JP2002178244A - Grinding method for rolling element - Google Patents

Grinding method for rolling element

Info

Publication number
JP2002178244A
JP2002178244A JP2000404296A JP2000404296A JP2002178244A JP 2002178244 A JP2002178244 A JP 2002178244A JP 2000404296 A JP2000404296 A JP 2000404296A JP 2000404296 A JP2000404296 A JP 2000404296A JP 2002178244 A JP2002178244 A JP 2002178244A
Authority
JP
Japan
Prior art keywords
grinding
ball
rolling
balls
elementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404296A
Other languages
Japanese (ja)
Inventor
Hiroshi Teramachi
博 寺町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000404296A priority Critical patent/JP2002178244A/en
Publication of JP2002178244A publication Critical patent/JP2002178244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grinding method for rolling elements capable of massively and highly precisely grinding the rolling surfaces of the multiple rolling elements at a low cost. SOLUTION: This grinding method of the rolling elements is characterized in that the same-size multiple unit balls are jointed with each other into an immobile state to form a virtual axis linearly penetrating through the centers of the respective unit balls, the rolling surfaces of the respective unit balls of the unit ball line are simultaneously ground by a centerless grinding device, and after the grinding, the unit ball line is taken apart into pieces.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は転動体の研削方法に
関し、特にセンタレス研削盤によって転動面を研削する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of grinding a rolling element, and more particularly to a method of grinding a rolling surface by a centerless grinding machine.

【従来の技術】本発明者は、既に「玉ころ」(日研産業
(株)の商標)についての出願をしている(特願平11
−363197号)。「玉ころ」は、「ころ」と同等の
大きな負荷容量を有すると同時に、「玉」と同様の扱い
易さを有する新規な転動体であり、転がり軸受、転がり
直線運動案内装置、ボールねじ、等速ジョイント等に適
用可能である。この転動体は、市販の素球を使って安価
にしかも高精度に作ることを前提とするもので、端面球
面部は一つの仮想球面上に位置し、転動球面部は断面円
弧状となっている。
2. Description of the Related Art The present inventor has already filed an application for "Tamakoro" (trademark of Niken Sangyo Co., Ltd.)
-363197). "Ball roller" is a new rolling element having a large load capacity equivalent to "roller" and at the same time easy to handle as "ball", and includes a rolling bearing, a rolling linear motion guide device, a ball screw, Applicable to constant velocity joints and the like. This rolling element is based on the premise that it is manufactured at low cost and with high precision using commercially available elemental spheres. The end spherical surface is located on one virtual spherical surface, and the rolling spherical surface has an arc-shaped cross section. ing.

【発明が解決使用とする課題】この「玉ころ」を大量に
製作する方法として、今回センタレス研削を利用する着
想を得た。本発明の目的は、新規な「玉ころ」の大量生
産に適した転動体の研削方法を提供することにある。
As a method for producing a large number of "ball rollers", the idea of using centerless grinding has been obtained. An object of the present invention is to provide a method for grinding a rolling element suitable for mass production of a new “ball roller”.

【課題を解決するための手段】上記目的を達成するため
に、本発明にあっては、同一寸法の複数の素球を互いに
不動状態に接合して各素球の中心を直線状に貫く仮想軸
心を形成し、前記素球列の各素球の転動面をセンタレス
研削盤によって同時研削し、研削後素球列をばらすこと
を特徴とする。素球同士の接合は電磁吸引力によるもの
で、研削後消磁することを特徴とする。また、素球同士
の接合は接着剤によるもので、研削後接着剤を除去する
ことを特徴とする。上記転動体の転動面は断面円弧形状
に研削するもので、研削砥石にドレッサによって断面円
弧状の研削溝が所定ピッチでもって形成されることを特
徴とする。
In order to achieve the above object, according to the present invention, a plurality of elemental balls having the same dimensions are joined to each other in an immovable state so as to extend straight through the center of each elemental ball. An axial center is formed, and the rolling surfaces of the element balls in the element ball array are simultaneously ground by a centerless grinder, and the element element rows are removed after the grinding. The joining of the elementary balls is based on electromagnetic attraction, and is characterized in that demagnetization is performed after grinding. Further, the joining of the elementary balls is performed by an adhesive, and the adhesive is removed after grinding. The rolling surface of the rolling element is ground in an arc shape in cross section, and a grinding groove having an arc cross section is formed at a predetermined pitch on a grinding wheel by a dresser.

【発明の実施の形態】以下に本発明を図示の実施の形態
に基づいて詳細に説明する。図6は本発明の研削方法に
よって研削される転動体としての「玉ころ」を示してい
る。玉ころ1は、円弧状に膨らんだ転動球面部2と、こ
の転動球面部2両端の球面状に膨らんだ端面球面部3,
3と、を備え、転動球面部2の最大径dよりも端面球面
部3,3間の長さWが長くなっている。左右の端面球面
部3,3の中心Oはほぼ等しく、ほぼ一つの仮想球面B
上に位置しており、転動球面部2は端面球面部3の曲率
半径よりも大きな円弧半径を有する円弧形状になってお
り、この円弧は仮想球面Bよりも内側に位置している。
転動面球面部2は、左右両端が同一径で、中心軸Xに対
して直交する中心Oを通る軸に対して左右対称的な円弧
形状となっている。転動体1の外形は、転動球面部2の
円弧面と端面球面部3,3の球面とを組み合わせた形状
で、その長手方向断面が略楕円形と円形の中間の形状と
なっており、転動球面部2と端面球面部3,3の境界部
には丸みが付けられている。玉ころ1の転動球面部2の
最大径dを短径、端面球面部間(頂点間)の長さWを長
径とすると、短径dが長径Wに対して80±15%の範
囲に設定されることが好適である。図6(A)〜(C)
は80%の例、図6(D)〜(F)は90%の例であ
る。すなわち、短径dと長径Wの比率が小さい(差が小
さい)ほど球に近くなり、比率が大きい(差が大きい)
ほどころに近づき、高負荷容量が得られ、重荷重に適す
る。このような玉ころ1は、玉と比較すると、転動球面
部2の接触長が長くなるので、玉に比べて負荷容量は数
倍大きくなる。また、図6(A)に示すように、接触長
さをW1とすると、中央部と両端部の径の差に起因する
差動すべり量π(d−d0)は、玉の場合のπ(d1−
d0)に比べて小さいので、摩擦抵抗が軽減される。従
って、軽快に移動すると共に発熱量も小さい。なお、軌
道輪の回転軸に対して転動体1の回転軸が大きく傾いて
いるような場合、転動体の左右の周速差を無くするた
め、図2に示すように、転動球面部2をテーパ球面形状
とすることがよい。すなわち、転動球面部2は、その一
端が大径かつ他端が小径で長手方向円弧に勾配が付けら
れている。図示例は、長径Wに対する短径dの割合を8
0%にした例である。 (実施の形態1)次に、図1乃至図4を用いて、この発
明の実施の形態1に係る「玉ころ」の研削方法について
説明する。本発明は、図1の概念図に示すように、同一
寸法の複数の素球10を互いに不動状態に接合して各素
球10の中心を直線状に貫く仮想軸心11を形成し、素
球列12の各素球10の転動面13をセンタレス研削装
置によって同時研削し、研削後素球列12をばらすこと
によって行われる。図2にはこの研削に用いられるセン
タレス研削装置を示している。このセンタレス研削装置
20は、砥石車21と、この砥石車21と平行に設けら
れ砥石車21にワークを押圧すると共にワークを回転さ
せる調整車22と、砥石車21と調整車22の間に配設
されワークの下面を支えるブレード23と、複数の素球
10を不動状態に接合させる接合治具30と、を備えて
いる。砥石車21には素球10の直径Dのピッチでもっ
て、上記した玉ころ1の円弧状の転動面2を研削するた
めに図1に示すような研削溝24が設けられている。こ
の研削溝24は「玉ころ」の最終的な転動面の円弧形状
と対応した円弧形状となっており、図6(A),(D)
に示したような短径dと長径Wの比率を変えた転動面を
簡単に研削できるし、図7に示すようなテーパ形状のも
のも簡単に研削できる。調整車22にも研削溝24に対
応して素球10に当接する円弧状の係合溝25が設けら
れている。もっとも、係合溝25を設けないで円筒面と
してもよい。この調整車22は、送り機構25によって
砥石車21に向けて進退する構成となっている。ブレー
ド23の素球支持面は、平坦面としてもよいしV溝によ
り支持してもよい。また、ブレード23を微少に上下動
させる上下可動機構を設け、ワークの可能に伴い心合わ
せを行うようにすれば、より一層の精度向上が図れる。
接合治具30は、この実施の形態では、複数の素球10
を電磁吸引力によって接合する。この接合治具30は、
研削車21と調整車22の間に装填される素球列12の
上方に配置され、互いに逆極性の一対の磁極片31,3
1と、磁極片31,31が取り付けられる本体ヨーク3
2と、不図示の磁力源と、本体ヨーク32を昇降させる
昇降装置34と、を備えている。磁力源としては、図1
に示したような電磁コイル等を利用することができる。
この昇降装置34は、磁極片31,31によって素球列
12の軸方向両端を把持する把持位置と、本体ヨーク3
2を上昇させて磁極片31,31を素球列12から上方
に離間させる離間位置の間を昇降駆動させるものであ
る。磁極片31は固定ねじ35によって本体ヨーク32
に固定されているが、本体ヨーク32に対して軸方向に
所定量移動可能となっており、素球列12に対する磁極
片31の位置を調整できるようになっている。昇降装置
34は、駆動源としてのシリンダ36と、シリンダ36
と本体ヨーク32を連結する連結軸37と、連結軸37
を案内する直線ガイド38と、を備えている。次に、図
1及び図3を参照して、上記センタレス研削装置を用
い、素球を研削する工程について説明する。まず、素球
10を準備する。素球10には、市販のベアリング用の
鋼球が用いられる。特に焼き入れ前の鋼球が用いられ
る。この素球10は、真円度,寸法精度がサブミクロン
単位と非常に高く、各素球10間の相対差が非常に小さ
く、極めて均質である。この均質な素球を用いることが
ポイントである。このように均質な素球を用いると、研
削後の製品の寸法精度も一定となり、非常に高精度に研
削できる利点がある。この素球10を所定数、センタレ
ス研削装置20に供給する。各素球10は、砥石車21
の研削溝24と調整砥石22の係合溝25の間の空間に
入り込み、ブレード23上にセットされる。次いで、電
磁接合治具30のシリンダ36を駆動して本体ヨーク3
2を素球列12に向けて下降させる。磁極片31の位置
は素球列12の両端位置に予め調整しておき、上方から
素球列12の両端を挟むように、磁極片31が素球列1
2の両端に差し込まれる。この時、磁極片31が素球列
12の両端の素球10に確実に当接するように、ばね等
によって押さえる構成としておくことが好ましい。次い
で、不図示の磁力源の電磁コイル33を励磁する。する
と、本体ヨーク12と磁極片31及び素球列12を通る
磁路Hが形成され、各素球10は磁気吸引力によって互
いに不動状態に接合される。各素球10は各球中心を通
る磁力線に沿って直線的に並ぶことになり、各素球の中
心を直線状に貫く仮想軸心を形成する(図1及び図3参
照)。各素球10の接触点は点接触なので、各接触点に
おいて磁束が絞られて磁束密度が集中し、各素球間の磁
気吸着力が高いので、接触点は移動しない。そして、調
整車22を研削砥石21に向けて押圧し、研削砥石21
および調整車22を回転させて研削を行う。この研削時
に、素球列12は調整車22との摩擦力によって連れ回
りし、両端の素球10と磁極片31との接点間が回転摺
動することなるが、点接触であり摩擦トルクは小さいの
で素球列12の回転を妨げることなく、スムースに回転
する。また、研削代の分だけ素球列12が回転軸心が下
がるので、ブレード23を上下させて研削代を吸収する
ことが好ましい。研削終了後、電磁コイル33に吸着時
と逆極性の電流を流すことにより、素球列12に残留す
る残留磁気を消磁し、研削した素球を取り出す。その
後、研削した素球に、必要に応じて熱処理等の後処理を
施して「玉ころ」が完成する。研削面が摩耗してくる
と、不図示のロータリドレッサによって砥石車21の研
削溝24がドレッシングされる。本発明のように、極め
て寸法精度の高い素球を接触させていることは、研削溝
の溝ピッチと正確に対応することになり、ロータリード
レッサによる研削位置も正確に対応させることができ、
結果として正確な「玉ころ」を研削することができる。
また、素球10を接触させて研削することは、一回の研
削で研削できる個数を多くすることができ、より大量に
加工することが可能である。 [実施の形態2]次に本発明の実施の形態2について説
明する。以下の説明では、上記実施の形態1と異なる点
のみを説明するものとし、同一の構成部分については同
一の符号を付して説明は省略するものとする。図4及び
図5は、複数の素球を不動状態に接合する方法として接
着剤を用いた例を示している。すなわち、図4に示すよ
うに、センタレス研削装置に供給された複数の素球10
同士を瞬間接着剤51によって不動状態に接合して、セ
ンタレス研削を行うものである。図5には瞬間接着剤5
1を吹きつけあるいは滴下等にて付着させる接着治具4
0が示されている。接着治具40は、研削車21と調整
車22の間に装填される素球列12の上方に配置され、
瞬間接着剤51を吹きつけあるいは滴下等にて付着させ
る複数のノズル41と、これらのノズル41を支持する
支持バー42と、支持バー42に設けられて素球列の端
部に位置する素球を当接して素球列の軸方向の位置決め
をする当接片43と、支持バー42を昇降させる昇降装
置44と、を備えている。昇降装置44は、駆動源とし
てのシリンダ46と、シリンダ46と支持バー42を連
結する連結軸47と、連結軸47を案内する直線ガイド
48と、を備えている。次に、この接着治具40を用い
た場合の研削工程について説明する。砥石車21の研削
溝24と調整砥石22の係合溝25の間の空間に入り込
み、ブレード23上にセットされた素球列12に対し
て、接着治具40のシリンダ46を駆動して支持バー4
2を素球列12に向けて下降させる。当接辺41の位置
は素球列12の片端位置に予め調整しておき、ブレード
23に設けられた位置決め片50との間で素球列12を
両端から挟み込み、各素球の間に隙間が無いように確実
に接触させる。この場合も、当接片41が素球列12に
確実に当接するように、ばね等によって押さえる構成と
しておくことが好ましい。このように素球列の軸方向の
位置が決まると、各素球の接点位置が瞬間接着剤のノズ
ル位置と合致する(図4,図5参照)。次いで、ノズル
41から各素球10の接点周囲に瞬間接着剤51が吹き
つけあるいは滴下され、各素球10は瞬間接着剤51の
接着力によって互いに不動状態に接合される。これによ
り、各素球10は各球中心を通る直線上に並ぶことにな
り、各素球の中心を直線状に貫く仮想軸心Oが形成され
る。場合によっては、このセンタレス研削装置にセット
する前に、V溝を有する治具にて素球同士を接触させて
直線状に配列し、予め棒状の素球列を成形した後、セン
タレス研削装置にセットするようにしてもよい。そし
て、研削砥石21および調整車22を回転させて研削を
行う。素球列12は調整車22との摩擦力によって連れ
回りし、両端の素球10と当接片41及び位置決め片5
0との接点間が回転摺動することなるが、点接触であり
摩擦トルクは小さいので素球列12の回転を妨げること
なく、スムースに回転する。また、研削代の分だけ素球
列12が回転軸心に対して直交する方向に変位するが、
当接片41及び位置決め片50との接点がすべって変位
が吸収される。研削終了後、素球列を取出し、素球間の
接着剤を薬品などによって除去して各素球10をばらば
らにする。その後、研削した素球に、必要に応じて熱処
理等の後処理を施して「玉ころ」が完成する。なお、上
記各実施の形態では、転動体として「玉ころ」を研削す
る場合について説明したが、転動面として円弧状に膨ら
んだ形状ではなく、円筒面の場合でもよいし、凹状に窪
んだ形状でも研削することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 6 shows a "ball roller" as a rolling element to be ground by the grinding method of the present invention. The ball roller 1 has a rolling spherical surface portion 2 bulging in an arc shape, and spherical spherical surface portions 3 at both ends of the rolling spherical surface portion 2.
3, and the length W between the end surface spherical portions 3, 3 is longer than the maximum diameter d of the rolling spherical portion 2. The centers O of the left and right end spherical surfaces 3 and 3 are substantially equal, and substantially one virtual spherical surface B
The rolling spherical surface portion 2 is located above and has an arc shape having an arc radius larger than the radius of curvature of the end surface spherical portion 3, and this arc is located inside the virtual spherical surface B.
The rolling surface spherical portion 2 has the same diameter at both left and right ends, and has an arc shape symmetrical with respect to an axis passing through a center O orthogonal to the central axis X. The outer shape of the rolling element 1 is a shape obtained by combining the arc surface of the rolling spherical portion 2 and the spherical surfaces of the end surface spherical portions 3 and 3, and its longitudinal cross section has an intermediate shape between a substantially elliptical shape and a circular shape. The boundary between the rolling spherical surface portion 2 and the end spherical surface portions 3 and 3 is rounded. Assuming that the maximum diameter d of the rolling spherical portion 2 of the ball roller 1 is the short diameter and the length W between the end surface spherical portions (between the vertices) is the long diameter, the short diameter d is in the range of 80 ± 15% of the long diameter W. Preferably, it is set. 6 (A) to 6 (C)
6D is an example of 80%, and FIGS. 6D to 6F are examples of 90%. That is, the smaller the ratio between the minor axis d and the major axis W (the smaller the difference), the closer to a sphere, and the larger the ratio (the larger the difference).
As it approaches the roller, a high load capacity is obtained and it is suitable for heavy loads. Since the contact length of the rolling spherical surface portion 2 of such a ball roller 1 is longer than that of a ball, the load capacity is several times larger than that of the ball. Further, as shown in FIG. 6A, when the contact length is W1, the differential slip amount π (d−d0) due to the difference in diameter between the center and both ends is π (d−0) in the case of a ball. d1-
Since it is smaller than d0), the frictional resistance is reduced. Therefore, it moves lightly and generates a small amount of heat. In the case where the rotation axis of the rolling element 1 is greatly inclined with respect to the rotation axis of the bearing ring, as shown in FIG. Preferably has a tapered spherical shape. That is, the rolling spherical surface portion 2 has a large diameter at one end and a small diameter at the other end, and is inclined in a longitudinal arc. In the illustrated example, the ratio of the minor axis d to the major axis W is 8
This is an example of 0%. (Embodiment 1) Next, a method of grinding a "ball roller" according to Embodiment 1 of the present invention will be described with reference to FIGS. According to the present invention, as shown in the conceptual diagram of FIG. 1, a plurality of elementary balls 10 of the same size are joined to each other in an immovable state to form a virtual axis 11 that passes straight through the center of each elementary ball 10, The rolling is performed by simultaneously grinding the rolling surface 13 of each element ball 10 of the ball array 12 with a centerless grinding device, and removing the element ball array 12 after grinding. FIG. 2 shows a centerless grinding device used for this grinding. The centerless grinding device 20 includes a grinding wheel 21, an adjustment wheel 22 provided in parallel with the grinding wheel 21, for pressing a work on the grinding wheel 21 and rotating the work, and an arrangement wheel between the grinding wheel 21 and the adjustment wheel 22. A blade 23 is provided to support the lower surface of the work, and a joining jig 30 for joining the plurality of element balls 10 in an immobile state. The grinding wheel 21 is provided with a grinding groove 24 as shown in FIG. 1 for grinding the arc-shaped rolling surface 2 of the ball roller 1 at a pitch of the diameter D of the elementary ball 10. This grinding groove 24 has an arc shape corresponding to the arc shape of the final rolling surface of the "ball roller", and is shown in FIGS. 6 (A) and 6 (D).
As shown in FIG. 7, it is possible to easily grind a rolling surface in which the ratio of the short diameter d to the long diameter W is changed, and it is also possible to easily grind a tapered shape as shown in FIG. The adjusting wheel 22 is also provided with an arc-shaped engagement groove 25 that abuts on the element ball 10 corresponding to the grinding groove 24. However, a cylindrical surface may be used without providing the engagement groove 25. The adjusting wheel 22 is configured to advance and retreat toward the grinding wheel 21 by the feed mechanism 25. The elementary ball support surface of the blade 23 may be a flat surface or may be supported by a V-groove. Further, if an up-down movable mechanism for slightly moving the blade 23 up and down is provided so that the alignment is performed as the work becomes possible, the accuracy can be further improved.
In this embodiment, the joining jig 30 includes a plurality of element balls 10.
Are joined by electromagnetic attraction. This joining jig 30
A pair of magnetic pole pieces 31, 3 having opposite polarities are arranged above the elementary ball row 12 loaded between the grinding wheel 21 and the adjusting wheel 22.
1 and a body yoke 3 to which the pole pieces 31, 31 are attached
2, a magnetic force source (not shown), and a lifting device 34 for lifting and lowering the main body yoke 32. Fig. 1
An electromagnetic coil as shown in FIG.
The lifting device 34 includes a gripping position where the pole pieces 31, 31 grip both ends of the elementary ball row 12 in the axial direction, and a main body yoke 3.
2 is moved up and down between separated positions where the magnetic pole pieces 31, 31 are separated upward from the elementary ball row 12 by raising the magnetic pole pieces 2. The pole piece 31 is fixed to the body yoke 32 by a fixing screw 35.
, But is movable in the axial direction by a predetermined amount with respect to the main body yoke 32, so that the position of the pole piece 31 with respect to the elementary ball row 12 can be adjusted. The lifting device 34 includes a cylinder 36 as a driving source, and a cylinder 36.
Connecting shaft 37 connecting the main body yoke 32 and the connecting shaft 37
And a linear guide 38 for guiding the Next, with reference to FIG. 1 and FIG. 3, a description will be given of a process of grinding a ball using the centerless grinding device. First, the base ball 10 is prepared. As the base ball 10, a commercially available steel ball for a bearing is used. In particular, steel balls before quenching are used. The elementary spheres 10 are extremely high in roundness and dimensional accuracy on the order of submicron, and the relative difference between the individual elemental spheres 10 is very small and extremely uniform. The point is to use this homogeneous elementary sphere. The use of such a homogeneous elementary ball has the advantage that the dimensional accuracy of the product after grinding is constant and that grinding can be performed with extremely high precision. A predetermined number of the elementary balls 10 are supplied to the centerless grinding device 20. Each element ball 10 is a grinding wheel 21
Into the space between the grinding groove 24 and the engaging groove 25 of the adjusting grindstone 22, and is set on the blade 23. Next, the cylinder 36 of the electromagnetic joining jig 30 is driven to drive the main body yoke 3.
2 is lowered toward the elementary ball row 12. The position of the magnetic pole piece 31 is adjusted in advance to both end positions of the elementary ball row 12, and the magnetic pole piece 31 is positioned so as to sandwich both ends of the elementary ball row 12 from above.
2 are inserted at both ends. At this time, it is preferable that the magnetic pole piece 31 is pressed by a spring or the like so as to surely contact the element balls 10 at both ends of the element ball row 12. Next, the electromagnetic coil 33 of a magnetic force source (not shown) is excited. Then, a magnetic path H passing through the main body yoke 12, the pole piece 31 and the elementary ball row 12 is formed, and the elementary balls 10 are joined to each other immovably by magnetic attraction. Each elementary sphere 10 is linearly arranged along the line of magnetic force passing through the center of each sphere, and forms an imaginary axis center linearly penetrating the center of each elementary sphere (see FIGS. 1 and 3). Since the contact point of each element ball 10 is a point contact, the magnetic flux is concentrated at each contact point and the magnetic flux density is concentrated, and the magnetic attraction force between each element ball is high, so that the contact point does not move. Then, the adjusting wheel 22 is pressed toward the grinding wheel 21 and the grinding wheel 21 is pressed.
And grinding is performed by rotating the adjusting wheel 22. At the time of this grinding, the element ball row 12 is rotated by the frictional force with the adjusting wheel 22, and the contact between the element ball 10 at both ends and the contact point of the pole piece 31 is rotated and slid. Since it is small, it rotates smoothly without hindering the rotation of the elementary ball row 12. Further, since the rotation axis of the elementary ball row 12 is lowered by the grinding allowance, it is preferable to move the blade 23 up and down to absorb the grinding allowance. After the grinding is completed, a current having a polarity opposite to that at the time of the attraction is applied to the electromagnetic coil 33 to demagnetize the residual magnetism remaining in the elementary ball array 12 and take out the ground elementary ball. Thereafter, post-processing such as heat treatment is performed on the ground elemental ball as necessary, to complete the “ball roller”. When the grinding surface is worn, the grinding groove 24 of the grinding wheel 21 is dressed by a rotary dresser (not shown). As in the present invention, contacting the elementary balls with extremely high dimensional accuracy means that they correspond exactly to the groove pitch of the grinding groove, and the grinding position by the rotary dresser can also correspond exactly,
As a result, an accurate “ball roller” can be ground.
In addition, when the element balls 10 are brought into contact with each other for grinding, the number of pieces that can be ground in a single grinding can be increased, and a larger amount can be processed. Second Embodiment Next, a second embodiment of the present invention will be described. In the following description, only different points from the first embodiment will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. 4 and 5 show an example in which an adhesive is used as a method for joining a plurality of elementary balls in an immobile state. That is, as shown in FIG. 4, a plurality of element balls 10 supplied to the centerless grinding device are provided.
The two are fixedly joined to each other by an instant adhesive 51 to perform centerless grinding. FIG. 5 shows an instant adhesive 5
Bonding jig 4 for spraying or dripping 1
0 is shown. The bonding jig 40 is disposed above the elementary ball row 12 loaded between the grinding wheel 21 and the adjustment wheel 22.
A plurality of nozzles 41 for spraying or dropping the instant adhesive 51, a support bar 42 for supporting the nozzles 41, and element balls provided on the support bar 42 and located at ends of element element rows And an abutting piece 43 for abutting the element bar to position the elementary ball row in the axial direction, and an elevating device 44 for elevating and lowering the support bar 42. The elevating device 44 includes a cylinder 46 as a drive source, a connection shaft 47 connecting the cylinder 46 and the support bar 42, and a linear guide 48 for guiding the connection shaft 47. Next, a grinding process using the bonding jig 40 will be described. The cylinder enters the space between the grinding groove 24 of the grinding wheel 21 and the engagement groove 25 of the adjusting grindstone 22, and drives the cylinder 46 of the bonding jig 40 to support the elementary ball row 12 set on the blade 23. Bar 4
2 is lowered toward the elementary ball row 12. The position of the contact side 41 is adjusted in advance to one end position of the element ball array 12, and the element ball array 12 is sandwiched from both ends with a positioning piece 50 provided on the blade 23, and a gap is provided between the element balls. Make sure there is no contact. Also in this case, it is preferable that the contact piece 41 is pressed by a spring or the like so as to securely contact the elementary ball row 12. When the axial position of the element ball array is determined in this way, the contact position of each element ball matches the nozzle position of the instant adhesive (see FIGS. 4 and 5). Next, the instant adhesive 51 is sprayed or dropped from the nozzle 41 around the contact points of the element balls 10, and the element balls 10 are immovably joined to each other by the adhesive force of the instant adhesive 51. As a result, the elementary spheres 10 are arranged on a straight line passing through the center of each sphere, and an imaginary axis O passing straight through the center of each elementary sphere is formed. In some cases, before setting in this centerless grinding device, the elementary balls are brought into contact with each other with a jig having a V-groove and arranged in a straight line, and after forming a rod-shaped elementary ball row in advance, the centerless grinding device is used. It may be set. Then, the grinding wheel 21 and the adjustment wheel 22 are rotated to perform the grinding. The element ball array 12 is rotated by the frictional force with the adjusting wheel 22, and the element balls 10 at both ends, the contact piece 41 and the positioning piece 5
Although the point of contact with 0 rotates and slides, it is a point contact and the friction torque is small, so that it rotates smoothly without hindering the rotation of the elementary ball row 12. In addition, the element ball row 12 is displaced in a direction orthogonal to the rotation axis by an amount corresponding to the grinding allowance,
The contact between the contact piece 41 and the positioning piece 50 slides to absorb the displacement. After the grinding is completed, the element balls are taken out, and the adhesive between the element balls is removed by a chemical or the like, so that the element balls 10 are separated. Thereafter, post-processing such as heat treatment is performed on the ground elemental ball as necessary, to complete the “ball roller”. In each of the above embodiments, the case where the “ball roller” is ground as the rolling element has been described. However, the rolling surface may be a cylindrical surface instead of an arc-shaped bulging shape, or may be concavely concave. Grinding can also be performed on shapes.

【発明の効果】以上説明したように、本発明によれば、
寸法精度の高い素球を接触させて研削加工することによ
り、均質な転動体を安価に大量生産することができる。
特に、各素球同士を接合して研削するので、砥石車を有
効に利用することができ、より大量の素球を研削するこ
とができる。また、素球は寸法精度の高い直径のピッチ
でもって配列されるので、砥石車の研削溝および研削溝
をドレッシングするためのドレッサの歯の位置を正確に
対応させることができる。
As described above, according to the present invention,
By contacting and grinding elemental balls having high dimensional accuracy, uniform rolling elements can be mass-produced at low cost.
In particular, since each elemental ball is joined and ground, a grinding wheel can be effectively used, and a larger amount of elementary balls can be ground. In addition, since the elementary balls are arranged with a pitch having a diameter with high dimensional accuracy, it is possible to accurately correspond the positions of the grinding grooves of the grinding wheel and the teeth of the dresser for dressing the grinding grooves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(A)は本発明の実施の形態1に係る転
動体の研削方法の概念図、同図(B)は同図(A)の素
球を研削した状態を示す図である。
FIG. 1A is a conceptual diagram of a rolling element grinding method according to Embodiment 1 of the present invention, and FIG. 1B is a diagram showing a state where the elementary sphere of FIG. 1A is ground. is there.

【図2】 図2は本発明の転動体の研削方法が適用され
るセンタレス研削装置の概略図である。
FIG. 2 is a schematic view of a centerless grinding apparatus to which the method for grinding a rolling element according to the present invention is applied.

【図3】 図3(A)は図2の接合治具の構成を示す正
面図、図3(B)は図(A)の要部側面図である。
3 (A) is a front view showing the configuration of the joining jig of FIG. 2, and FIG. 3 (B) is a side view of a main part of FIG. 3 (A).

【図4】 図4(A)は本発明の実施の形態2に係る転
動体の研削方法の概念図、同図(B)は同図(A)の素
球を研削した状態を示す図である。
FIG. 4 (A) is a conceptual diagram of a rolling element grinding method according to Embodiment 2 of the present invention, and FIG. 4 (B) is a diagram showing a state where the elementary sphere of FIG. 4 (A) is ground. is there.

【図5】 図5は実施の形態2に係る研削方法に用いら
れる接着治具を示す図である。
FIG. 5 is a view showing an adhesive jig used in the grinding method according to the second embodiment.

【図6】 図6は本発明の研削方法によって研削される
転動体を示すもので、同図(A),(B),(C)は長
径に対する短径の割合が80%、同図(D),(E),
(F)は90%の転動体のそれぞれ正面図,平面図およ
び側面図である。
FIG. 6 shows a rolling element ground by the grinding method of the present invention. FIGS. 6A, 6B, and 6C show a ratio of the minor axis to the major axis of 80%, and FIG. D), (E),
(F) is a front view, a plan view, and a side view of a rolling element of 90%, respectively.

【図7】 図7は転動球面部をテーパ形状とした転動体
を示すもので、同図(A)は正面図、同図(B)は側面
図である。
FIGS. 7A and 7B show a rolling element in which a rolling spherical surface portion has a tapered shape. FIG. 7A is a front view, and FIG. 7B is a side view.

【符号の説明】[Explanation of symbols]

10 素球、11 仮想軸心、12 素球列、20 セ
ンタレス研削装置、21 砥石車、22 調整車、23
ブレード、24 研削溝、30 接合治具、31 磁
極片、32 本体ヨーク、33 磁力源 40 接着治具、41 ノズル、42 支持バー、43
当接片 50 位置決め片、51 瞬間接着剤。
Reference Signs List 10 elementary ball, 11 virtual axis center, 12 elementary ball row, 20 centerless grinding device, 21 grinding wheel, 22 adjusting wheel, 23
Blade, 24 grinding groove, 30 joining jig, 31 magnetic pole piece, 32 main body yoke, 33 magnetic force source 40 bonding jig, 41 nozzle, 42 support bar, 43
Contact piece 50 Positioning piece, 51 Instant adhesive.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】同一寸法の複数の素球を互いに不動状態に
接合して各素球の中心を直線状に貫く仮想軸心を形成
し、前記素球列の各素球の転動面をセンタレス研削盤に
よって同時研削し、研削後素球列をばらすことを特徴と
する転動体の研削方法。
A plurality of elemental balls having the same dimensions are joined to each other in an immovable state to form an imaginary axis that linearly penetrates the center of each elemental ball, and a rolling surface of each elemental ball in the elementary ball row is formed. A grinding method for rolling elements, characterized in that simultaneous grinding is performed by a centerless grinding machine, and a row of element balls is released after grinding.
【請求項2】 素球同士の接合は電磁吸引力によるもの
で、研削後消磁することを特徴とする請求項1に記載の
転動体の研削方法。
2. The method for grinding rolling elements according to claim 1, wherein the element balls are joined by electromagnetic attraction, and demagnetized after grinding.
【請求項3】 素球同士の接合は接着剤によるもので、
研削後接着剤を除去することを特徴とする請求項1に記
載の転動体の研削方法。
3. The bonding between elementary balls is performed by an adhesive,
The method for grinding a rolling element according to claim 1, wherein the adhesive is removed after grinding.
【請求項4】 転動体の転動面は断面円弧形状に研削す
るもので、研削砥石にドレッサによって断面円弧状の研
削溝が所定ピッチでもって形成されることを特徴とする
請求項1乃至3のいずれかの項に記載の転動体の研削方
法。
4. The rolling surface of a rolling element is ground into an arcuate cross section, and a grinding wheel is formed with a grinding groove having an arcuate cross section at a predetermined pitch by a dresser on a grinding wheel. The method for grinding a rolling element according to any one of the above items.
JP2000404296A 2000-12-15 2000-12-15 Grinding method for rolling element Pending JP2002178244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404296A JP2002178244A (en) 2000-12-15 2000-12-15 Grinding method for rolling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404296A JP2002178244A (en) 2000-12-15 2000-12-15 Grinding method for rolling element

Publications (1)

Publication Number Publication Date
JP2002178244A true JP2002178244A (en) 2002-06-25

Family

ID=18868277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404296A Pending JP2002178244A (en) 2000-12-15 2000-12-15 Grinding method for rolling element

Country Status (1)

Country Link
JP (1) JP2002178244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538356A2 (en) * 2003-12-04 2005-06-08 Teramachi Hiroshi Ball roller rolling member
CN109483176A (en) * 2018-12-22 2019-03-19 南通市精艺钢球有限公司 A kind of manufacturing process of high-speed precision bearing steel ball

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538356A2 (en) * 2003-12-04 2005-06-08 Teramachi Hiroshi Ball roller rolling member
EP1538356A3 (en) * 2003-12-04 2007-09-05 Teramachi Hiroshi Ball roller rolling member
CN109483176A (en) * 2018-12-22 2019-03-19 南通市精艺钢球有限公司 A kind of manufacturing process of high-speed precision bearing steel ball

Similar Documents

Publication Publication Date Title
CN112454027A (en) Metal bar outer surface polishing equipment
JP4812488B2 (en) Super finishing method of roller bearing raceway
JP2002178244A (en) Grinding method for rolling element
JP2007260830A (en) Device for super-finishing bearing ring of roller bearing
JP6809309B2 (en) Grinding machine equipped with an electromagnetic chuck device and an electromagnetic chuck device
WO2022028388A1 (en) Grinding tool kit for finish machining of rolling surface of bearing roller, and apparatus and method
JP5640809B2 (en) Super finishing board for both inner and outer rings and super finishing method for inner and outer rings
JP2004025314A (en) Polishing device
CN111360660B (en) Laser gyro lens excircle chamfer burnishing device
JP2019089194A (en) Work-piece support device, processing device, processing method, bearing manufacturing method, vehicle manufacturing method, and mechanical equipment manufacturing method
JPS6213143B2 (en)
JPH1158206A (en) Polishing device and method
JPH0249868B2 (en)
CN208628195U (en) The curved device of guide rail
JP6589391B2 (en) Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck
JP3760699B2 (en) Grinding method of spline ball groove of workpiece inner diameter and dressing of grinding wheel
JP2008272839A (en) Super-finishing machine
JP2009095904A (en) Grinding device and grinding method
JP2009095949A (en) Dressing device
JP3260077B2 (en) Two-dimensional simultaneous motion device
JP3318369B2 (en) Grinding machines and wheel side dressers
KR20190036804A (en) Apparatus for grinding
KR101400876B1 (en) Grinding apparatus for surface texturing and the grinding method thereof
JP2005297190A (en) Workpiece i.d. spline ball groove grinding method, grindstone and grindstone dressing method
US3548545A (en) Center-hole grinder

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206