JP2002181515A - Measuring method and device for diameters and distributions of microbubble and microdrop - Google Patents

Measuring method and device for diameters and distributions of microbubble and microdrop

Info

Publication number
JP2002181515A
JP2002181515A JP2000381367A JP2000381367A JP2002181515A JP 2002181515 A JP2002181515 A JP 2002181515A JP 2000381367 A JP2000381367 A JP 2000381367A JP 2000381367 A JP2000381367 A JP 2000381367A JP 2002181515 A JP2002181515 A JP 2002181515A
Authority
JP
Japan
Prior art keywords
image
microbubble
laser beam
microdroplets
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000381367A
Other languages
Japanese (ja)
Other versions
JP3211825B1 (en
Inventor
Masanobu Maeda
昌信 前田
Tatsuya Kawaguchi
達也 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2000381367A priority Critical patent/JP3211825B1/en
Application granted granted Critical
Publication of JP3211825B1 publication Critical patent/JP3211825B1/en
Publication of JP2002181515A publication Critical patent/JP2002181515A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a diameter of a defocusing image obtained by defocusing and a number of an interference fringe in the defocusing image to expand the measurement method for a diameter and space distribution for a micro drop to the measuring method for a microbubble and a microdrop, and enable application of the measurement method to a case that space distribution concentration of the micorbubble and the microdrop is high. SOLUTION: A sheet-like and parallel laser beam 2 irradiates to liquid space that a microbubble 10 is floated. The microbubble 10 irradiated by the laser beam 2 is taken by defocusing at a defocusing face 8 from a side face direction with an angle θ to a running direction of the laser beam 2 through an object lens 6. The number of the interference fringe 9 in a defocusing image 10" corresponding to the microbubbles 10 and thereafter the diameter of the microbubble 10 is determined in accordance with an equation (4).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微小液滴及び気泡
の径及び分布等の測定方法と装置に関し、特に、干渉法
により空間に分布した微小液滴及び気泡の径と分布の同
時測定方法と装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the diameter and distribution of microdroplets and bubbles, and more particularly to a method of measuring the diameter and distribution of microdroplets and bubbles distributed in space by an interference method. And the device.

【0002】[0002]

【従来の技術】例えば、エンジン内部に噴射された燃料
の微小液滴の分布や径を精度良く測定する方法が求めら
れている。同様に、例えば、スプレードライ法に用いる
ノズルを設計するのに、空中に噴霧された微小液滴の分
布や径を精度良く測定する方法が求められている。さら
に、空気泡中のCO2 の海中への吸収、ビール、ワイン
中の気泡の挙動の研究に気泡の径や分布、及び、その変
化を精度良く測定する方法が求められている。
2. Description of the Related Art For example, there is a need for a method of accurately measuring the distribution and diameter of minute droplets of fuel injected into an engine. Similarly, for example, there is a need for a method of accurately measuring the distribution and diameter of fine droplets sprayed in the air to design a nozzle used in the spray drying method. Further, there is a need for a method of accurately measuring the diameter and distribution of bubbles and the change thereof in studies of the absorption of CO 2 in air bubbles into the sea and the behavior of bubbles in beer and wine.

【0003】このように、微小液滴や気泡が空間中に存
在した状態のままで、それらの径と分布を精度良く測定
する方法及び装置は、各方面で強く要望されている。
As described above, there is a strong demand in various fields for a method and an apparatus for accurately measuring the diameter and distribution of fine droplets and bubbles while they remain in the space.

【0004】従来、微小液滴に関しては、空間に分布し
た微小液滴を写真に撮ってその写真を分析する方法があ
った。写真がボケる等して測定精度に問題があった。ま
た、実時間処理ができない問題もある。その写真をCC
Dカメラで撮影する方法も知られているが、同様に測定
精度の問題、実時間処理ができない問題等があった。さ
らに、解析に時間がかかる問題がある。その他、ホログ
ラフィックな手法もCCDカメラで撮影する方法も知ら
れているが、同様に測定精度の問題、実時間処理ができ
ない問題、解析に時間がかかる問題がある。さらに、実
時間性を得るために、CCDカメラで微小液滴の影を直
接撮影する方法も知られているが、粒子が小さいものは
回折の影響で測定が困難であるという問題等があった。
また、限定した3次元位置の微小液滴の径の測定が困難
であるという問題があった。
[0004] Conventionally, there has been a method of taking a photograph of a minute droplet distributed in space and analyzing the photograph. There was a problem in the measurement accuracy due to blurred pictures. There is also a problem that real-time processing cannot be performed. CC the photo
A method of photographing with a D camera is also known, but also has a problem of measurement accuracy, a problem that real-time processing cannot be performed, and the like. Furthermore, there is a problem that analysis takes time. In addition, a holographic method and a method of photographing with a CCD camera are known, but similarly, there is a problem of measurement accuracy, a problem that real-time processing cannot be performed, and a problem that analysis takes time. Furthermore, in order to obtain real-time performance, a method of directly photographing the shadow of a minute droplet with a CCD camera is also known, but there is a problem that measurement of small particles is difficult due to the influence of diffraction. .
In addition, there is a problem that it is difficult to measure the diameter of the minute droplet at a limited three-dimensional position.

【0005】また、従来、LDV、PDA、PDPA等
と呼ばれる方法により、3次元空間中の位置を特定して
複数の粒子を同時に測定する方法が知られている。その
方法は、空中に2本のレーザビームを交差させて空間的
な干渉縞を形成し、その干渉縞を横切る液滴から散乱さ
れる光を異なる複数の点から同じ測定体積を観測し、そ
の測定信号の位相差から微小液滴の径を測定する方法で
ある。この場合は、その干渉縞領域を通過する1個1個
の粒子の径を測定する方法であるため、その領域外の周
囲の空間中の測定を同時に行うことができない問題があ
る。また、測定精度も十分なものではなかった。
Conventionally, there has been known a method of simultaneously measuring a plurality of particles by specifying a position in a three-dimensional space by a method called LDV, PDA, PDPA or the like. The method intersects two laser beams in the air to form spatial interference fringes, observes the same scattered light from droplets traversing the interference fringes from different points, and observes the same measurement volume. This is a method of measuring the diameter of a microdroplet from the phase difference of a measurement signal. In this case, since it is a method of measuring the diameter of each particle passing through the interference fringe region, there is a problem that the measurement in the surrounding space outside the region cannot be performed simultaneously. Also, the measurement accuracy was not sufficient.

【0006】このような状況において、測定空間にシー
ト状の平行なレーザビームを照射し、そのレーザビーム
が当たった微小液滴を焦点外れで撮影すると、各微小液
滴に対応する焦点外れ像中に干渉縞が存在し、その焦点
外れ像中に存在する干渉縞の数と微小液滴の径との間に
一定の関係があり、その干渉縞の数を測定することによ
り微小液滴の径を測定することが可能であり、また、微
小液滴の空間分布も測定可能である方法が提案されてい
る(SAE Paper no.950457,960
830)。
In such a situation, when a measurement space is irradiated with a sheet-shaped parallel laser beam, and micro-droplets hit by the laser beam are photographed out of focus, an out-of-focus image corresponding to each micro-droplet is obtained. There is a certain relationship between the number of interference fringes present in the out-of-focus image and the diameter of the microdroplets, and the diameter of the microdroplets is determined by measuring the number of the interference fringes. Has been proposed (SAE Paper no. 950457, 960), and the spatial distribution of microdroplets can also be measured.
830).

【0007】[0007]

【発明が解決しようとする課題】上記の焦点外れ像中の
干渉縞の数を測定して微小液滴の径、及び、その空間分
布を測定する方法の場合、適用分野が微小液滴に限定さ
れ、微小気泡に適用することが行われていなかった。
In the above method of measuring the number of interference fringes in an out-of-focus image to measure the diameter of a minute droplet and its spatial distribution, the application field is limited to the minute droplet. And have not been applied to microbubbles.

【0008】また、その方法には、特に、空間的に微小
液滴の分布濃度が高い場合に、焦点外れ像そのものは円
形で大きい領域を占めるため相互に重なった像となるた
め、各微小液滴を分離して各々の径を測定することが困
難であるという問題があった。
[0008] In addition, in the method, especially when the distribution density of the minute liquid droplets is high spatially, the defocused image itself occupies a large circular area, so that the images overlap each other. There has been a problem that it is difficult to separate the droplets and measure their diameters.

【0009】本発明は、従来技術のこのような問題点に
鑑みてなされたものであり、その目的は、焦点外れによ
って得られる焦点外れ像の直径とその中の干渉縞の数を
測定して微小液滴の径及び空間分布を測定する方法を微
小気泡の径及び空間分布の測定方法に拡張すること、及
び、焦点外れ像の解析から微小液滴及び微小気泡の位
置、径、速度を求める方法と装置を提供することであ
る。
The present invention has been made in view of such problems of the prior art, and has as its object to measure the diameter of an out-of-focus image obtained by defocus and the number of interference fringes therein. Extending the method of measuring the diameter and spatial distribution of microdroplets to the method of measuring the diameter and spatial distribution of microbubbles, and finding the position, diameter, and velocity of microdroplets and microbubbles from out-of-focus image analysis A method and apparatus are provided.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明の微小気泡の径及び分布等の測定方法は、微小気泡あ
るいは微小液滴が浮いた空間にシート状の平行なレーザ
ビームを照射し、そのレーザビームが当たった微小気泡
あるいは微小液滴をレーザビーム進行方向に対して所定
の角度をなす側面方向から、前記レーザビームの進行方
向と撮影光学系の光軸とを含む平面に平行な方向におい
ては焦点外れ状態となり、その平面に垂直な方向におい
ては略合焦状態となる撮影面で、その平面方向に伸びて
微小気泡あるいは微小液滴に対応する線状の焦点外れ像
を撮影し、その焦点外れ像の中心を求めることにより、
微小気泡あるいは微小液滴の中心位置を求めることを特
徴とする方法である。
A method for measuring the diameter and distribution of microbubbles according to the present invention, which achieves the above objects, comprises irradiating a space in which microbubbles or microdroplets float with a sheet-shaped parallel laser beam. The microbubbles or microdroplets hit by the laser beam are parallel to a plane including the traveling direction of the laser beam and the optical axis of the imaging optical system from a side surface direction forming a predetermined angle with respect to the traveling direction of the laser beam. In the direction that is out of focus in the direction, and on the imaging surface that is almost in focus in the direction perpendicular to the plane, a linear out-of-focus image corresponding to a microbubble or a microdroplet is taken, extending in the plane direction. , By finding the center of that defocused image,
This is a method characterized by finding the center position of a microbubble or a microdroplet.

【0011】この場合に、その中心位置は、線状の焦点
外れ像の長さをLとするとき、長手方向に沿って特定位
置の前後の距離L/2の範囲で平均をとってその位置の
値とし、その特定位置を順次移動することによって得ら
れる移動平均値のピーク位置から求めることが望まし
い。
In this case, assuming that the length of the linear defocused image is L, the center position is averaged over a range of a distance L / 2 before and after a specific position along the longitudinal direction and the center position is determined. And it is desirable to obtain the moving average value from the peak position obtained by sequentially moving the specific position.

【0012】本発明のもう1つの微小気泡及び微小液滴
の径及び分布等の測定方法は、微小気泡あるいは微小液
滴が浮いた空間にシート状の平行なレーザビームを照射
し、そのレーザビームが当たった微小気泡あるいは微小
液滴をレーザビーム進行方向に対して所定の角度をなす
側面方向から、前記レーザビームの進行方向と撮影光学
系の光軸とを含む平面に平行な方向においては焦点外れ
状態となり、その平面に垂直な方向においては略合焦状
態となる撮影面で、その平面方向に伸びて微小気泡ある
いは微小液滴に対応する線状の焦点外れ像を撮影し、そ
の焦点外れ像をフーリエ変換して周波数を求め、求めた
周波数にその焦点外れ像の長さを掛けることにより焦点
外れ像中の干渉縞の数を求め、その干渉縞の数に基づい
て微小気泡あるいは微小液滴の直径を求めることを特徴
とする方法である。
Another method of measuring the diameter and distribution of microbubbles and microdroplets according to the present invention is to irradiate a space in which microbubbles or microdroplets float with a sheet-shaped parallel laser beam, and apply the laser beam to the space. The microbubbles or microdroplets hit by the laser beam are focused in a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the imaging optical system from a side direction forming a predetermined angle with respect to the traveling direction of the laser beam. On the imaging surface, which is out of focus and substantially in focus in a direction perpendicular to the plane, a linear out-of-focus image corresponding to a microbubble or a microdroplet is taken extending in the plane direction, and the defocus is taken. The image is Fourier-transformed to determine the frequency, and the obtained frequency is multiplied by the length of the defocused image to determine the number of interference fringes in the defocused image. A method characterized by determining the diameter of the microdroplets.

【0013】この場合に、フーリエ変換として離散的フ
ーリエ変換を行い、得られた離散的な周波数分布に関数
フィティングを施して微小気泡あるいは微小液滴の直径
を求めるようにすることが望ましい。
In this case, it is desirable that a discrete Fourier transform is performed as a Fourier transform, and a function fitting is performed on the obtained discrete frequency distribution to obtain the diameter of the microbubble or the microdroplet.

【0014】本発明のさらにもう1つの微小気泡及び微
小液滴の径及び分布等の測定方法は、微小気泡あるいは
微小液滴が浮いた空間にシート状の平行なレーザビーム
を照射し、そのレーザビームが当たった微小気泡あるい
は微小液滴をレーザビーム進行方向に対して所定の角度
をなす側面方向から、前記レーザビームの進行方向と撮
影光学系の光軸とを含む平面に平行な方向においては焦
点外れ状態となり、その平面に垂直な方向においては略
合焦状態となる撮影面で、その平面方向に伸びて微小気
泡あるいは微小液滴に対応する線状の焦点外れ像を、微
小時間間隔Δtをおいて2枚撮影し、得られた2枚の撮
影画面中の線状の焦点外れ像単位でその2枚の撮影画面
間で相互相関を計算することにより各線状の焦点外れ像
の移動量Δsi を求め、各微小気泡あるいは微小液滴の
速度ui を次の関係により求めることを特徴とする方法
である。
Another method for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention is to irradiate a sheet-shaped parallel laser beam to a space in which microbubbles or microdroplets float, and apply the laser beam to the space. From the side direction forming a predetermined angle with respect to the laser beam traveling direction, the microbubbles or microdroplets hit by the beam are in a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the imaging optical system. A defocused state, and a linear defocused image corresponding to a microbubble or a microdroplet extending in the plane direction on a photographing surface which is substantially in a focus state in a direction perpendicular to the plane, is formed by a minute time interval Δt. And the amount of movement of each linear defocused image by calculating the cross-correlation between the two photographic screens in units of the linear defocused image in the two obtained photographic screens the Δs i asked , The velocity u i of each microbubble or microdroplets is a method which is characterized in that determined by the following relationship.

【0015】 ui =Δsi /Δt ・・・(6) この場合に、2枚の撮影画面間で相互相関を計算する
際、線状の焦点外れ像中の干渉縞に対応する高周波数成
分を除去して相互相関を計算することが望ましい。
U i = Δs i / Δt (6) In this case, when calculating the cross-correlation between the two captured images, the high-frequency component corresponding to the interference fringe in the linear defocused image It is desirable to calculate the cross-correlation by removing.

【0016】本発明のさらに別の微小気泡及び微小液滴
の径及び分布等の測定方法は、微小気泡あるいは微小液
滴が浮いた空間にシート状の平行なレーザビームを照射
し、そのレーザビームが当たった微小気泡あるいは微小
液滴をレーザビーム進行方向に対して所定の角度をなす
側面方向から、前記レーザビームの進行方向と撮影光学
系の光軸とを含む平面に平行な方向においては焦点外れ
状態となり、その平面に垂直な方向においては略合焦状
態となる撮影面で、その平面方向に伸びて微小気泡ある
いは微小液滴に対応する線状の焦点外れ像を撮影し、そ
の焦点外れ像の中心を求めることにより、微小気泡ある
いは微小液滴の中心位置を求め、その焦点外れ像をフー
リエ変換して周波数を求め、求めた周波数にその焦点外
れ像の長さを掛けることにより焦点外れ像中の干渉縞の
数を求め、その干渉縞の数に基づいて微小気泡あるいは
微小液滴の直径を求め、また、その焦点外れ像を微小時
間間隔Δtをおいて2枚撮影し、得られた2枚の撮影画
面中の線状の焦点外れ像単位でその2枚の撮影画面間で
相互相関を計算することにより各線状の焦点外れ像の移
動量Δsi を求め、各微小気泡あるいは微小液滴の速度
i を次の関係により求めることを特徴とする方法であ
る。
Another method for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention is to irradiate a space in which microbubbles or microdroplets float with a sheet-shaped parallel laser beam, The microbubbles or microdroplets hit by the laser beam are focused in a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the imaging optical system from a side direction forming a predetermined angle with respect to the traveling direction of the laser beam. On the imaging surface, which is out of focus and substantially in focus in a direction perpendicular to the plane, a linear out-of-focus image corresponding to a microbubble or a microdroplet is taken extending in the plane direction, and the defocus is taken. By finding the center of the image, the center position of the microbubble or microdroplet is obtained, the out-of-focus image is Fourier transformed to obtain a frequency, and the obtained frequency is multiplied by the length of the out-of-focus image. Thus, the number of interference fringes in the out-of-focus image is obtained, the diameter of a microbubble or a microdroplet is obtained based on the number of the interference fringes, and two out-of-focus images are taken at a short time interval Δt. Then, the amount of movement Δs i of each linear defocused image is obtained by calculating the cross-correlation between the two captured images in a unit of a linear defocused image in the obtained two captured images. the velocity u i of the microbubbles or microdroplets is a method which is characterized in that determined by the following relationship.

【0017】 ui =Δsi /Δt ・・・(6) 本発明の微小気泡及び微小液滴の径及び分布等の測定装
置は、微小気泡あるいは微小液滴が浮いた空間にシート
状の平行なレーザビームを照射するレーザビーム照射手
段と、前記レーザビーム照射手段によって照射されたレ
ーザビームが当たった微小気泡あるいは微小液滴をレー
ザビーム進行方向に対して所定の角度をなす側面方向か
ら、前記レーザビームの進行方向と撮影光学系の光軸と
を含む平面に平行な方向においては焦点外れ状態とな
り、その平面に垂直な方向においては略合焦状態となる
撮影面で、その平面方向に伸びて微小気泡あるいは微小
液滴に対応する線状の焦点外れ像を撮影する撮影手段
と、その焦点外れ像の中心を求めることにより、微小気
泡あるいは微小液滴の中心位置を求める中心位置測定手
段と、その焦点外れ像をフーリエ変換して周波数を求
め、求めた周波数にその焦点外れ像の長さを掛けること
により焦点外れ像中の干渉縞の数を求め、その干渉縞の
数に基づいて微小気泡あるいは微小液滴の直径を求める
直径測定手段と、その焦点外れ像を微小時間間隔Δtを
おいて2枚撮影し、得られた2枚の撮影画面中の線状の
焦点外れ像単位でその2枚の撮影画面間で相互相関を計
算することにより各線状の焦点外れ像の移動量Δsi
求め、各微小気泡あるいは微小液滴の速度ui を次の関
係により求める速度測定手段とを備えたことを特徴とす
るものである。
U i = Δs i / Δt (6) The measuring device of the present invention for measuring the diameter and distribution of microbubbles and microdroplets has a sheet-like parallel shape in a space where microbubbles or microdroplets float. A laser beam irradiating means for irradiating a laser beam, a microbubble or a microdroplet hit by the laser beam irradiated by the laser beam irradiating means from the side direction forming a predetermined angle with respect to the laser beam traveling direction, An out-of-focus state occurs in a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the imaging optical system, and the imaging plane becomes substantially in-focus in a direction perpendicular to the plane. Means for photographing a linear defocused image corresponding to a microbubble or a microdroplet, and determining the center of the defocused image to obtain the center position of the microbubble or the microdroplet And a center position measuring means for calculating the frequency of the defocused image by Fourier transform to obtain a frequency, and multiplying the obtained frequency by the length of the defocused image to obtain the number of interference fringes in the defocused image. Diameter measuring means for determining the diameter of a microbubble or a microdroplet based on the number of stripes, and two out-of-focus images taken at a short time interval Δt, and a linear shape in the obtained two photographic images determine the movement amount Delta] s i of each linear out-of-focus image by between the two photographed screen out of focus image units of calculating the cross correlation, the velocity u i of each microbubble or microdroplets following relationship And speed measurement means determined by the following.

【0018】 ui =Δsi /Δt ・・・(6) 本発明においては、シート状の平行なレーザビームの進
行方向と撮影光学系の光軸とを含む平面に平行な方向に
おいては焦点外れ状態となり、その平面に垂直な方向に
おいては略合焦状態となる撮影面で焦点外れ像を撮影す
るので、各微小気泡又は微小液滴に対応する焦点外れ像
はその平面に垂直な方向に圧縮された1次元像になるた
め、空間的に微小気泡及び微小液滴の分布濃度が高い場
合においても、それぞれの焦点外れ像が相互に分離可能
で、それぞれの焦点外れ像中の干渉縞の数を分離して容
易に数えることができ、また、各焦点外れ像の中心位置
を特定して微小気泡又は微小液滴の分布状況をみること
が容易となり、そのような場合においても、微小気泡及
び微小液滴の位置、直径、速度の分布を同時に精度良く
測定することができる。
U i = Δs i / Δt (6) In the present invention, out of focus in a direction parallel to a plane including the traveling direction of the sheet-like parallel laser beam and the optical axis of the imaging optical system. State, and the out-of-focus image corresponding to each microbubble or microdroplet is compressed in the direction perpendicular to the plane because the out-of-focus image is captured on the imaging surface that is substantially in focus in the direction perpendicular to the plane. Since the obtained one-dimensional image is obtained, even if the distribution density of the microbubbles and the microdroplets is high spatially, the defocused images can be separated from each other, and the number of interference fringes in each defocused image can be improved. Can be easily separated and counted, and it is easy to identify the center position of each out-of-focus image and to see the distribution state of the microbubbles or microdroplets. Position, diameter, The velocity distribution can be simultaneously measured with high accuracy.

【0019】[0019]

【発明の実施の形態】以下、本発明の微小液滴及び気泡
の径及び分布等の測定方法と装置の原理と実施例の説明
をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle and embodiments of a method and apparatus for measuring the diameter and distribution of microdroplets and bubbles according to the present invention will be described below.

【0020】まず、理解を容易にするために、公知の焦
点外れ像中の干渉縞の数を測定して微小液滴の径及び空
間分布を測定する方法の原理から説明する。
First, in order to facilitate understanding, the principle of a known method of measuring the number of interference fringes in an out-of-focus image to measure the diameter and spatial distribution of minute droplets will be described.

【0021】まず、図3に示すように、空中に浮かぶ屈
折率nの微小液滴1に平面波2が入射したとき、入射角
(以下、入射角、屈折角はいずれも界面の接平面から測
った角度とする。)τ1 の2回屈折光4と入射角τ0
1回反射光3とが平行でそれらの位相差が2mπになる
場合と2(m+1)πになる場合(mは整数)の角度差
Δθを求めると、 Δθ=(2λ/D)[n sin(θ/2) ÷√{n2 +1−2n cos(θ/2)}+cos (θ/2)]-1 ・・・(1) となる。ここで、θは微小液滴1からの散乱光の照明光
2に対する観察角度であり、Dは微小液滴1の直径、λ
は照明光2の波長である。
First, as shown in FIG. 3, when a plane wave 2 is incident on a microdroplet 1 having a refractive index of n floating in the air, an incident angle (hereinafter, both incident angle and refraction angle are measured from a tangent plane of the interface). angle to.) and when the phase difference between them and one reflected beam 3 is a parallel incident angle tau 0 and tau 1 twice refracted light 4 is 2mπ 2 (m + 1) may become [pi (m is When an angle difference Δθ of (integer) is obtained, Δθ = (2λ / D) [n sin (θ / 2) {n 2 + 1-2n cos (θ / 2)} + cos (θ / 2)] −1 ·・ ・ (1) Here, θ is the observation angle of the scattered light from the minute droplet 1 with respect to the illumination light 2, D is the diameter of the minute droplet 1, λ
Is the wavelength of the illumination light 2.

【0022】この意味は、図1(a)に示すように、微
小液滴1からの散乱光5中には、照明光2に対して散乱
角θの方向を中心に、微小角度間隔Δθで干渉により強
度の強い部分(干渉縞)が並んでいることであり、その
散乱光5の光路中に対物レンズ(結像レンズ)6を配置
してその散乱光5により像面7上に微小液滴1の像1’
を結像させる場合、像面7から外れた焦点外れ面(デフ
ォーカス面)8では、図1(b)に示したような微小液
滴1の焦点外れ像1”が得られる。図1(a)、(b)
で破線で示した範囲は、対物レンズ6に入射する光束の
範囲を示しており、焦点外れ面8で得られる微小液滴1
の焦点外れ像1”の外形の大きさ及び形は、微小液滴1
の大きさに関係なく、対物レンズ6の大きさと像面7に
対する焦点外れ面8の距離に依存し、対物レンズ6の外
形形状が円の場合は、微小液滴1の焦点外れ像1”は円
形になる。そして、その円形の中に形成される干渉縞9
の本数Nは、微小液滴1が対物レンズ6を見込む角度α
と上記角度差Δθにより決まる。
This means that, as shown in FIG. 1A, the scattered light 5 from the microdroplets 1 has a small angle interval Δθ with respect to the illumination light 2 around the direction of the scattering angle θ. This means that the portions (interference fringes) having high intensity due to interference are arranged, and an objective lens (imaging lens) 6 is arranged in the optical path of the scattered light 5 and the scattered light 5 causes a minute liquid on the image plane 7. Image 1 'of Drop 1
Is formed on the out-of-focus surface (defocus surface) 8 that is out of the image plane 7, an out-of-focus image 1 ″ of the minute droplet 1 as shown in FIG. 1B is obtained. a), (b)
The range indicated by a broken line indicates the range of the light beam incident on the objective lens 6, and the minute droplet 1 obtained on the out-of-focus surface 8.
The size and shape of the out-of-focus image 1 "of the
Irrespective of the size of the objective lens 6, it depends on the size of the objective lens 6 and the distance of the defocus surface 8 with respect to the image plane 7, and when the outer shape of the objective lens 6 is a circle, the defocus image 1 ″ of the microdroplet 1 becomes The interference fringes 9 are formed in the circle.
Is the angle α at which the microdroplet 1 looks into the objective lens 6.
And the angle difference Δθ.

【0023】すなわち、α=N×Δθの関係と上記
(1)式から、微小液滴1の直径は、 D=(2λN/α)[n sin(θ/2) ÷√{n2 +1−2n cos(θ/2)}+cos (θ/2)]-1 ・・・(2) となる。この式(2)中に、実際に観察計測した焦点外
れ像1”中の干渉縞9の本数Nを代入することにより、
微小液滴1の直径Dが求まる。
That is, from the relationship of α = N × Δθ and the above equation (1), the diameter of the microdroplet 1 is D = (2λN / α) [n sin (θ / 2) ÷ √ {n 2 + 1− 2n cos (θ / 2)} + cos (θ / 2)] −1 (2) By substituting the number N of the interference fringes 9 in the out-of-focus image 1 ″ actually observed and measured into the equation (2),
The diameter D of the minute droplet 1 is determined.

【0024】また、図1(a)からも明らかなように、
照明光2として図面に垂直な方向に広がるシート状平行
光とし、その光路中に微小液滴1以外の他の微小液滴1
1 、12 、・・・が存在する場合にも、微小液滴1と同
様な焦点外れ像11 ”、12”、・・・が焦点外れ面8
に得られ、同様に直径Dが求まる。そして、それらの焦
点外れ像11 ”、12 ”、・・・の中心位置は像面7上
でのそれらの微小液滴1、11 、12 、・・・の像
1’,11 ’、12 ’、・・・の中心位置に略対応する
ので、焦点外れ面8で得られた焦点外れ像11 ”、
2 ”、・・・から、微小液滴の分布と各微小液滴の直
径が同時に求まる。
As is clear from FIG. 1A,
The illumination light 2 is a sheet-like parallel light spreading in a direction perpendicular to the drawing, and other microdroplets 1 other than the microdroplet 1 are provided in the optical path.
Also when 1 , 1, 2 ... Are present, out-of-focus images 1 1 ″, 1 2 ″,.
And the diameter D is similarly obtained. The center position of the defocused images 11 1 , 1 2 ,... Is the image 1 ′, 1 of the microdroplets 1, 1 1 , 1 2 ,. 1 ', 1 2', since substantially corresponding to the center position of ..., defocus image 1 1 obtained in defocus plane 8 ",
From 1 2 ″,..., The distribution of microdroplets and the diameter of each microdroplet can be determined simultaneously.

【0025】以上が、公知の焦点外れ像中の干渉縞の数
を測定して微小液滴の径及び空間分布を測定する方法の
原理であるが、微小液滴の代わりに、液体中に存在する
微小気泡の分布と直径を求めることを考える。
The above is the principle of the known method of measuring the number of interference fringes in an out-of-focus image to measure the diameter and spatial distribution of a minute droplet. Consider the distribution and diameter of the microbubbles to be generated.

【0026】図2は、屈折率nの液体中に浮かぶ屈折率
1の微小気泡10に平面波2が入射したとき、入射角τ
1 の2回屈折光12と入射角τ0 の1回反射光11とが
平行でそれらの位相差が2mπになる場合と2(m+
1)πになる場合(mは整数)の角度差Δθを求める
と、この場合は、 Δθ=(2λ/nD)[cos (θ/2)− sin(θ/2) ÷√{n2 +1−2n cos(θ/2)}]-1 ・・・(3) となる。ここで、θは微小気泡10からの散乱光の照明
光2に対する観察角度であり、Dは微小気泡10の直
径、λは照明光2の波長である。
FIG. 2 shows that when a plane wave 2 is incident on a microbubble 10 having a refractive index of 1 floating in a liquid having a refractive index n, an incident angle τ
If two phase difference thereof and one reflected light 11 is parallel to refracted light 12 and the incident angle tau 0 of 1 is 2mπ and 2 (m +
1) When an angle difference Δθ when π (m is an integer) is obtained, in this case, Δθ = (2λ / nD) [cos (θ / 2) −sin (θ / 2) ÷ √ {n 2 +1 −2n cos (θ / 2)}] −1 (3) Here, θ is the observation angle of the scattered light from the microbubbles 10 with respect to the illumination light 2, D is the diameter of the microbubbles 10, and λ is the wavelength of the illumination light 2.

【0027】この意味は、微小液滴の場合と同様に、図
1(a)に示すように、微小気泡10からの散乱光5中
には、照明光2に対して散乱角θの方向を中心に、微小
角度間隔Δθで干渉により強度の強い部分(干渉縞)が
並んでいることであり、その散乱光5の光路中に対物レ
ンズ6を配置してその散乱光5により像面7上に微小気
泡10の像10’を結像させる場合、像面7から外れた
焦点外れ面(デフォーカス面)8では、図1(b)に示
したような微小気泡10の焦点外れ像10”が得られ
る。図1(a)、(b)で破線で示した範囲は、対物レ
ンズ6に入射する光束の範囲を示しており、焦点外れ面
8で得られる微小気泡10の焦点外れ像10”の外形の
大きさ及び形は、微小気泡10の大きさに関係なく、対
物レンズ6の大きさと像面7に対する焦点外れ面8の距
離に依存し、対物レンズ6の外形形状が円の場合は、微
小気泡10の焦点外れ像10”は円形になる。そして、
その円形の中に形成される干渉縞9の本数Nは、微小気
泡10が対物レンズ6を見込む角度αと上記角度差Δθ
により決まる。
This means that the direction of the scattering angle θ with respect to the illumination light 2 is included in the scattered light 5 from the microbubble 10 as shown in FIG. At the center, a portion (interference fringe) having a high intensity due to interference at a small angular interval Δθ is arranged. An objective lens 6 is arranged in the optical path of the scattered light 5 and the scattered light 5 causes an image on the image plane 7. When an image 10 ′ of the microbubble 10 is formed on the defocused surface (defocus surface) 8 deviated from the image plane 7, an out-of-focus image 10 ″ of the microbubble 10 as shown in FIG. 1 (a) and 1 (b) show the range of the light beam incident on the objective lens 6, and an out-of-focus image 10 of the microbubbles 10 obtained on the out-of-focus surface 8. The size and shape of the outer shape of "" are the same as those of the objective lens 6 regardless of the size of the microbubbles 10. Depending on the distance of the out-of-focus surface 8 with respect to the surface 7, if the outer shape of the objective lens 6 is a circle, the out-of-focus image 10 ″ of the microbubble 10 will be circular.
The number N of the interference fringes 9 formed in the circle is determined by the angle α at which the microbubble 10 looks at the objective lens 6 and the angle difference Δθ.
Is determined by

【0028】すなわち、α=N×Δθの関係と上記
(3)式から、微小気泡10の直径Dは、 D=(2λN/nα)[cos (θ/2)− sin(θ/2) ÷√{n2 +1−2n cos(θ/2)}]-1 ・・・(4) となる。この式(4)中に、実際に観察計測した焦点外
れ像10”中の干渉縞9の本数Nを代入することによ
り、微小気泡10の直径Dが求まる。
That is, from the relationship of α = N × Δθ and the above equation (3), the diameter D of the microbubble 10 is as follows: D = (2λN / nα) [cos (θ / 2) −sin (θ / 2)} {N 2 + 1-2n cos (θ / 2)}] −1 (4) By substituting the number N of the interference fringes 9 in the out-of-focus image 10 "actually observed and measured into the equation (4), the diameter D of the microbubble 10 is obtained.

【0029】また、図1(a)からも明らかなように、
照明光2として図面に垂直な方向に広がるシート状平行
光とし、その光路中に微小気泡10以外の他の微小気泡
10 1 、102 、・・・が存在する場合にも、微小気泡
10と同様な焦点外れ像10 1 ”、102 ”、・・・が
焦点外れ面8に得られ、同様に直径Dが求まる。そし
て、それらの焦点外れ像101 ”、012 ”、・・・の
中心位置は像面7上でのそれらの微小気泡10、1
1 、102 、・・・の像10’,101 ’、1
2’、・・・の中心位置に略対応するので、焦点外れ
面8で得られた焦点外れ像101 ”、102 ”、・・・
から、微小気泡の分布と各微小気泡の直径が同時に求ま
る。
As is clear from FIG. 1 (a),
Sheet-shaped parallel spread in the direction perpendicular to the drawing as illumination light 2
Light, and other microbubbles other than the microbubbles 10 in the optical path
10 1, 10Two, ... are present, even if there are microbubbles
Defocused image 10 similar to 10 1"10Two",···But
Obtained on the out-of-focus surface 8 and the diameter D is likewise determined. Soshi
And their defocused images 101”, 01Two",···of
The center position is the position of those microbubbles 10, 1 on the image plane 7.
01, 10Two, Images 10 ', 101’, 1
0Two′,..
Defocused image 10 obtained at plane 81"10Two", ...
From the distribution of microbubbles and the diameter of each microbubble at the same time.
You.

【0030】以上の検討により、微小気泡の場合も、測
定空間にシート状の平行なレーザビームを照射し、その
レーザビームが当たった微小気泡を焦点外れで撮影する
と、各微小気泡に対応する焦点外れ像中に干渉縞が存在
し、その焦点外れ像中に存在する干渉縞の数と微小気泡
の径との間に一定の比例関係があり、その干渉縞の数を
測定することにより微小気泡の径を測定することが可能
であり、また、その焦点外れ像の中心位置の分布から微
小気泡の分布が同時に求まることが分かる。
According to the above examination, even in the case of microbubbles, if a measurement space is irradiated with a sheet-shaped parallel laser beam, and the microbubbles hit by the laser beam are photographed out of focus, the focus corresponding to each microbubble is obtained. There are interference fringes in the out-of-focus image, and there is a certain proportional relationship between the number of interference fringes in the out-of-focus image and the diameter of the microbubbles. It can be seen that the distribution of microbubbles can be determined simultaneously from the distribution of the center position of the out-of-focus image.

【0031】ところで、図1(a)のような配置で、微
小液滴あるいは微小気泡の空間的分布濃度が高い場合に
撮影した焦点外れ像の1例を、図6に模式的に示す。式
(4)と式(2)の違いを除けば、微小気泡も微小液滴
と同様に取り扱うことができることが分かったので、以
下に代表的に微小液滴について考える。
FIG. 6 schematically shows an example of an out-of-focus image taken when the spatial distribution density of the fine droplets or fine bubbles is high in the arrangement shown in FIG. Except for the difference between Equations (4) and (2), it has been found that microbubbles can be handled in the same manner as microdroplets, so that microdroplets will be typically considered below.

【0032】図6は、図1(a)の配置で4つの微小液
滴1が密接してシート状平行光の照明光2の光路内に存
在していた場合の、焦点外れ面8で撮影した焦点外れ像
a,b,c,dである。4つの微小液滴1が近接してい
るあまり、それらに対応する円形外形の焦点外れ像a,
b,c,dは相互に重なっており、それぞれの像a,
b,c,d内の干渉縞9の数を分離して数えることは容
易でなく、また、各像a,b,c,dの中心位置を特定
して微小液滴1の分布状況をみることも困難である。
FIG. 6 shows an image taken on an out-of-focus surface 8 when four microdroplets 1 are closely arranged in the optical path of the sheet-like parallel illumination light 2 in the arrangement shown in FIG. Defocused images a, b, c, and d. When the four microdroplets 1 are too close to each other, the corresponding defocused images a and
b, c, d overlap each other, and the respective images a,
It is not easy to separately count the number of interference fringes 9 in b, c, and d. Further, the center of each image a, b, c, and d is specified to check the distribution of the microdroplets 1. It is also difficult.

【0033】そこで、本発明の微小気泡及び微小液滴の
径及び分布等の測定光学系の第1実施例として、図4に
斜視図を示すような光学系を用いる。まず、座標系を定
義する。微小液滴1、11 、12 、・・に照射するシー
ト状平行光の照明光2の進行方向をS、測定光学系20
の光軸をOとして、光軸Oはシート状平行光2の面に垂
直な平面内に設定され、その平面内で光軸Oに垂直な方
向をx軸方向、光軸Oとx軸方向に垂直でシート状平行
光の照明光2に平行な方向をy軸方向とする。図4の測
定光学系20は、対物レンズ6と、対物レンズ6と同軸
に配置され、x軸方向にのみ屈折力を有し、y軸方向に
は何ら屈折力を持たないシリンドリカルレンズ21(図
4の場合は負のシリンドリカルレンズ)とからなり、測
定光学系20のy軸方向の結像面、すなわち、対物レン
ズ6の結像面には、CCD等の撮像素子の撮像面22が
配置されている。これに対して、測定光学系20のx軸
方向の結像面は撮像面22から外れた位置(図4の場合
は、撮像面22より背後の位置)に形成される。このよ
うな配置であるので、例えば、光軸O近傍に位置する微
小液滴1についてみると、円形開口の対物レンズ6から
シリンドリカルレンズ21に至る光路中では焦点外れ像
の形状は円形であるが、シリンドリカルレンズ21から
撮像面22に至るにつれて焦点外れ像は順次偏平度を上
げ撮像面22上での焦点外れ像は横線になる。ただし、
何れの位置の焦点外れ像中においても、干渉縞9の数は
変化しない。
Therefore, as a first embodiment of the optical system for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention, an optical system as shown in a perspective view in FIG. 4 is used. First, a coordinate system is defined. The traveling direction of the sheet-like parallel light 2 for irradiating the microdroplets 1, 1 1 , 1 2 ,.
The optical axis O is set in a plane perpendicular to the plane of the sheet-like parallel light 2, and the direction perpendicular to the optical axis O in the plane is defined as the x-axis direction, and the optical axis O and the x-axis direction And a direction parallel to the sheet-shaped parallel light illumination light 2 is defined as a y-axis direction. The measurement optical system 20 shown in FIG. 4 includes an objective lens 6 and a cylindrical lens 21 which is arranged coaxially with the objective lens 6 and has a refractive power only in the x-axis direction and has no refractive power in the y-axis direction (see FIG. The imaging surface 22 of the imaging device such as a CCD is disposed on the imaging surface of the measurement optical system 20 in the y-axis direction, that is, the imaging surface of the objective lens 6. ing. On the other hand, the imaging surface of the measurement optical system 20 in the x-axis direction is formed at a position deviated from the imaging surface 22 (in FIG. 4, a position behind the imaging surface 22). With such an arrangement, for example, regarding the microdroplet 1 located near the optical axis O, the shape of the defocused image is circular in the optical path from the objective lens 6 having a circular aperture to the cylindrical lens 21. The out-of-focus image gradually increases in flatness from the cylindrical lens 21 to the imaging surface 22, and the out-of-focus image on the imaging surface 22 becomes a horizontal line. However,
The number of interference fringes 9 does not change in the defocused image at any position.

【0034】図7は、図4の配置で撮像面22から得ら
れた4つの微小液滴1等の焦点外れ像a,b,c,dで
あり、図6に対応するものである。ただし、x軸方向、
y軸方向の倍率は変わらないものとして図示してある
(実際には、x軸方向の焦点距離等が変わるため、焦点
外れ像の倍率も変化し得る。)。図6と図7を比較して
明らかなように、図4の配置で撮影した焦点外れ像a,
b,c,dは、図1(a)の配置で撮影した焦点外れ像
a,b,c,d各々の中心位置をそのままにして、その
円形外形を縦方向(y軸方向)に圧縮して1次元方向
(x軸方向)の像に変換したものになっている。そのた
め、4つの焦点外れ像a,b,c,dには最早y軸方向
の重なりは解消され、それぞれの像a,b,c,d内の
干渉縞9の数を分離して容易に数えることができ、ま
た、各像a,b,c,dの中心位置を特定して微小液滴
1等の分布状況をみることも容易となる(この点は後記
する。)。
FIG. 7 shows out-of-focus images a, b, c, and d of four microdroplets 1 and the like obtained from the imaging surface 22 in the arrangement shown in FIG. 4, and corresponds to FIG. However, in the x-axis direction,
The magnification in the y-axis direction is shown as not changing (actually, the magnification of the out-of-focus image may change because the focal length in the x-axis direction and the like change). As is clear from a comparison between FIG. 6 and FIG. 7, out-of-focus images a and
b, c, and d are obtained by compressing the circular outer shape in the vertical direction (y-axis direction) while keeping the respective center positions of the defocused images a, b, c, and d taken in the arrangement of FIG. Is converted into an image in a one-dimensional direction (x-axis direction). Therefore, the four out-of-focus images a, b, c, and d are no longer overlapped in the y-axis direction, and the number of interference fringes 9 in each of the images a, b, c, and d is easily counted separately. In addition, it is easy to specify the center position of each of the images a, b, c, and d to see the distribution state of the microdroplets 1 and the like (this point will be described later).

【0035】なお、軸対称な測定光学系を用いて撮影し
た図6のような焦点外れ像a,b,c,dの場合は、そ
れら像の周囲に円形の縁が存在するので、その像の直径
が簡単に分かり、開口中の干渉縞9の数を数えることは
容易であるが、図7のように圧縮された焦点外れ像a,
b,c,dの場合は、中央部の光量が大きくなるため、
両端近傍の光量は相対的に小さくなり顕著には見えなく
なり、焦点外れ像の長さLが不鮮明になる。しかしなが
ら、測定光学系が同じ状態で焦点外れ面が同じなら、圧
縮された焦点外れ像の長さLも全て同じになるので、そ
の同じ状態で予め一度確認しておけばこの点は何ら問題
にはならない。
In the case of out-of-focus images a, b, c, and d as shown in FIG. 6 photographed using an axially symmetric measuring optical system, there are circular edges around these images. The diameter of the interference fringes 9 in the aperture can be easily known and the number of interference fringes 9 in the aperture can be easily counted.
In the case of b, c, and d, the amount of light at the center becomes large.
The light amount near both ends becomes relatively small and becomes inconspicuous, and the length L of the out-of-focus image becomes unclear. However, if the measurement optical system is the same and the defocus plane is the same, the lengths L of the compressed defocus images are all the same, so if this is confirmed once in advance in the same state, this point is no problem. Not be.

【0036】なお、このように、焦点外れ像を縦方向
(y軸方向)に圧縮することにより、撮影される焦点外
れ像のコントラストも向上し、測定感度を上げることが
できるメリットもある。
As described above, by compressing the out-of-focus image in the vertical direction (y-axis direction), the contrast of the out-of-focus image to be photographed is also improved, and there is an advantage that the measurement sensitivity can be increased.

【0037】ところで、図4のように、撮像面22で
は、y軸方向で合焦状態、x軸方向で焦点外れ状態とす
る測定光学系20のレンズ構成としては、上記のように
軸対称な対物レンズ6とシリンドリカルレンズ21を組
み合わせてなるアナモルフィック光学系でもよいが、他
に、トーリック面等の面対称なアナモルフィック面を屈
折面に用いてアナモルフィック光学系でもよい。また、
屈折力がx軸方向とy軸方向で同じであるが、主面がx
軸方向とy軸方向で異なるため、撮像面22でy軸方向
で合焦状態、x軸方向で焦点外れ状態となる光学系を用
いるようにしてもよい。もちろん、以上のような光学系
を反射面を含めて構成してもよい。
By the way, as shown in FIG. 4, on the imaging surface 22, the lens configuration of the measuring optical system 20 that is in a focused state in the y-axis direction and out of focus in the x-axis direction is axially symmetric as described above. An anamorphic optical system formed by combining the objective lens 6 and the cylindrical lens 21 may be used. Alternatively, an anamorphic optical system using a plane-symmetric anamorphic surface such as a toric surface as a refraction surface may be used. Also,
Although the refractive power is the same in the x-axis direction and the y-axis direction,
Since the axis direction is different from the y-axis direction, an optical system that is in a focused state in the y-axis direction and out of focus in the x-axis direction on the imaging surface 22 may be used. Of course, the above-described optical system may be configured to include the reflection surface.

【0038】図5は、本発明の第2の実施例の微小気泡
及び微小液滴の径及び分布等の測定光学系の斜視図であ
り、図4の不十分な点をさらに改良したものである。こ
の測定光学系20’は、対物レンズ6と、対物レンズ6
と同軸に配置され、x軸方向にのみ屈折力を有し、y軸
方向には何ら屈折力を持たない正シリンドリカルレンズ
211 と負シリンドリカルレンズ212 とからなり、こ
の2枚のシリンドリカルレンズ211 と212 は光軸O
に沿ってそれぞれ位置調節可能になっている。そして、
測定光学系20’のy軸方向の結像面である対物レンズ
6の結像面には、撮像素子の撮像面22が配置されてい
る。
FIG. 5 is a perspective view of an optical system for measuring the diameter and distribution of microbubbles and microdroplets according to the second embodiment of the present invention, which is a further improvement of the insufficient point of FIG. is there. The measuring optical system 20 ′ includes an objective lens 6 and an objective lens 6.
And are arranged coaxially has a refractive power only in the x-axis direction, and a positive cylindrical lens 21 1 and the negative cylindrical lens 21 2 which having no no refracting power in the y-axis direction, the two cylindrical lenses 21 1 and 21 2 are optical axis O
The position can be adjusted along each. And
An imaging surface 22 of the imaging element is arranged on an imaging surface of the objective lens 6 which is an imaging surface of the measurement optical system 20 ′ in the y-axis direction.

【0039】このような配置であるので、正シリンドリ
カルレンズ211 と負シリンドリカルレンズ212 の相
互の位置と対物レンズ6に対する位置を調節することに
より、測定光学系20’全体のx軸方向の結像面を撮像
面22に対して自由に調節することができる。また、x
軸方向の測定光学系20’の焦点距離も連続的にある範
囲で自由に調節できる。したがって、図4の場合と同様
に、撮像面22では、縦方向(y軸方向)に圧縮されて
1次元方向(x軸方向)の像になっている焦点外れ像
(図7)が撮影されると共に、2枚のシリンドリカルレ
ンズ211 、21 2 の位置を調節することにより、その
x軸方向に伸びる線状の焦点外れ像の長さLを調節する
ことができる。
With such an arrangement, the normal cylinder
Cal lens 211And negative cylindrical lens 21TwoPhase of
Adjusting the mutual position and the position with respect to the objective lens 6
Captures the image plane in the x-axis direction of the entire measurement optical system 20 '
It can be adjusted freely with respect to the surface 22. Also, x
The focal length of the measurement optical system 20 'in the axial direction is also continuously within a certain range.
You can adjust it freely in the box. Therefore, as in the case of FIG.
Meanwhile, on the imaging surface 22, the image is compressed in the vertical direction (y-axis direction).
An out-of-focus image that is an image in a one-dimensional direction (x-axis direction)
(Fig. 7) is photographed and two cylindrical lenses
211, 21 TwoBy adjusting the position of
Adjust the length L of the linear defocused image extending in the x-axis direction
be able to.

【0040】図6に対して図7の場合は、焦点外れ像
a,b,c,d間のy軸方向の重なりを解消するもので
あったが、同じ高さ(同じy座標値)に位置する焦点外
れ像はそのエッジ部で相互に重なる可能性があり、図4
の配置では、x軸方向の部分的重なりは解消できない。
そのような場合に、図5の配置を用いると、焦点外れ像
の長さLを短く調節することにより、エッジ部での相互
の重なりを除去することができる。この場合にも、前記
したように、1つの焦点外れ像中にける干渉縞9の数は
変化しない。
In contrast to FIG. 6, in the case of FIG. 7, the overlap of the defocused images a, b, c, and d in the y-axis direction is eliminated, but the same height (the same y coordinate value) is used. The out-of-focus images that are located can overlap each other at their edges, see FIG.
In the arrangement, the partial overlap in the x-axis direction cannot be eliminated.
In such a case, by using the arrangement of FIG. 5, by adjusting the length L of the out-of-focus image to be short, it is possible to eliminate the mutual overlap at the edge portion. Also in this case, as described above, the number of interference fringes 9 in one out-of-focus image does not change.

【0041】さらに、式(2)、(4)の形から明らか
なように、干渉縞の数Nと微小液滴(微小気泡)の径D
との間に比例関係があるので、測定している微小液滴1
の直径Dが大きい場合、1つの焦点外れ像中の干渉縞9
の数は多くなり、撮影した画面中の干渉縞9は細かくな
って計数が容易でない場合が生じる。このような場合に
は、上記とは逆に、2枚のシリンドリカルレンズ2
1 、212 の位置を調節して焦点外れ像の長さLを長
く調節することにより分解能を上げて干渉縞9の計数を
容易にすることができる。
Further, as is apparent from the expressions (2) and (4), the number N of interference fringes and the diameter D of the minute droplet (fine bubble)
Since there is a proportional relationship between
Is large, the interference fringes 9 in one out-of-focus image
Increases, and the interference fringes 9 in the captured screen may be so fine that counting is not easy. In such a case, contrary to the above, two cylindrical lenses 2
By adjusting the positions of 1 1 and 2 12 to increase the length L of the out-of-focus image, the resolution can be increased and the interference fringes 9 can be easily counted.

【0042】ところで、図5の配置では、対物レンズ6
の近傍にx軸方向に伸びるスリット状開口23を配置し
て、y軸方向の開口数の制限を行い、焦点深度(被写界
深度)を深くするようにしている。その結果、シート状
平行光の照明光2に対して測定光学系20’の光軸Oが
90°以外の斜め方向に位置していても、光軸Oからあ
る程度離れた位置の微小液滴11 等の焦点外れ像を撮影
して測定することができる。なお、スリット状開口23
が上記のようにx軸方向に伸びる形状のため、測定に取
り込める微小角度間隔Δθの干渉縞の数には影響がな
く、撮影された個々の焦点外れ像中の干渉縞の数Nには
何ら影響が生じない。
By the way, in the arrangement of FIG.
Is arranged in the vicinity of, a slit-like opening 23 extending in the x-axis direction is provided, the numerical aperture in the y-axis direction is limited, and the depth of focus (depth of field) is increased. As a result, even if the optical axis O of the measurement optical system 20 ′ is located in an oblique direction other than 90 ° with respect to the sheet-like parallel illumination light 2, the microdroplets 1 located at a certain distance from the optical axis O An out-of-focus image such as 1 can be taken and measured. The slit-like opening 23
Has a shape extending in the x-axis direction as described above, so that there is no effect on the number of interference fringes with a small angle interval Δθ that can be captured in the measurement, and there is no effect on the number N of interference fringes in each captured out-of-focus image. No effect occurs.

【0043】ところで、上記で示唆したように、シート
状平行光の照明光2に対する測定光学系20、20’の
光軸Oのなす角度θは、通常、0°と90°の間の角度
に設定する。その場合、対物レンズ6の主面、撮像面2
2を光軸Oに対して直角に設定すると、上記のようなス
リット状開口23を用いない限り、斜めの物体面2中の
微小液滴を全て所望の状態で撮影することは困難であ
る。そこで、写真撮影に用いられているシフト、ティル
ト、スイングを組み合わせて対物レンズ6の主面、撮像
面22を光軸Oに対して傾けたり、垂直移動させるアオ
リの手法を採用することにより、斜めの物体面2中の微
小液滴を全て所望の状態で撮影することができる。その
例として、シャインプルフの条件を満たすように、対物
レンズ6の主面と撮像面22を光軸Oに対して傾ける方
法がある。
By the way, as suggested above, the angle θ between the optical axis O of the measuring optical systems 20 and 20 ′ with respect to the sheet-like parallel illumination light 2 is usually set to an angle between 0 ° and 90 °. Set. In that case, the main surface of the objective lens 6, the imaging surface 2
If 2 is set to be perpendicular to the optical axis O, it is difficult to image all of the microdroplets in the oblique object plane 2 in a desired state unless the slit opening 23 as described above is used. Therefore, the tilt, tilt, and swing used in photographing are combined to tilt the main surface of the objective lens 6 and the imaging surface 22 with respect to the optical axis O, or to vertically move the imaging surface 22 to obtain a tilt. It is possible to photograph all of the microdroplets in the object plane 2 in a desired state. As an example, there is a method of inclining the main surface of the objective lens 6 and the imaging surface 22 with respect to the optical axis O so as to satisfy the Scheimpflug condition.

【0044】以上は、測定空間中にシート状平行光の照
明光2を照射し、その照射シート面中に位置する微小液
滴や微小気泡の分布と直径を求めるものとしたが、シー
ト状平行光の照明光2をその面に対して垂直方向に移動
させ、その移動と同期して焦点外れ像を別々に撮像面2
2で撮影することにより、3次元空間中の微小液滴や微
小気泡の分布と直径を求めることができる。この場合に
は、シート状平行光の照明光2の移動に連動して撮像面
22を光軸方向へ移動させるようにするとよい。
In the above description, the measurement space is irradiated with the illumination light 2 of sheet-like parallel light, and the distribution and diameter of the minute droplets and minute bubbles located on the irradiated sheet surface are determined. The illumination light 2 of light is moved in a direction perpendicular to the plane, and out-of-focus images are separately captured in synchronization with the movement.
By photographing in 2, the distribution and diameter of the microdroplets and microbubbles in the three-dimensional space can be obtained. In this case, the imaging surface 22 may be moved in the optical axis direction in conjunction with the movement of the sheet-like parallel illumination light 2.

【0045】さて、以上のような本発明の測定光学系2
0の撮像面22で撮影された図7のような焦点外れ像を
用いて、微小液滴や微小気泡の位置、直径、速度を求め
る方法と装置の実施例についてさらに説明する。
The measuring optical system 2 of the present invention as described above
An example of a method and an apparatus for obtaining the position, diameter, and speed of a microdroplet or microbubble using an out-of-focus image as shown in FIG.

【0046】上記の検討から、撮像面22から得られた
長さLの線状の焦点外れ像a,b,c,dの中心位置
は、シート状平行光2中の微小液滴11 、12 、・・・
の中心位置に略対応するので、まず、その微小液滴に対
応する焦点外れ像(以下、干渉縞像と呼ぶ。)a,b,
c,dの中心を求める方法から説明する。図7に示した
ような撮影画面Aを線状の干渉縞像a,b,c,dの長
さ方向(x方向に)に沿って主走査し、それと直交する
方向(y方向)に副走査することにより、撮影画面A全
体の画像信号が得られる。この画像信号は、干渉縞像
a,b,c,dの1個に対応して、例えば図8に例示す
るように、距離に換算して長さLで、その中に干渉縞の
数Nに対応したピークを有する信号が、干渉縞像a,
b,c,dの位置に対応して存在する信号になる。図8
の横軸は干渉縞像の長手方向の位置(画素数ピクセルで
表現)に対応し、縦軸は信号強度に対応する。図8に示
すような1個の干渉縞像の中心位置を求めるには、その
長手方向に沿って移動平均をとればよい。1個の干渉縞
像の長さLは測定光学系20の状態と撮像面22の位置
から定まるので、特定位置の前後の距離L/2の範囲で
平均をとってその位置の値とし、その特定位置を順次移
動して行けば移動平均値が得られる。図9に、撮像面2
2で得られた干渉縞像の画像信号と上記の移動平均をと
った結果の1例を示す。移動平均をとると、図示のよう
に略三角波信号が得られ、そのピーク位置(1)が微小
液滴に対応する干渉縞像の中心位置である。なお、図9
中、範囲(3)が干渉縞像の長さLに対応する。
From the above examination, the center positions of the linear out-of-focus images a, b, c, and d having the length L obtained from the imaging surface 22 are determined by the minute droplets 11 1 , 1 2 , ...
, The out-of-focus images (hereinafter referred to as interference fringe images) a, b, and
The method for obtaining the centers of c and d will be described. The imaging screen A as shown in FIG. 7 is main-scanned along the length direction (in the x direction) of the linear interference fringe images a, b, c, and d, and the sub-scanning is performed in the direction (y direction) orthogonal thereto. By scanning, an image signal of the entire photographing screen A is obtained. This image signal corresponds to one of the interference fringe images a, b, c, and d, and has a length L in terms of distance as shown in, for example, FIG. A signal having a peak corresponding to the interference fringe image a,
The signals exist corresponding to the positions of b, c, and d. FIG.
The horizontal axis corresponds to the position in the longitudinal direction of the interference fringe image (expressed by several pixels), and the vertical axis corresponds to the signal intensity. In order to obtain the center position of one interference fringe image as shown in FIG. 8, a moving average may be obtained along the longitudinal direction. Since the length L of one interference fringe image is determined from the state of the measurement optical system 20 and the position of the imaging surface 22, an average is taken over a range of a distance L / 2 before and after the specific position to obtain a value at that position. A moving average value can be obtained by sequentially moving a specific position. FIG. 9 shows the imaging surface 2
2 shows an example of the result obtained by taking the above moving average with the image signal of the interference fringe image obtained in Step 2. When the moving average is obtained, a substantially triangular wave signal is obtained as shown in the figure, and the peak position (1) is the center position of the interference fringe image corresponding to the minute droplet. Note that FIG.
Medium and range (3) correspond to the length L of the interference fringe image.

【0047】ところで、同じ主走査方向の信号中に、干
渉縞像の信号の長さLよりも長い信号が出ることがあ
る。これは、その同じ主走査方向に複数の干渉縞像が相
互に重なって存在する場合であり、稀に起きる。この場
合は、干渉縞像の画像信号の半値幅あるいは移動平均信
号の半値幅が正常の場合より長くなるので、簡単に判定
ができる。その場合に、その干渉縞像の画像信号は取り
除いても問題はない。あるいは、上記半値幅から2つの
干渉縞像の中心を求めるようにすることもできる。
Incidentally, a signal longer than the signal length L of the interference fringe image may appear in the same signal in the main scanning direction. This is a case where a plurality of interference fringe images exist in the same main scanning direction so as to overlap with each other, which rarely occurs. In this case, the half value width of the image signal of the interference fringe image or the half value width of the moving average signal is longer than in a normal case, so that the determination can be made easily. In that case, there is no problem even if the image signal of the interference fringe image is removed. Alternatively, the center of the two interference fringe images can be obtained from the half width.

【0048】なお、画像信号中にノイズが混入している
恐れがあるので、図9の高周波成分の振幅(2)が一定
値以上であると判別されたときにのみ、干渉縞像が存在
すると判定するようにすることが望ましい。
Since noise may be mixed in the image signal, the interference fringe image exists only when it is determined that the amplitude (2) of the high-frequency component in FIG. It is desirable to make a determination.

【0049】このようにして、撮影画面Aにおける各微
小液滴の位置が求められ、その空間における微小液滴分
布、密度が求められる。
In this way, the position of each microdroplet on the photographing screen A is obtained, and the distribution and density of the microdroplets in that space are obtained.

【0050】次に、各微小液滴の直径を求める方法につ
いて説明する。上記のように、撮影画面Aを走査して得
られた画像信号中の干渉縞像の信号の長さはLであるの
で、上記で求めた中心位置の前後のL/2の範囲が各干
渉縞像の信号である。そこで、求めた干渉縞像の中心の
前後のL/2の範囲、すなわち、干渉縞像の中心位置を
中心にして長手方向の長さLの信号を切り出し、その切
り出した信号のフーリエ変換の絶対値あるいはその2乗
(パワースペクトラム)を求めることにより、干渉縞像
の周波数fが求まり、その周波数fに干渉縞像の長さL
を掛けることにより、焦点外れ像中の干渉縞の数Nが求
まる。その後、(2)式あるいは(4)式にそのNを代
入することにより、微小液滴あるいは微小気泡の直径D
を求めることができる。
Next, a method for obtaining the diameter of each microdroplet will be described. As described above, since the length of the signal of the interference fringe image in the image signal obtained by scanning the photographing screen A is L, the range of L / 2 before and after the center position obtained above is determined by each interference. This is a fringe image signal. Therefore, a signal having a length L in the longitudinal direction is cut out around the range of L / 2 before and after the center of the obtained interference fringe image, that is, the center position of the interference fringe image, and the absolute value of the Fourier transform of the cut out signal is obtained. By obtaining the value or its square (power spectrum), the frequency f of the interference fringe image is obtained, and the length f of the interference fringe image is determined by the frequency f.
, The number N of interference fringes in the out-of-focus image is obtained. Then, by substituting the N into the equation (2) or the equation (4), the diameter D of the microdroplet or microbubble is calculated.
Can be requested.

【0051】ここで、長さLの信号をフーリエ変換して
そのパワースペクトラムから周波数fを求めるには、実
際上、エッジの影響を排除するための窓関数として、例
えばハニング窓(Hanning window)関数
をその信号に掛けて、高速フーリエ変換(FFT)が行
われる。ところで、FFTは離散的フーリエ変換の一種
であるが、離散的フーリエ変換においては、変換する信
号のサンプリング間隔がΔ、サンプリング数をMとする
と、得られる周波数間隔は1/MΔとなり、離散的な周
波数の位置でしか周波数が得られない。干渉縞像の周波
数がこの周波数間隔1/MΔで離散的な周波数の何れか
の1つの周波数に厳密に一致していれば、フーリエ変換
された周波数信号はその周波数位置に1本のピークとし
て表れるが、干渉縞像の周波数がその離散的な周波数の
隣接する2つの周波数の間に存在するときには、隣接す
る2つの周波数のみならずその周囲の離散的な周波数に
も信号が表れてしまう。図10にその1例を示す。図1
0(a)が干渉縞像の信号であり、それにハニング窓関
数を掛けてFFTして求めたパワースペクトラムが図1
0(b)である。図10(b)から明らかなように、周
波数kの位置にピークPk があり、その両側の離散的な
周波数k−1,k+1にも信号Pk-1 ,Pk+ 1 があり、
さらにそれらの両側にも信号がある。このような離散的
なパワースペクトラムから関数フィティングにより元の
信号の周波数を正確に求めるには、種々のフィティング
関数を用いる方法があるが、ガウス関数を当てはめる方
法(R.J.Adrian他編「Applicatio
ns of Laser Techniques to
Fluid Mechanics 5th Inte
rnational Symposium Lisbo
n,Portugal,9−12 July,199
0」pp.268〜287(Springer−Ver
lag))により正確に元の信号の周波数が求まる。す
なわち、図11に示すように、離散的な周波数kの位置
にピークPk があり、その両側の離散的な周波数k−
1,k+1にもそれより小さい信号Pk-1 ,Pk+1 があ
るとき、他の周波数における信号は考えなくとも、元の
信号の周波数fは、 f=fk +1/2×{(logPk-1 −logPk+1 ) ÷(logPk-1 −2logPk +logPk+1 )}・・・(5) として求まる。
Here, in order to obtain the frequency f from the power spectrum by Fourier-transforming the signal of length L, in practice, a Hanning window function, for example, as a window function for eliminating the influence of edges is used. Is applied to the signal to perform a fast Fourier transform (FFT). By the way, FFT is a kind of discrete Fourier transform. In the discrete Fourier transform, when the sampling interval of a signal to be converted is Δ and the sampling number is M, the obtained frequency interval is 1 / MΔ, and the discrete The frequency can be obtained only at the frequency position. If the frequency of the interference fringe image exactly matches any one of the discrete frequencies at this frequency interval 1 / MΔ, the Fourier-transformed frequency signal appears as one peak at that frequency position. However, when the frequency of the interference fringe image exists between two adjacent frequencies of the discrete frequencies, a signal appears not only at the two adjacent frequencies but also at the discrete frequencies around the two adjacent frequencies. FIG. 10 shows an example. FIG.
0 (a) is a signal of an interference fringe image, and a power spectrum obtained by multiplying the signal by a Hanning window function and performing FFT is shown in FIG.
0 (b). Figure 10 (b) As is apparent from, there is a peak P k to the position of the frequency k, the signal P k-1 in discrete frequency k-1, k + 1 on both sides, there are P k + 1,
There are also signals on both sides of them. In order to accurately determine the frequency of the original signal by function fitting from such a discrete power spectrum, there are methods using various fitting functions, but a method of applying a Gaussian function (RJ Adrian et al. "Applicatio
ns of Laser Technologies to
Fluid Mechanics 5th Inte
rnational Symposium Lisbo
n, Portugal, 9-12 July, 199
0 "pp. 268-287 (Springer-Ver
lag)) accurately determines the frequency of the original signal. That is, as shown in FIG. 11, there is a peak P k at the position of the discrete frequency k, and the discrete frequency k−
When there are smaller signals P k−1 and P k + 1 in 1 , k + 1 , the frequency f of the original signal becomes f = f k + / × {( logP k-1 -logP k + 1 ) ÷ (logP k-1 -2logP k + logP k + 1)} obtained as (5).

【0052】もちろん、上記の窓関数、フィティング関
数として他の公知のものを用いてもよい。
Of course, other well-known window functions and fitting functions may be used.

【0053】次に、各微小液滴の速度(ベクトル)を求
める方法について説明する。この場合には、微小時間間
隔Δtで図7に示したような撮影画面AとA’を撮影す
る。その場合に得られる2枚の撮影画面A、A’が図1
2(a)、(b)に模式的に示したようなものであると
すると、各撮影画面A、A’での干渉縞像a,b,c,
dは図示のように変化する。そこで、2枚の撮影画面
A、A’の各干渉縞像a,b,c,d相互の相互相関を
計算することにより、それらの移動量Δsi がベクトル
として求まる。その移動量の分布を図12(c)に模式
的に示してある。この求めた移動量Δsi から各微小液
滴の速度ui は、 ui =Δsi /Δt ・・・(6) として求まる。
Next, a method for obtaining the velocity (vector) of each microdroplet will be described. In this case, the photographing screens A and A ′ as shown in FIG. 7 are photographed at the minute time interval Δt. The two shooting screens A and A 'obtained in that case are shown in FIG.
2 (a) and 2 (b), interference fringe images a, b, c, and
d changes as shown. Therefore, by calculating the cross-correlation between the interference fringe images a, b, c, and d of the two shooting screens A and A ′, the movement amount Δs i is obtained as a vector. The distribution of the movement amount is schematically shown in FIG. From the obtained movement amount Δs i, the speed u i of each microdroplet is obtained as u i = Δs i / Δt (6).

【0054】具体的には、例えばダブルパルスレーザを
用いて微小時間間隔Δtでシート状平行光の照明光2
(図4、図5)を照射し、その発光と同期して2枚の画
像A、A’を撮像面22で撮影する。その画像A、A’
から干渉縞像の信号を切り出す。切り出し方は、上記の
周波数を求めるときと同じにする。ただし、この場合
は、1本の走査線の信号だけではなく、干渉縞像に直交
する隣接する走査線の信号も同時に切り出し、画像Aと
画像A’のその切り出した干渉縞像毎に相互相関をと
る。計算には、両者の画像の切り出した各干渉縞像毎に
x方向、y方向に1ピクセルずつ移動させて、相関値を
計算する。x方向、y方向の相関計算のための移動量の
上限は予め適当に設定しておく。そして、各干渉縞像毎
に最も相関値の高かった位置(ピーク位置)までのベク
トル移動量を上記の移動量Δsi とする。
More specifically, for example, the illumination light 2 of sheet-like parallel light is used at a minute time interval Δt using a double pulse laser, for example.
(FIGS. 4 and 5) are irradiated, and two images A and A ′ are photographed on the imaging surface 22 in synchronization with the light emission. The images A, A '
From the signal of the interference fringe image. The cutout method is the same as that for obtaining the frequency. However, in this case, not only the signal of one scanning line but also the signal of an adjacent scanning line orthogonal to the interference fringe image is simultaneously cut out, and the cross-correlation is performed for each of the cut-out interference fringe images of the image A and the image A ′. Take. In the calculation, a correlation value is calculated by moving each pixel in the x and y directions for each interference fringe image cut out from both images. The upper limit of the movement amount for the correlation calculation in the x direction and the y direction is appropriately set in advance. The vector movement amount up to the position (peak position) where the correlation value is highest for each interference fringe image is defined as the movement amount Δs i described above.

【0055】上記の計算において、切り出した各干渉縞
像中には干渉縞信号が含まれており、干渉縞は位相によ
り干渉縞像中で左右に移動する可能性があるため、この
干渉縞像の上記相互相関によって求めた移動量は、実際
の干渉縞像の移動量とは必ずしも同じではない場合があ
る。そのため、干渉縞信号が含まれたままの干渉縞像の
相互相関を上記のようにとると、必ずしも干渉縞像の正
しい移動量が求まるとは言えない。そこで、相互相関を
とる前に干渉縞像信号をローパスフィルターを通して干
渉縞信号の高周波数成分を除去して相互相関をとること
が望ましい。
In the above calculation, each of the cut-out interference fringe images includes an interference fringe signal, and the interference fringes may move right and left in the interference fringe image depending on the phase. The movement amount obtained by the above cross-correlation may not always be the same as the actual movement amount of the interference fringe image. Therefore, if the cross-correlation of the interference fringe image with the interference fringe signal still included is obtained as described above, it cannot be said that a correct movement amount of the interference fringe image is necessarily obtained. Therefore, it is preferable to remove the high-frequency components of the interference fringe signal from the interference fringe image signal through a low-pass filter before obtaining the cross-correlation to obtain the cross-correlation.

【0056】また、上記の相互相関の計算も1ピクセル
単位であるので、移動量Δsi がピクセル単位より小さ
い移動量は直接は求まらないので、x方向、y方向で得
れた離散的な相互相関値に種々の関数(例えば、ガウス
関数、2次関数でもよいが、本発明の場合は、正弦関数
の相互相関になるので、正弦関数あるいは余弦関数)を
当てはめることにより、ピクセル単位以下のピーク位置
を正確に求めることができる。
Since the above-described calculation of the cross-correlation is also performed in units of one pixel, the amount of movement in which the amount of movement Δs i is smaller than the unit of pixel is not directly obtained, so that the discrete amounts obtained in the x and y directions are not obtained. By applying various functions (for example, a Gaussian function or a quadratic function to the cross-correlation value, in the case of the present invention, the cross-correlation of a sine function is used, a sine function or a cosine function) is applied to the pixel unit. Can be accurately determined.

【0057】ただし、上記のような手法で求めた移動量
Δsi は、必ずしも異なる時刻間で正確に対応する微小
液滴の移動量であるとは限らない。そこで、上記の切り
出した各干渉縞像の信号中の周波数を前記のようにして
求め、その周波数が変化していないか、あるいは、蒸発
又は凝縮による変化率が所定の一定値以下であるかを判
定してその変化率が所定の一定値以下である場合にのみ
正しく対応していると判断するのが望ましい。
However, the movement amount Δs i obtained by the above-described method is not always the movement amount of the minute liquid droplet corresponding accurately between different times. Thus, the frequency in the signal of each of the cut-out interference fringe images is obtained as described above, and whether the frequency has not changed or whether the rate of change due to evaporation or condensation is equal to or less than a predetermined constant value is determined. It is desirable to make a determination and determine that a correct response is made only when the rate of change is equal to or less than a predetermined fixed value.

【0058】以上のようにして微小液滴又は微小気泡の
位置、直径、速度の分布を同時に測定して1つの画面上
に表記した例を図13に示す。円の中心が位置、円の大
きさが直径、線分が速度を表している。
FIG. 13 shows an example in which the positions, diameters, and velocities of the microdroplets or microbubbles are simultaneously measured as described above and displayed on one screen. The center of the circle represents the position, the size of the circle represents the diameter, and the line segment represents the speed.

【0059】なお、以上の焦点外れ像を用いて、微小液
滴や微小気泡の位置、直径、速度を求める方法を実施す
る装置は、ソフトウエアによりパソコンを用いて簡単に
構成することができる。
An apparatus for executing the method for determining the position, diameter, and velocity of a minute droplet or a minute bubble using the above-described out-of-focus image can be easily configured using a personal computer by software.

【0060】以上、本発明の微小気泡及び微小液滴の径
及び分布等の測定方法と装置及び微小気泡及び微小液滴
の径及び分布等の測定光学系を実施例に基づいて説明し
てきたが、本発明はこれら実施例に限定されず種々の変
形が可能である。
The method and apparatus for measuring the diameter and distribution of microbubbles and microdroplets and the optical system for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention have been described based on the embodiments. The present invention is not limited to these embodiments, and various modifications are possible.

【0061】[0061]

【発明の効果】以上の説明から明らかなように、本発明
の微小気泡及び微小液滴の径及び分布等の測定方法と装
置によると、シート状の平行なレーザビームの進行方向
と撮影光学系の光軸とを含む平面に平行な方向において
は焦点外れ状態となり、その平面に垂直な方向において
は略合焦状態となる撮影面で焦点外れ像を撮影するの
で、各微小気泡又は微小液滴に対応する焦点外れ像はそ
の平面に垂直な方向に圧縮された1次元像になるため、
空間的に微小気泡及び微小液滴の分布濃度が高い場合に
おいても、それぞれの焦点外れ像が相互に分離可能で、
それぞれの焦点外れ像中の干渉縞の数を分離して容易に
数えることができ、また、各焦点外れ像の中心位置を特
定して微小気泡又は微小液滴の分布状況をみることが容
易となり、そのような場合においても、微小気泡及び微
小液滴の位置、直径、速度の分布を同時に精度良く測定
することができる。
As is apparent from the above description, according to the method and apparatus for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention, the traveling direction of the sheet-like parallel laser beam and the imaging optical system In a direction parallel to a plane including the optical axis of the optical axis, an out-of-focus state is obtained.In the direction perpendicular to the plane, an out-of-focus image is captured on an imaging surface that is substantially in focus. Is a one-dimensional image compressed in a direction perpendicular to the plane,
Even when the distribution density of microbubbles and microdroplets is high spatially, each defocused image can be separated from each other,
The number of interference fringes in each out-of-focus image can be separated and counted easily, and it is easy to identify the center position of each out-of-focus image and see the distribution of microbubbles or droplets. Even in such a case, the distribution of the position, diameter, and velocity of the microbubbles and microdroplets can be simultaneously and accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微小気泡の径及び空間分布を測定する
方法の原理と従来の微小液滴の径及び空間分布を測定す
る方法の原理とを説明するための図と、その場合の微小
気泡又は微小液滴の焦点外れ像の1例を示す図である。
FIG. 1 is a diagram for explaining the principle of a method for measuring the diameter and spatial distribution of microbubbles according to the present invention and the principle of a conventional method for measuring the diameter and spatial distribution of microdroplets, and a microscopic sample in that case. FIG. 3 is a diagram illustrating an example of an out-of-focus image of a bubble or a microdroplet.

【図2】液体中に浮かぶ微小気泡を経た光線を解析する
ための図である。
FIG. 2 is a diagram for analyzing a light beam passing through a microbubble floating in a liquid.

【図3】空中に浮かぶ微小液滴を経た光線を解析するた
めの図である。
FIG. 3 is a diagram for analyzing a light beam passing through a microdroplet floating in the air.

【図4】本発明の微小気泡及び微小液滴の径及び分布等
の測定光学系の第1実施例を示す斜視図である。
FIG. 4 is a perspective view showing a first embodiment of the optical system for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention.

【図5】本発明の微小気泡及び微小液滴の径及び分布等
の測定光学系の第2実施例を示す斜視図である。
FIG. 5 is a perspective view showing a second embodiment of the optical system for measuring the diameter and distribution of microbubbles and microdroplets according to the present invention.

【図6】図1(a)の配置で撮影した焦点外れ像の1例
を示す図である。
FIG. 6 is a diagram illustrating an example of an out-of-focus image captured in the arrangement of FIG.

【図7】図4の配置で撮影した図6に対応する焦点外れ
像を示す図である。
FIG. 7 is a diagram showing an out-of-focus image corresponding to FIG. 6 photographed in the arrangement of FIG. 4;

【図8】1つの干渉縞像に関して得られる画像信号の例
を示す図である。
FIG. 8 is a diagram illustrating an example of an image signal obtained for one interference fringe image.

【図9】撮像面で得られた干渉縞像の画像信号と移動平
均をとった結果の1例を示す図である。
FIG. 9 is a diagram illustrating an example of a result obtained by calculating a moving average of an image signal of an interference fringe image obtained on an imaging surface;

【図10】干渉縞像の画像信号とそれからFFTして求
めたパワースペクトラムの1例を示す図である。
FIG. 10 is a diagram illustrating an example of an image signal of an interference fringe image and a power spectrum obtained by performing FFT on the image signal.

【図11】離散的なパワースペクトラムから関数フィテ
ィングにより元の信号の周波数を正確に求める方法を説
明するための図である。
FIG. 11 is a diagram for explaining a method of accurately determining the frequency of an original signal by function fitting from a discrete power spectrum.

【図12】相互相関を計算することにより微小液滴の速
度を求める方法を説明するための図である。
FIG. 12 is a diagram for explaining a method of calculating a velocity of a minute droplet by calculating a cross-correlation.

【図13】微小液滴又は微小気泡の位置、直径、速度の
分布を同時に測定して1つの画面上に表記した例を示す
図である。
FIG. 13 is a diagram illustrating an example in which distributions of positions, diameters, and velocities of microdroplets or microbubbles are simultaneously measured and are displayed on one screen.

【符号の説明】[Explanation of symbols]

1、11 、12 …微小液滴 1’、11 ’、12 ’…微小液滴の像 1”、11 ”、12 ”…微小液滴の焦点外れ像 2…シート状平行光の照明光 3…1回反射光 4…2回屈折光 5…散乱光 6…対物レンズ(結像レンズ) 7…像面 8…焦点外れ面(デフォーカス面) 9…干渉縞 10、101 、102 …微小気泡 10’、101 ’、102 ’…微小気泡の像 10”、101 ”、102 ”…微小気泡の焦点外れ像 11…1回反射光 12…2回屈折光 20…測定光学系 20’…測定光学系 21…シリンドリカルレンズ 211 …正シリンドリカルレンズ 212 …負シリンドリカルレンズ 22…撮像面 23…スリット状開口 S…シート状平行光の照明光の進行方向 O…測定光学系の光軸 A,A’…撮影画面 a,b,c,d…微小液滴の焦点外れ像1, 1 1 , 1 2 ... minute droplet 1 ', 1 1 ', 1 2 '... minute droplet image 1 ", 1 1 ", 1 2 "... minute droplet out of focus image 2 ... sheet parallel Light illumination light 3 ... Reflected light once 4 ... Refracted light twice 5 ... Scattered light 6 ... Objective lens (imaging lens) 7 ... Image plane 8 ... Out of focus plane (defocus plane) 9 ... Interference fringe 10,10 1 , 10 2 … microbubbles 10 ′, 10 1 ′, 10 2 ′… microbubble images 10 ”, 10 1 ”, 10 2 ”... microbubble defocused images 11… reflected light once 12… reflected twice Light 20 ... Measurement optical system 20 '... Measurement optical system 21 ... Cylindrical lens 21 1 ... Positive cylindrical lens 21 2 ... Negative cylindrical lens 22 ... Imaging surface 23 ... Slit aperture S ... Slit direction of illumination light of sheet-shaped parallel light O ... Optical axis of the measuring optical system A, A '... Photographing screen a, b, c, d ... Out-of-focus image of minute droplet

フロントページの続き Fターム(参考) 2F065 AA00 AA03 AA26 BB29 CC00 DD04 FF05 FF51 FF64 GG04 GG16 HH02 JJ03 JJ26 LL08 QQ16 QQ17 QQ29 QQ34 QQ36 QQ41 UU05 2G059 AA05 BB09 CC11 EE02 EE09 FF01 GG01 HH02 JJ30 KK04 LL10 MM01 MM02 Continued on the front page F term (reference) 2F065 AA00 AA03 AA26 BB29 CC00 DD04 FF05 FF51 FF64 GG04 GG16 HH02 JJ03 JJ26 LL08 QQ16 QQ17 QQ29 QQ34 QQ36 QQ41 UU05 2G059 AA05 BB09 CC11 EE01 GG01 MM01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 微小気泡あるいは微小液滴が浮いた空間
にシート状の平行なレーザビームを照射し、そのレーザ
ビームが当たった微小気泡あるいは微小液滴をレーザビ
ーム進行方向に対して所定の角度をなす側面方向から、
前記レーザビームの進行方向と撮影光学系の光軸とを含
む平面に平行な方向においては焦点外れ状態となり、そ
の平面に垂直な方向においては略合焦状態となる撮影面
で、その平面方向に伸びて微小気泡あるいは微小液滴に
対応する線状の焦点外れ像を撮影し、その焦点外れ像の
中心を求めることにより、微小気泡あるいは微小液滴の
中心位置を求めることを特徴とする微小気泡及び微小液
滴の径及び分布等の測定方法。
1. A sheet-shaped parallel laser beam is applied to a space in which a microbubble or a microdroplet floats, and the microbubble or the microdroplet hit by the laser beam is directed at a predetermined angle with respect to the laser beam traveling direction. From the side of
In a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the photographing optical system, an out-of-focus state is obtained, and in a direction perpendicular to the plane, the photographing surface becomes substantially in a focused state. A microbubble characterized by obtaining a linear defocused image corresponding to a microbubble or a microdroplet extending and obtaining the center of the defocused image to obtain the center position of the microbubble or the microdroplet. And methods for measuring the diameter and distribution of microdroplets.
【請求項2】 前記中心位置は、線状の焦点外れ像の長
さをLとするとき、長手方向に沿って特定位置の前後の
距離L/2の範囲で平均をとってその位置の値とし、そ
の特定位置を順次移動することによって得られる移動平
均値のピーク位置から求めることを特徴とする請求項1
記載の微小気泡及び微小液滴の径及び分布等の測定方
法。
2. When the length of a linear defocused image is L, the center position is averaged over a range of a distance L / 2 before and after a specific position along the longitudinal direction, and the value of the position is calculated. And calculating the average value from the peak position of the moving average obtained by sequentially moving the specific position.
A method for measuring the diameter, distribution, etc. of the microbubbles and microdroplets described.
【請求項3】 微小気泡あるいは微小液滴が浮いた空間
にシート状の平行なレーザビームを照射し、そのレーザ
ビームが当たった微小気泡あるいは微小液滴をレーザビ
ーム進行方向に対して所定の角度をなす側面方向から、
前記レーザビームの進行方向と撮影光学系の光軸とを含
む平面に平行な方向においては焦点外れ状態となり、そ
の平面に垂直な方向においては略合焦状態となる撮影面
で、その平面方向に伸びて微小気泡あるいは微小液滴に
対応する線状の焦点外れ像を撮影し、その焦点外れ像を
フーリエ変換して周波数を求め、求めた周波数にその焦
点外れ像の長さを掛けることにより焦点外れ像中の干渉
縞の数を求め、その干渉縞の数に基づいて微小気泡ある
いは微小液滴の直径を求めることを特徴とする微小気泡
及び微小液滴の径及び分布等の測定方法。
3. A sheet-shaped parallel laser beam is applied to a space in which a microbubble or a microdroplet floats, and the microbubble or the microdroplet hit by the laser beam is directed at a predetermined angle with respect to the laser beam traveling direction. From the side of
In a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the photographing optical system, an out-of-focus state is obtained, and in a direction perpendicular to the plane, the photographing surface becomes substantially in a focused state. A linear defocused image corresponding to a microbubble or a microdroplet is taken, and the defocused image is subjected to Fourier transform to obtain a frequency. The focus is obtained by multiplying the obtained frequency by the length of the defocused image. A method for measuring the diameter and distribution of microbubbles and microdroplets, wherein the number of interference fringes in a deviated image is obtained, and the diameter of microbubbles or microdroplets is obtained based on the number of interference fringes.
【請求項4】 前記フーリエ変換として離散的フーリエ
変換を行い、得られた離散的な周波数分布に関数フィテ
ィングを施して微小気泡あるいは微小液滴の直径を求め
ることを特徴とする請求項3記載の微小気泡及び微小液
滴の径及び分布等の測定方法。
4. The method according to claim 3, wherein a discrete Fourier transform is performed as the Fourier transform, and a function fitting is performed on the obtained discrete frequency distribution to obtain a diameter of a microbubble or a microdroplet. For measuring the diameter and distribution of microbubbles and microdroplets.
【請求項5】 微小気泡あるいは微小液滴が浮いた空間
にシート状の平行なレーザビームを照射し、そのレーザ
ビームが当たった微小気泡あるいは微小液滴をレーザビ
ーム進行方向に対して所定の角度をなす側面方向から、
前記レーザビームの進行方向と撮影光学系の光軸とを含
む平面に平行な方向においては焦点外れ状態となり、そ
の平面に垂直な方向においては略合焦状態となる撮影面
で、その平面方向に伸びて微小気泡あるいは微小液滴に
対応する線状の焦点外れ像を、微小時間間隔Δtをおい
て2枚撮影し、得られた2枚の撮影画面中の線状の焦点
外れ像単位でその2枚の撮影画面間で相互相関を計算す
ることにより各線状の焦点外れ像の移動量Δsi を求
め、各微小気泡あるいは微小液滴の速度ui を次の関係
により求めることを特徴とする微小気泡及び微小液滴の
径及び分布等の測定方法。 ui =Δsi /Δt ・・・(6)
5. A sheet-shaped parallel laser beam is applied to a space in which a microbubble or a microdroplet floats, and the microbubble or the microdroplet hit by the laser beam is directed at a predetermined angle with respect to the laser beam traveling direction. From the side of
In a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the photographing optical system, an out-of-focus state is obtained, and in a direction perpendicular to the plane, the photographing surface becomes substantially in a focused state. Two linear out-of-focus images corresponding to the microbubbles or the microdroplets are photographed at a small time interval Δt, and the linear defocus images are obtained in units of a linear defocus image in the two photographed images obtained. By calculating the cross-correlation between the two photographing screens, the moving amount Δs i of each linear defocused image is obtained, and the speed u i of each microbubble or microdroplet is obtained by the following relationship. A method for measuring the diameter and distribution of microbubbles and microdroplets. u i = Δs i / Δt (6)
【請求項6】 前記2枚の撮影画面間で相互相関を計算
する際、線状の焦点外れ像中の干渉縞に対応する高周波
数成分を除去して相互相関を計算することを特徴とする
請求項5記載の微小気泡及び微小液滴の径及び分布等の
測定方法。
6. When calculating the cross-correlation between the two photographed images, the high-frequency component corresponding to the interference fringe in the linear out-of-focus image is removed to calculate the cross-correlation. A method for measuring the diameter and distribution of the microbubbles and microdroplets according to claim 5.
【請求項7】 微小気泡あるいは微小液滴が浮いた空間
にシート状の平行なレーザビームを照射し、そのレーザ
ビームが当たった微小気泡あるいは微小液滴をレーザビ
ーム進行方向に対して所定の角度をなす側面方向から、
前記レーザビームの進行方向と撮影光学系の光軸とを含
む平面に平行な方向においては焦点外れ状態となり、そ
の平面に垂直な方向においては略合焦状態となる撮影面
で、その平面方向に伸びて微小気泡あるいは微小液滴に
対応する線状の焦点外れ像を撮影し、その焦点外れ像の
中心を求めることにより、微小気泡あるいは微小液滴の
中心位置を求め、その焦点外れ像をフーリエ変換して周
波数を求め、求めた周波数にその焦点外れ像の長さを掛
けることにより焦点外れ像中の干渉縞の数を求め、その
干渉縞の数に基づいて微小気泡あるいは微小液滴の直径
を求め、また、その焦点外れ像を微小時間間隔Δtをお
いて2枚撮影し、得られた2枚の撮影画面中の線状の焦
点外れ像単位でその2枚の撮影画面間で相互相関を計算
することにより各線状の焦点外れ像の移動量Δsi を求
め、各微小気泡あるいは微小液滴の速度ui を次の関係
により求めることを特徴とする微小気泡及び微小液滴の
径及び分布等の測定方法。 ui =Δsi /Δt ・・・(6)
7. A sheet-shaped parallel laser beam is applied to a space in which a microbubble or a microdroplet floats, and the microbubble or the microdroplet hit by the laser beam is set at a predetermined angle with respect to the laser beam traveling direction. From the side of
In a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the photographing optical system, an out-of-focus state is obtained, and in a direction perpendicular to the plane, the photographing surface becomes substantially in a focused state. A linear defocused image corresponding to the microbubbles or microdroplets is taken, and the center of the defocused image is obtained to obtain the center position of the microbubbles or microdroplets. Convert the frequency to obtain the number of interference fringes in the out-of-focus image by multiplying the obtained frequency by the length of the out-of-focus image, and calculate the diameter of microbubbles or microdroplets based on the number of the interference fringes. Is obtained, and two out-of-focus images are photographed at a small time interval Δt, and the cross-correlation between the two photographing screens is obtained for each linear out-of-focus image in the two photographing screens obtained. By calculating each Determine the movement amount Delta] s i shaped for defocus image measuring method of the size and distribution, etc. of the microbubbles and microdroplets speed u i of each microbubble or microdroplets and obtains the following relationship. u i = Δs i / Δt (6)
【請求項8】 微小気泡あるいは微小液滴が浮いた空間
にシート状の平行なレーザビームを照射するレーザビー
ム照射手段と、前記レーザビーム照射手段によって照射
されたレーザビームが当たった微小気泡あるいは微小液
滴をレーザビーム進行方向に対して所定の角度をなす側
面方向から、前記レーザビームの進行方向と撮影光学系
の光軸とを含む平面に平行な方向においては焦点外れ状
態となり、その平面に垂直な方向においては略合焦状態
となる撮影面で、その平面方向に伸びて微小気泡あるい
は微小液滴に対応する線状の焦点外れ像を撮影する撮影
手段と、その焦点外れ像の中心を求めることにより、微
小気泡あるいは微小液滴の中心位置を求める中心位置測
定手段と、その焦点外れ像をフーリエ変換して周波数を
求め、求めた周波数にその焦点外れ像の長さを掛けるこ
とにより焦点外れ像中の干渉縞の数を求め、その干渉縞
の数に基づいて微小気泡あるいは微小液滴の直径を求め
る直径測定手段と、その焦点外れ像を微小時間間隔Δt
をおいて2枚撮影し、得られた2枚の撮影画面中の線状
の焦点外れ像単位でその2枚の撮影画面間で相互相関を
計算することにより各線状の焦点外れ像の移動量Δsi
を求め、各微小気泡あるいは微小液滴の速度ui を次の
関係により求める速度測定手段とを備えたことを特徴と
する微小気泡及び微小液滴の径及び分布等の測定装置。 ui =Δsi /Δt ・・・(6)
8. A laser beam irradiating means for irradiating a sheet-shaped parallel laser beam to a space in which microbubbles or microdroplets float, and microbubbles or microparticles hit by the laser beam irradiated by said laser beam irradiating means. The droplet is defocused in a direction parallel to a plane including the traveling direction of the laser beam and the optical axis of the imaging optical system from a side surface direction forming a predetermined angle with respect to the traveling direction of the laser beam. A photographing unit that extends in the plane direction to photograph a linear defocused image corresponding to a microbubble or a microdroplet on a photographing surface that is substantially in focus in a vertical direction, and a center of the defocused image. The center position measuring means for obtaining the center position of the microbubble or the microdroplet, and the frequency obtained by Fourier-transforming the out-of-focus image. Multiplied by the length of the out-of-focus image to obtain the number of interference fringes in the out-of-focus image, and a diameter measuring means for obtaining the diameter of a microbubble or a microdroplet based on the number of the interference fringes; The image is taken for a small time interval Δt
And the amount of movement of each linear defocused image by calculating the cross-correlation between the two photographic screens in units of the linear defocused image in the two obtained photographic screens Δs i
Look, measurement device size and distribution, etc. of the microbubbles and microdroplets speed u i of each microbubble or microdroplets, characterized in that a speed measuring means for obtaining by the relation. u i = Δs i / Δt (6)
JP2000381367A 2000-12-15 2000-12-15 Method and apparatus for measuring diameter and distribution of microbubbles and microdroplets Expired - Fee Related JP3211825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381367A JP3211825B1 (en) 2000-12-15 2000-12-15 Method and apparatus for measuring diameter and distribution of microbubbles and microdroplets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381367A JP3211825B1 (en) 2000-12-15 2000-12-15 Method and apparatus for measuring diameter and distribution of microbubbles and microdroplets

Publications (2)

Publication Number Publication Date
JP3211825B1 JP3211825B1 (en) 2001-09-25
JP2002181515A true JP2002181515A (en) 2002-06-26

Family

ID=18849377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381367A Expired - Fee Related JP3211825B1 (en) 2000-12-15 2000-12-15 Method and apparatus for measuring diameter and distribution of microbubbles and microdroplets

Country Status (1)

Country Link
JP (1) JP3211825B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294294A (en) * 2003-03-27 2004-10-21 Daicel Chem Ind Ltd Device for calculating thickness of wall film of microcapsule
JP2005201895A (en) * 2003-12-19 2005-07-28 Micro Jet:Kk Method and device for observing droplet
JP2006142808A (en) * 2004-10-05 2006-06-08 Applied Materials Inc Visualization of liquid droplet of ink-jetting
JP2006170910A (en) * 2004-12-17 2006-06-29 Saitama Univ Device for measuring droplet status, and calibration method of camera in this device
JP2009030977A (en) * 2007-07-24 2009-02-12 Microjet:Kk System for droplet observation
JP2009210542A (en) * 2008-03-06 2009-09-17 Hamamatsu Photonics Kk Observation device
JP2011247748A (en) * 2010-05-27 2011-12-08 Nikuni Corp Bubble observation method and device thereof
JP2014508301A (en) * 2011-03-08 2014-04-03 バッテンフォール アクチボラグ Method and system for measuring gas in a combustion chamber
JP2016130641A (en) * 2015-01-13 2016-07-21 三菱日立パワーシステムズ株式会社 Steam turbine liquid droplet measuring apparatus and steam turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116973337B (en) * 2023-09-25 2023-12-22 成都曙创大能科技有限公司 Fine diamond wire surface particle number density measurement system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294294A (en) * 2003-03-27 2004-10-21 Daicel Chem Ind Ltd Device for calculating thickness of wall film of microcapsule
JP2005201895A (en) * 2003-12-19 2005-07-28 Micro Jet:Kk Method and device for observing droplet
JP4485929B2 (en) * 2003-12-19 2010-06-23 株式会社マイクロジェット Droplet observation method and observation apparatus
JP2006142808A (en) * 2004-10-05 2006-06-08 Applied Materials Inc Visualization of liquid droplet of ink-jetting
JP2006170910A (en) * 2004-12-17 2006-06-29 Saitama Univ Device for measuring droplet status, and calibration method of camera in this device
JP4568800B2 (en) * 2004-12-17 2010-10-27 国立大学法人埼玉大学 Droplet state measuring apparatus and camera calibration method in the apparatus
JP2009030977A (en) * 2007-07-24 2009-02-12 Microjet:Kk System for droplet observation
JP2009210542A (en) * 2008-03-06 2009-09-17 Hamamatsu Photonics Kk Observation device
JP2011247748A (en) * 2010-05-27 2011-12-08 Nikuni Corp Bubble observation method and device thereof
JP2014508301A (en) * 2011-03-08 2014-04-03 バッテンフォール アクチボラグ Method and system for measuring gas in a combustion chamber
JP2016130641A (en) * 2015-01-13 2016-07-21 三菱日立パワーシステムズ株式会社 Steam turbine liquid droplet measuring apparatus and steam turbine

Also Published As

Publication number Publication date
JP3211825B1 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US6587208B2 (en) Optical system for measuring diameter, distribution and so forth of micro bubbles and micro liquid drop
Maeda et al. Improvements of the interferometric technique for simultaneous measurement of droplet size and velocity vector field and its application to a transient spray
US9217669B2 (en) One-dimensional global rainbow measurement device and measurement method
Kawaguchi et al. Size measurements of droplets and bubbles by advanced interferometric laser imaging technique
JP2007315976A (en) Method and apparatus for measuring position, particle diameter, and velocity of fine droplets, bubbles, and particles
Maeda et al. Novel interferometric measurement of size and velocity distributions of spherical particles in fluid flows
JP3211825B1 (en) Method and apparatus for measuring diameter and distribution of microbubbles and microdroplets
Choo et al. The characteristics of the particle position along an optical axis in particle holography
Buchmann et al. Ultra-high-speed 3D astigmatic particle tracking velocimetry: application to particle-laden supersonic impinging jets
JP3875653B2 (en) Droplet state measuring device and state measuring method
DE19954702A1 (en) Arrangement to measure particle, drop or bubble size or other characteristic in fluid flow; has light source and detectors for defocused imaging of interference pattern, and particles in bright points
JP4100553B2 (en) Simultaneous measurement apparatus and method for dynamic shape and dynamic position
JP2015078969A (en) Intra-droplet flow observation method and intra-droplet flow observation device
Pan et al. Simultaneous global size and velocity measurement of droplets and sprays
CN109100272B (en) Method for measuring orientation and size of transparent ellipsoid particles
Zama et al. Simultaneous measurement of droplet size and three-components of velocity in spray
CH675299A5 (en)
Adrian et al. Measurement of spray flow by an improved interferometric laser imaging droplet sizing (ILIDS) system
Kobayashi et al. Measurement of spray flow by an improved interferometric laser imaging droplet sizing (ILIDS) system
Pecora Particle Tracking Velocimetry: A Review
JP2005114491A (en) Method and apparatus for measuring diameter, distribution or the like of low refractive index minute sphere in medium
Smallwood A technique for two-colour particle image velocimetry.
JP2746852B2 (en) Transmitted light measurement device
Sugimoto et al. Extension of the compressed interferometric particle sizing technique for three component velocity measurements
SIGNAL DM Klychkova1, VP Ryabukho1, 2

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees