
線管と検出器をX線の材料への入射点の周りに回転する
回転手段と、前記回転手段を制御する制御手段を備えた
X線残留応力測定装置において、 前記制御手段は、前記X線管に対して前記検出器を移動
させて回折X線を検出し、得られた回折X線の回折強度
曲線から回折角を求める手段と、その時の測定応力値と
当該測定応力値に対する信頼限界を求める手段と、前記
回折角を順次合成する手段と、前記合成する手段の結果
得られた回折強度曲線から回折角を決定する手段と、そ
の時の測定応力値と当該測定応力値に対する信頼限界を
求める手段と、合成したデータ数と前記測定応力値およ
び前記信頼限界の関係から残留応力値を求める手段を備
えたことを特徴とするX線残留応力測定装置。
2. An X-ray tube for introducing X-rays into a material to be measured, a detector for detecting X-rays diffracted on a material surface,
An X-ray residual stress measuring apparatus comprising: a rotating unit configured to rotate a X-ray tube and a detector around an X-ray incident point on a material; and an X-ray residual stress measuring device including a control unit configured to control the rotating unit. Means for detecting the diffracted X-rays by moving the detector with respect to the tube and obtaining a diffraction angle from the diffraction intensity curve of the obtained diffracted X-rays; Obtaining means, means for sequentially synthesizing the diffraction angles, means for determining the diffraction angle from the diffraction intensity curve obtained as a result of the synthesizing means, and the measured stress value at that time and the confidence limit for the measured stress value Means for obtaining a residual stress value from a relationship between the number of synthesized data, the measured stress value, and the confidence limit.
【請求項3】 [最大採取データ数−2個]までを上限
として回折強度曲線から求めた回折角を順次平均化、あ
るいは回折強度曲線を順次合成後回折角を求めることを
特徴とするX線残留応力測定方法。
3. An X-ray, wherein a diffraction angle obtained from a diffraction intensity curve is sequentially averaged up to [the maximum number of collected data−2], or a diffraction angle is obtained after sequentially synthesizing diffraction intensity curves. Residual stress measurement method.
【請求項4】 前記平均化したデータ数、あるいは合成
したデータ数から求めた前記測定応力値および前記信頼
限界において、 前記信頼限界が最小になる時の前記データ数に対応する
前記測定応力値を、求める残留応力値とすることを特徴
とする請求項3記載のX線残留応力測定方法。
4. The measured stress value and the confidence limit obtained from the averaged data number or the combined data number, wherein the measured stress value corresponding to the data number when the confidence limit is minimized is The X-ray residual stress measuring method according to claim 3, wherein the residual stress value is determined.
JP2000376190A 2000-12-11 2000-12-11 Residual stress measuring device and method by x-ray Withdrawn JP2002181638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376190A JP2002181638A (en) 2000-12-11 2000-12-11 Residual stress measuring device and method by x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376190A JP2002181638A (en) 2000-12-11 2000-12-11 Residual stress measuring device and method by x-ray

Publications (1)

Publication Number Publication Date
JP2002181638A true JP2002181638A (en) 2002-06-26

Family

ID=18845089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376190A Withdrawn JP2002181638A (en) 2000-12-11 2000-12-11 Residual stress measuring device and method by x-ray

Country Status (1)

Country Link
JP (1) JP2002181638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203672A1 (en) * 2015-06-18 2016-12-22 新東工業株式会社 Residual-stress measurement device and residual-stress measurement method
WO2019138727A1 (en) * 2018-01-12 2019-07-18 株式会社神戸製鋼所 Residual stress measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203672A1 (en) * 2015-06-18 2016-12-22 新東工業株式会社 Residual-stress measurement device and residual-stress measurement method
JP2017009356A (en) * 2015-06-18 2017-01-12 新東工業株式会社 Residual stress measurement instrument and residual stress measurement method
TWI664405B (en) * 2015-06-18 2019-07-01 日商新東工業股份有限公司 Residual stress measuring device and method
US10520455B2 (en) 2015-06-18 2019-12-31 Sintokogio, Ltd. Residual stress measuring apparatus and residual stress measuring method
WO2019138727A1 (en) * 2018-01-12 2019-07-18 株式会社神戸製鋼所 Residual stress measuring method
JP2019124481A (en) * 2018-01-12 2019-07-25 株式会社神戸製鋼所 Residual stress measurement method
CN111542750A (en) * 2018-01-12 2020-08-14 株式会社神户制钢所 Residual stress measuring method

Similar Documents

Publication Publication Date Title
GB2083215A (en) Apparatus for x-ray diffraction
EP1218729A4 (en) Apparatus and method for texture analysis on semiconductor wafers
EP3835767A1 (en) Control apparatus, system, method, and program
JP3821414B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JP2006329821A (en) X-ray diffraction apparatus and measuring method of x-ray diffraction pattern
JPH0689887A (en) Crystal orientation deciding method
JP2613513B2 (en) X-ray fluorescence analysis method
JP2002181638A (en) Residual stress measuring device and method by x-ray
JP3109789B2 (en) X-ray reflectance measurement method
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
JP4996263B2 (en) Crystal orientation measuring device
WO2006095467A1 (en) X-ray diffraction analyzing method and analyzer
JPH0654265B2 (en) 2-axis swing X-ray stress measurement device
EP1477795B1 (en) X-ray diffractometer for grazing incidence diffraction of horizontally and vertically oriented samples
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
JP2023074924A5 (en)
JP4565546B2 (en) X-ray analysis method and X-ray analysis apparatus
JPH11304729A (en) X-ray measurement method and x-ray measurement device
JP4540184B2 (en) X-ray stress measurement method
JPH10246708A (en) Apparatus and method for nondestructive inspection
JP2006242970A (en) Crystal orientation determination device
JP4227706B2 (en) Crystal orientation measuring apparatus and crystal orientation measuring method
JP2001311705A (en) X-ray diffraction device
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JP2002148220A (en) X-ray diffractometer and x-ray adjustment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304