JP6589391B2 - Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck - Google Patents

Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck Download PDF

Info

Publication number
JP6589391B2
JP6589391B2 JP2015113842A JP2015113842A JP6589391B2 JP 6589391 B2 JP6589391 B2 JP 6589391B2 JP 2015113842 A JP2015113842 A JP 2015113842A JP 2015113842 A JP2015113842 A JP 2015113842A JP 6589391 B2 JP6589391 B2 JP 6589391B2
Authority
JP
Japan
Prior art keywords
workpiece
magnetic pole
grinding
electromagnetic chuck
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015113842A
Other languages
Japanese (ja)
Other versions
JP2017001102A (en
Inventor
昌史 頼経
昌史 頼経
和矢 小林
和矢 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015113842A priority Critical patent/JP6589391B2/en
Priority to CN201610388363.6A priority patent/CN106239355B/en
Priority to DE102016110185.0A priority patent/DE102016110185A1/en
Publication of JP2017001102A publication Critical patent/JP2017001102A/en
Application granted granted Critical
Publication of JP6589391B2 publication Critical patent/JP6589391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、工作物を加工するため、当該工作物を電磁気により固定する電磁チャック、及び電磁チャックを備えた複合研削盤に関する。   The present invention relates to an electromagnetic chuck for fixing a workpiece by electromagnetic in order to process the workpiece, and a composite grinding machine including the electromagnetic chuck.

従来、工作物に対して切削、及び研削等の加工を行なう場合、工作物を、爪などによって締め付ける一般的な機械的チャックによって固定するのではなく、工作物の形状、及び加工したい部位に応じて、電磁気による吸着力(磁気吸引力)を利用して、面板上に固定する技術が有る(特許文献1−2参照)。   Conventionally, when processing such as cutting and grinding is performed on a workpiece, the workpiece is not fixed by a general mechanical chuck that is tightened with a nail or the like, but according to the shape of the workpiece and the part to be processed. Thus, there is a technique of fixing on a face plate using an electromagnetic attraction (magnetic attraction) (see Patent Document 1-2).

特開昭53−111584号公報JP-A-53-111584 特開昭54−90674号公報JP 54-90674 A

しかしながら、特許文献1−2に開示される技術では、工作物、及び工作物が固定される電磁チャックの面板の材質は、通常、ともに金属である。このため、接触する工作物の下面と面板の上面との間の摩擦係数は小さくなりやすい。従って、たとえば、工作物の研削中に、工作物を固定する吸着力(磁気吸引力)を超える大きな力が工作物に付与された場合、工作物が面板上で、初期位置からずれる虞が有る。これに対し、コイルに流す電流量を増加させる、又はコイルの巻数を増加させる等、によって工作物に対する吸着力を向上させ、工作物に対する保持力を向上させる対策が考えられる。しかし、コイルに流す電流量を増加させる場合には、発熱量が増加するという課題がある。また、コイルの巻数を増加させる場合には、電磁チャックの体格が大きくなってしまうという課題がある。   However, in the technique disclosed in Patent Literature 1-2, both the workpiece and the material of the face plate of the electromagnetic chuck to which the workpiece is fixed are usually metals. For this reason, the coefficient of friction between the lower surface of the workpiece to contact and the upper surface of the face plate tends to be small. Therefore, for example, when a large force exceeding the attraction force (magnetic attraction force) for fixing the workpiece is applied to the workpiece during grinding of the workpiece, the workpiece may be shifted from the initial position on the face plate. . On the other hand, it is conceivable to increase the amount of current flowing through the coil or increase the number of turns of the coil to improve the attracting force on the workpiece and improve the holding force on the workpiece. However, when increasing the amount of current flowing through the coil, there is a problem that the amount of heat generation increases. Further, when increasing the number of turns of the coil, there is a problem that the size of the electromagnetic chuck becomes large.

本発明は、このような事情に鑑みてなされたものであり、加工時において、十分な保持力によって工作物の固定が可能な小型の電磁チャック、及び電磁チャックを備えた複合研削盤を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a compact electromagnetic chuck capable of fixing a workpiece with a sufficient holding force during machining, and a composite grinding machine including the electromagnetic chuck. For the purpose.

上記課題を解決するため、請求項1の電磁チャックは、外形が円形の面板上面に磁極部及び隣り合う前記磁極部の間に形成され溝部を備え、前記磁極部の磁気力によって前記磁極部の上面に工作物を吸着し固定する電磁チャック本体と、前記溝部に配置され、前記工作物が前記磁極部の上面に固定された場合、前記工作物の下面に対して、前記磁極部による前記工作物に対する吸着力よりも小さな力で前記工作物を前記磁極部による吸着方向と反対方向に押圧する押圧部材と、を備え、前記磁極部は、前記溝部と交互に配置されるよう前記面板の軸線回りの周方向に等間隔で配置されるとともに、磁化されると前記周方向にS極及びN極が交互に形成され、前記押圧部材は、非磁性体で形成され、前記工作物の下面に当接する最表面部材と、非磁性体で形成され、前記最表面部材と前記溝部の底面との間に配置され、前記最表面部材を前記工作物の下面に向かって付勢する弾性体と、を備え、前記最表面部材は、前記最表面部材と前記工作物の前記下面との間の摩擦係数が、前記磁極部の上面と前記工作物の前記下面との間の摩擦係数より大きな高摩擦材によって形成されるTo solve the above problem, an electromagnetic chuck according to claim 1 is provided with a groove outer shape Ru formed between the magnetic pole magnetic pole portions and the adjacent face plate upper surface of the circular, the magnetic pole by a magnetic force of the magnetic pole portion An electromagnetic chuck body for adsorbing and fixing a workpiece on the upper surface of the workpiece, and the groove portion, and when the workpiece is fixed to the upper surface of the magnetic pole portion, A pressing member that presses the workpiece in a direction opposite to the suction direction by the magnetic pole portion with a force smaller than the suction force to the workpiece, and the magnetic pole portion of the face plate is arranged alternately with the groove portion. Arranged at equal intervals in the circumferential direction around the axis, and when magnetized, S poles and N poles are alternately formed in the circumferential direction, and the pressing member is formed of a non-magnetic material, and the lower surface of the workpiece. And the outermost member that contacts the An elastic body that is formed of a non-magnetic material and is disposed between the outermost surface member and the bottom surface of the groove, and biases the outermost surface member toward the lower surface of the workpiece. Is formed of a high friction material in which the friction coefficient between the outermost member and the lower surface of the workpiece is larger than the friction coefficient between the upper surface of the magnetic pole part and the lower surface of the workpiece .

このように、面板上面に形成された溝部に、押圧部材が配置され、工作物の下面に対して、押圧部材が工作物を吸着方向と反対方向に押圧する。このとき、押圧部材が工作物の下面を押圧する力は、磁極部による工作物に対する吸着力よりも小さな力である。このため、電磁チャックが工作物を磁気力によって面板上に吸引し、工作物を固定する力を維持させながら、押圧部材が工作物の下面を押圧することによって発生させる摩擦力を付与することができる。これにより、工作物の下面と、電磁チャックの面板との間の摩擦力に加え、工作物の下面と押圧部材との間の摩擦力が追加されるので、加工時においても工作物は面板上に良好に保持される。   In this way, the pressing member is disposed in the groove formed on the upper surface of the face plate, and the pressing member presses the workpiece against the lower surface of the workpiece in the direction opposite to the suction direction. At this time, the force with which the pressing member presses the lower surface of the workpiece is smaller than the attracting force of the magnetic pole portion on the workpiece. For this reason, the electromagnetic chuck attracts the workpiece onto the face plate by magnetic force and maintains the force for fixing the workpiece, while applying the friction force generated by the pressing member pressing the lower surface of the workpiece. it can. As a result, in addition to the frictional force between the lower surface of the workpiece and the face plate of the electromagnetic chuck, the frictional force between the lower surface of the workpiece and the pressing member is added. Well maintained.

また、上記課題を解決するため、請求項の複合研削盤は、旋回軸線回りに旋回可能な旋回テーブルと、前記旋回テーブルにおける前記旋回軸線を中心とする円周上にそれぞれ設けられ、前記旋回軸線と平行な主軸線回りに回転可能な工作主軸を有する複数の主軸台と、複数の前記工作主軸に設けられ、それぞれ工作物の保持が可能な複数の保持装置と、前記旋回テーブルに対して相対移動可能にそれぞれ設けられ、前記旋回テーブルの旋回により前記工作物が順次搬送されることで、対応するそれぞれの研削旋回位置に前記工作物が位置決めされる場合に、対応する前記工作物を研削する複数の砥石と、を備え、前記保持装置は、上述の電磁チャックである。 In order to solve the above problem, the composite grinding machine according to claim 4 is provided on a turning table capable of turning around a turning axis and on a circumference around the turning axis of the turning table, and the turning A plurality of spindle stock having a work spindle that can rotate around a spindle parallel to the axis, a plurality of holding devices that are provided on the plurality of work spindles and each can hold a workpiece, and the swivel table Each of the workpieces is provided so as to be relatively movable, and when the workpiece is sequentially transferred by turning of the turning table, the corresponding workpiece is ground when the workpiece is positioned at the corresponding grinding turning position. And the holding device is the above-described electromagnetic chuck.

このように、内輪及び外輪の研削が連続的に多数行なわれる複合研削盤の保持装置に上記電磁チャックを適用することによって、工作物は、加工中に面板上でズレることなく安定して研削できる。これにより、内輪及び外輪は、加工精度が向上する。   As described above, by applying the electromagnetic chuck to the holding device of the composite grinding machine in which the grinding of the inner ring and the outer ring is continuously performed, the workpiece can be stably ground without being displaced on the face plate during processing. . Thereby, the processing accuracy of the inner ring and the outer ring is improved.

本実施形態に係る複合研削盤の全体構成を示す概略図である。It is the schematic which shows the whole structure of the composite grinding machine which concerns on this embodiment. 図1の複合研削盤が備える旋回テーブルの平面図である。It is a top view of the turning table with which the composite grinding machine of FIG. 1 is provided. 図2の旋回テーブルのE−E矢視断面図である。It is EE arrow sectional drawing of the turning table of FIG. 電磁チャックの斜視図である。It is a perspective view of an electromagnetic chuck. 電磁チャックの平面図である。It is a top view of an electromagnetic chuck. 工作物が固定された状態における図5の電磁チャックのF−F矢視断面図である。FIG. 6 is a cross-sectional view of the electromagnetic chuck of FIG. 5 taken along the line FF in a state where the workpiece is fixed. 複合研削盤の状態を説明する第一の図である。It is a 1st figure explaining the state of a compound grinder. 複合研削盤の状態を説明する第二の図である。It is a 2nd figure explaining the state of a compound grinder. 複合研削盤の状態を説明する第三の図である。It is a 3rd figure explaining the state of a compound grinder. 複合研削盤の状態を説明する第四の図である。It is a 4th figure explaining the state of a compound grinder. 複合研削盤の状態を説明する第五の図である。It is a 5th figure explaining the state of a compound grinder. 複合研削盤の状態を説明する第六の図である。It is a 6th figure explaining the state of a compound grinder. 複合研削盤の状態を説明する第七の図である。It is a 7th figure explaining the state of a compound grinder. 工作物が固定されていない状態における図5の電磁チャックのF−F矢視断面図である。FIG. 6 is a cross-sectional view of the electromagnetic chuck of FIG. 5 taken along the line FF in a state where the workpiece is not fixed.

(1.複合研削盤の構成)
以下、本発明に係る電磁チャックに相当する各保持装置61,62,63,64を、工作物Wである、ベアリングの外輪Wa及び内輪Wbに対する複数種の研削を1台で行なう複合研削盤1に適用した場合について説明する。なお、図1においては、水平面で直交する方向をX軸線方向及びY軸線方向とし、X軸線方向及びY軸線方向に直交する方向をZ軸線方向とする。図1に示すように、複合研削盤1は、ベッド2を備え、ベッド2上には、旋回テーブル5と、コラム3a,3b,3cと、図略の駆動機構でZ軸線方向と平行なZd軸線回りに旋回可能な旋回アーム3dと、を備える。
(1. Configuration of composite grinding machine)
Hereinafter, each holding device 61, 62, 63, 64 corresponding to the electromagnetic chuck according to the present invention is a composite grinding machine 1 that performs plural types of grinding on the outer ring Wa and the inner ring Wb of the bearing, which is the workpiece W, by one unit. The case where it applies to is demonstrated. In FIG. 1, the direction orthogonal to the horizontal plane is defined as the X axis direction and the Y axis direction, and the direction orthogonal to the X axis direction and the Y axis direction is defined as the Z axis direction. As shown in FIG. 1, the composite grinding machine 1 includes a bed 2. On the bed 2, a swivel table 5, columns 3 a, 3 b, 3 c, and a Zd parallel to the Z-axis direction by an unillustrated drive mechanism. A swivel arm 3d that can swivel about an axis.

旋回テーブル5は、図3に示す駆動機構51によって、Z軸線方向と平行なC軸線(旋回軸線)回りに旋回可能に構成される。図1及び図2に示すように、旋回テーブル5には、4つの保持装置61〜64(電磁チャック、後に詳述する)が、C軸線を中心とする同一円周上に等角度間隔(90度間隔)で設けられる。図3に示すように、各保持装置61〜64には、主軸台81〜84がそれぞれ取り付けられる(ただし、図3では、代表として保持装置61及び主軸台81のみ示す)。ここでは、各保持装置61〜64は、同一装置であり、主軸台81〜84も同一主軸台となっている。主軸台81は、主軸本体811と、工作主軸812とを備える。工作主軸812は、主軸本体811に内蔵される図略の駆動機構でC軸線方向と平行なG軸線(主軸線)回りに回転可能に、主軸本体811の上端から突出するように設けられる。工作主軸812の上端には、保持装置(図3では保持装置61を示す)が固定される。   The turning table 5 is configured to be turnable about a C axis (swivel axis) parallel to the Z axis direction by a drive mechanism 51 shown in FIG. As shown in FIGS. 1 and 2, the rotating table 5 includes four holding devices 61 to 64 (electromagnetic chucks, which will be described in detail later) at equal angular intervals (90 on the same circumference around the C axis. Degree intervals). As shown in FIG. 3, spindle stocks 81 to 84 are attached to the holding devices 61 to 64 (however, only the holding device 61 and the spindle stock 81 are shown as representatives in FIG. 3). Here, the holding devices 61 to 64 are the same device, and the headstocks 81 to 84 are also the same headstock. The headstock 81 includes a main spindle body 811 and a work spindle 812. The work spindle 812 is provided so as to protrude from the upper end of the spindle body 811 so as to be rotatable about a G axis (main axis) parallel to the C axis direction by a drive mechanism (not shown) built in the spindle body 811. A holding device (the holding device 61 is shown in FIG. 3) is fixed to the upper end of the work spindle 812.

各保持装置61〜64が配置される旋回テーブル5には、貫通穴52がそれぞれ穿設される。そして、主軸台81の主軸本体811が、各貫通穴52に対応する旋回テーブル5の裏面に固定され、主軸台81の工作主軸812が、各貫通穴52に貫装される。各保持装置61〜64は、磁気力で外輪Wa又は内輪Wb(工作物W)を吸引して面板の上面に保持し、工作主軸812とともにG軸線回りに回転する。   Through-holes 52 are formed in the turntable 5 on which the holding devices 61 to 64 are arranged. The spindle body 811 of the headstock 81 is fixed to the back surface of the turntable 5 corresponding to each through hole 52, and the work spindle 812 of the headstock 81 is inserted into each through hole 52. Each holding device 61 to 64 attracts the outer ring Wa or the inner ring Wb (workpiece W) by magnetic force and holds it on the upper surface of the face plate, and rotates around the G axis along with the work spindle 812.

外輪Wa又は内輪Wbは、図2の紙面上において左側に位置する保持装置(図2の状態では保持装置61であるが、旋回テーブル5の旋回により入れ替わる。以下、同様である。)に搬入され、図2の紙面上において下側に位置する保持装置(図2の状態では保持装置64であるが、旋回テーブル5の旋回により入れ替わる。以下、同様である。)から搬出される。外輪Wa又は内輪Wbの搬入及び搬出は、図略のロボットにより行われる。ロボットは、外輪Wa又は内輪Wbの中心軸線を保持装置61の回転中心と一致させた状態で、外輪Wa又は内輪Wbを搬入可能に構成される。なお、外輪Wa又は内輪Wbの搬入及び搬出は、作業者により行なうようにしてもよく、その場合の上記中心位置合わせは、治具等を用いて行なう。   The outer ring Wa or the inner ring Wb is carried into a holding device (the holding device 61 in the state of FIG. 2 is replaced by turning of the turning table 5. The same applies hereinafter) located on the left side on the paper surface of FIG. 2 is carried out from the holding device (the holding device 64 in the state of FIG. 2 is replaced by turning of the turning table 5. The same applies hereinafter) located on the lower side on the paper surface of FIG. The outer ring Wa or the inner ring Wb is carried in and out by a robot (not shown). The robot is configured to be able to carry the outer ring Wa or the inner ring Wb in a state where the center axis of the outer ring Wa or the inner ring Wb is aligned with the rotation center of the holding device 61. The outer ring Wa or the inner ring Wb may be carried in and out by an operator, and the center alignment in that case is performed using a jig or the like.

詳細は後述するが、旋回テーブル5は、図2の時計回りに所定角度で旋回して外輪Wa又は内輪Wbを搬送する。そして、図2において、左側に位置する保持装置61では、搬入される工作物Wが外輪Waの場合には外周面研削が行われる。また、搬入される工作物Wが内輪Wbの場合には内周面研削が行われる。上側に位置する保持装置62では、外輪Waの内周面に設けられる軌道溝WaGに対する研削である外輪軌道溝面研削が行われる。   Although details will be described later, the turning table 5 turns at a predetermined angle clockwise in FIG. 2 to convey the outer ring Wa or the inner ring Wb. In FIG. 2, the holding device 61 located on the left side performs outer peripheral surface grinding when the workpiece W to be loaded is the outer ring Wa. Further, when the work W to be loaded is an inner ring Wb, inner peripheral surface grinding is performed. In the holding device 62 located on the upper side, outer ring raceway groove surface grinding, which is grinding with respect to the raceway groove WaG provided on the inner peripheral surface of the outer ring Wa, is performed.

また、右側に位置する保持装置63では、内輪Wbの外周面に設けられる軌道溝WbGに対する研削である内輪軌道溝面研削が行われる。そして、下側に位置する保持装置64では、外輪Waの軌道溝WaGに対して行なわれる外輪軌道溝面超仕上げ研削、又は内輪Wbの軌道溝WbGに対して行なわれる内輪軌道溝面超仕上げ研削が行われて搬出される。なお、以下の説明では、旋回テーブル5において上記左側の位置は、周面研削位置Pp、上記上側の位置は、外輪研削位置Po、上記右側の位置は、内輪研削位置Pi、上記下側の位置は、超仕上げ研削位置Pbという。   Further, in the holding device 63 located on the right side, inner ring raceway groove surface grinding that is grinding with respect to the raceway groove WbG provided on the outer peripheral surface of the inner ring Wb is performed. In the holding device 64 positioned on the lower side, the outer ring raceway surface superfinishing grinding performed on the raceway groove WaG of the outer ring Wa or the inner ring raceway surface superfinishing grinding performed on the raceway groove WbG of the inner ring Wb. Is carried out. In the following description, in the turning table 5, the left position is the peripheral grinding position Pp, the upper position is the outer ring grinding position Po, the right position is the inner ring grinding position Pi, and the lower position. Is referred to as a superfinishing grinding position Pb.

コラム3a,3b,3cは、駆動機構(図1にコラム3aの駆動機構3Aのみ示す)によって、X軸線方向と平行なXa軸線方向、Xb軸線方向、Xc軸線方向にそれぞれ往復移動(進退)可能に構成される。図1に示すように、各コラム3a,3b,3cの側面には、駆動機構41a,41b,41cによって、Z軸線方向と平行なZa軸線方向、Zb軸線方向、Zc軸線方向にそれぞれ昇降(進退)可能な砥石台4a,4b,4cをそれぞれ備える。各砥石台4a,4b,4cは、駆動機構91a,91b,91cによって、Za軸線(砥石軸線)回り、Zb軸線(砥石軸線)回り、Zc軸線(砥石軸線)回りにそれぞれ回転駆動可能なロータリー型の砥石車9a,9b,9cをそれぞれ備える。各砥石車9a,9b,9cは、下方に延びる保持軸92a,92b,92cの下端にそれぞれ保持される。   The columns 3a, 3b, 3c can be reciprocated (advanced / retracted) in the Xa axis direction, Xb axis direction, and Xc axis direction parallel to the X axis direction by a driving mechanism (only the driving mechanism 3A of the column 3a is shown in FIG. 1). Configured. As shown in FIG. 1, the side surfaces of the columns 3a, 3b, 3c are moved up and down (advanced / retracted) by drive mechanisms 41a, 41b, 41c in the Za axis direction, Zb axis direction, and Zc axis direction parallel to the Z axis direction, respectively. ) Possible grindstone stands 4a, 4b, 4c are provided. Each of the grinding wheel bases 4a, 4b, 4c is a rotary type that can be driven to rotate around the Za axis (grinding wheel axis), the Zb axis (grinding wheel axis), and the Zc axis (grinding wheel axis) by drive mechanisms 91a, 91b, 91c, respectively. Grinding wheels 9a, 9b, 9c. Each grinding wheel 9a, 9b, 9c is held at the lower end of a holding shaft 92a, 92b, 92c extending downward.

各砥石車9a,9b,9cは、周面研削位置Pp、外輪研削位置Po、内輪研削位置Piに対しそれぞれ進退可能となるように、各コラム3a,3b,3cは、ベッド2上に配置される。砥石車9aは、外輪Waの外周面研削、又は内輪Wbの内周面研削を行なうため、例えばCBN(Cubic Boron Nitride)砥石が用いられる。また、砥石車9b,9cは、外輪Waの外輪軌道溝面研削、内輪Wbの内輪軌道溝面研削を行なうため、例えばアルミナ砥石が用いられる。   The columns 3a, 3b, and 3c are arranged on the bed 2 so that the grinding wheels 9a, 9b, and 9c can advance and retreat with respect to the circumferential grinding position Pp, the outer ring grinding position Po, and the inner ring grinding position Pi, respectively. The For the grinding wheel 9a, for example, a CBN (Cubic Boron Nitride) grinding wheel is used for grinding the outer peripheral surface of the outer ring Wa or the inner peripheral surface of the inner ring Wb. For the grinding wheels 9b and 9c, for example, an alumina grinding wheel is used for grinding the outer ring raceway groove surface of the outer ring Wa and the inner ring raceway surface grinding of the inner ring Wb.

旋回アーム3dは、図略の駆動機構でZ軸線方向と平行なZe軸線方向に昇降可能且つZe軸線(砥石軸線)回りに回転可能な単石型の砥石9dを備える。砥石9dは、旋回アーム3dの先端から下方に延びる保持軸92dの下端部の周面に砥石9dの研削部がZe軸線に直角な方向を向くように保持される。砥石9dは、外輪Waの外輪軌道面超仕上げ研削又は内輪Wbの内輪軌道面超仕上げ研削を行うため、例えばCBN砥石が用いられる。なお、単石型の砥石9dに代えて、ロータリー型の砥石車でもよい。   The swivel arm 3d includes a monolithic grindstone 9d that can be moved up and down in the Ze axis direction parallel to the Z axis direction by a drive mechanism (not shown) and that can rotate about the Ze axis (grinding stone axis line). The grindstone 9d is held on the peripheral surface of the lower end portion of the holding shaft 92d extending downward from the tip of the turning arm 3d so that the grinding portion of the grindstone 9d faces a direction perpendicular to the Ze axis. For the grindstone 9d, for example, a CBN grindstone is used to perform outer ring raceway surface super-finish grinding of the outer ring Wa or inner ring raceway surface super-finish grinding of the inner ring Wb. Note that a rotary grinding wheel may be used instead of the single stone grinding wheel 9d.

(2.電磁チャック)
次に、本発明に係る電磁チャックである各保持装置61〜64について、図4〜図6に基づき説明する。図4〜図6に示すように、保持装置61〜64は、電磁チャック本体170と、押圧部材180と、を備える。なお、保持装置61〜64は、電磁コイル等も備えるが、公知であるので、その構成、及び作動についての詳細な説明は省略する。
(2. Electromagnetic chuck)
Next, the holding devices 61 to 64 that are electromagnetic chucks according to the present invention will be described with reference to FIGS. As shown in FIGS. 4 to 6, the holding devices 61 to 64 include an electromagnetic chuck main body 170 and a pressing member 180. Although the holding devices 61 to 64 include electromagnetic coils and the like, since they are well-known, detailed description of the configuration and operation thereof will be omitted.

電磁チャック本体170は、例えば鉄系の磁性材料によって、底部である面板171を上側にして有底筒状に形成される。図4〜図6に示すように、面板171の上面は、磁極部172と、溝部173とを備える。本実施形態では、扇状に形成された8個の磁極部172が、面板171のG軸線(主軸線)回りで周方向に等間隔に配置される。8個の磁極部172の上面高さは全て同一である。なお、以降、磁極部172の上面を保持面172aと称す。8個の磁極部172は、磁化されると、周方向にS極、N極が順に形成される(図5参照)。そして、隣り合う磁極部172間の凹部で、溝部173が形成される。   The electromagnetic chuck main body 170 is formed in a bottomed cylindrical shape, for example, of an iron-based magnetic material with the face plate 171 as a bottom portion facing upward. As shown in FIGS. 4 to 6, the upper surface of the face plate 171 includes a magnetic pole part 172 and a groove part 173. In the present embodiment, the eight magnetic pole portions 172 formed in a fan shape are arranged at equal intervals in the circumferential direction around the G axis (main axis) of the face plate 171. The top surface heights of the eight magnetic pole portions 172 are all the same. Hereinafter, the upper surface of the magnetic pole portion 172 is referred to as a holding surface 172a. When the eight magnetic pole portions 172 are magnetized, an S pole and an N pole are sequentially formed in the circumferential direction (see FIG. 5). And the groove part 173 is formed by the recessed part between the adjacent magnetic pole parts 172.

図5に示すように、溝部173の幅は、面板171の中心(G軸線)から外周に向かって拡幅するよう形成される。なお、この態様に限らず、溝部173の幅は、面板171の中心(G軸線)から外周に向かって平行であってもよい。また、溝部173の幅は、面板171の中心(G軸線)から外周に向かって縮幅するよう形成されてもよい。また、磁極部172及び溝部173の数は、8個未満でもよいし、8個を超えて設けてもよい。   As shown in FIG. 5, the width of the groove 173 is formed so as to increase from the center (G axis) of the face plate 171 toward the outer periphery. The width of the groove 173 may be parallel from the center (G axis) of the face plate 171 toward the outer periphery. The width of the groove 173 may be formed so as to be reduced from the center (G axis) of the face plate 171 toward the outer periphery. Further, the number of the magnetic pole portions 172 and the groove portions 173 may be less than 8 or more than 8.

図6に示すように、溝部173は、側面173a,173a及び底面173bを備える。前述したように、溝部173は、磁極部172の側面に沿って、面板171の中心(G軸線)から外周に向かって拡幅し、且つ放射状に形成される。溝部173は、面板171の径方向外方に向かう全長に亘って、磁極部172の上面から底面173bまでの距離、つまり磁極部172の上面からの深さが一定に形成される。溝部173に囲まれた部分は空間であるので、非磁性領域である。   As shown in FIG. 6, the groove 173 includes side surfaces 173a and 173a and a bottom surface 173b. As described above, the groove portion 173 is formed radially along the side surface of the magnetic pole portion 172 from the center (G axis) of the face plate 171 toward the outer periphery. The groove 173 has a constant distance from the top surface of the magnetic pole portion 172 to the bottom surface 173b, that is, the depth from the top surface of the magnetic pole portion 172, over the entire length of the face plate 171 in the radial direction. Since the portion surrounded by the groove 173 is a space, it is a nonmagnetic region.

そして、電磁チャック本体170内の磁極用鋼材(図略)に巻いたコイル(図略)に通電することによって磁極部172を磁化する。これにより、各磁極部172の保持面172a(上面)に底面を密着させるようにして載置された工作物Wを、保持面172a上に磁気力で吸引し、密着固定する(図6参照)。   The magnetic pole portion 172 is magnetized by energizing a coil (not shown) wound around the magnetic pole steel (not shown) in the electromagnetic chuck body 170. As a result, the workpiece W placed so that the bottom surface is brought into close contact with the holding surface 172a (upper surface) of each magnetic pole portion 172 is attracted and fixed to the holding surface 172a by magnetic force (see FIG. 6). .

押圧部材180は、非磁性体で形成されて溝部173に配置される。そして、押圧部材180は、工作物Wが、磁気力によって磁極部172の保持面172aに吸引されて固定された場合、工作物Wの下面に対して、磁極部172の磁化による工作物Wに対する吸着力Fmag(磁気吸引力)よりも小さな押圧力Fgで工作物Wを吸着方向と反対方向に押圧する(Fmag>Fg)。具体的には、押圧部材180は、最表面部材181と、支持体182と、N個のバネ183(弾性体)と、を備え、圧縮された各バネ183の各反力の総和によって工作物Wを吸着方向と反対方向に押圧する。つまり、押圧力Fgは、一個のバネ183の押圧力fg×N個に等しい(Fg=fg×N)。図5では、バネ183が面板171の中心から外周に向って5個配置されている。   The pressing member 180 is formed of a nonmagnetic material and is disposed in the groove portion 173. When the workpiece W is attracted and fixed to the holding surface 172a of the magnetic pole portion 172 by magnetic force, the pressing member 180 is applied to the workpiece W by the magnetization of the magnetic pole portion 172 with respect to the lower surface of the workpiece W. The workpiece W is pressed in the direction opposite to the attracting direction with a pressing force Fg smaller than the attracting force Fmag (magnetic attractive force) (Fmag> Fg). Specifically, the pressing member 180 includes an outermost surface member 181, a support body 182, and N springs 183 (elastic bodies), and the workpiece is obtained by summing up reaction forces of the compressed springs 183. Press W in the direction opposite to the suction direction. That is, the pressing force Fg is equal to the pressing force fg × N of one spring 183 (Fg = fg × N). In FIG. 5, five springs 183 are arranged from the center of the face plate 171 toward the outer periphery.

最表面部材181は、非磁性体で形成され、工作物Wの下面に当接する部材である。最表面部材181は、例えば、エポキシ樹脂に所定の粒径の砥粒を混ぜ込んで形成される。詳細には、最表面部材181は、最表面部材181と工作物Wの下面との間の摩擦係数μ2が、磁極部172の保持面172aと工作物Wの下面との間の摩擦係数μ1より大きな高摩擦材によって形成される(μ1<μ2)。   The outermost surface member 181 is a member that is formed of a non-magnetic material and contacts the lower surface of the workpiece W. For example, the outermost surface member 181 is formed by mixing abrasive grains having a predetermined particle diameter with epoxy resin. Specifically, in the outermost surface member 181, the friction coefficient μ2 between the outermost surface member 181 and the lower surface of the workpiece W is larger than the friction coefficient μ1 between the holding surface 172 a of the magnetic pole portion 172 and the lower surface of the workpiece W. It is formed by a large high friction material (μ1 <μ2).

支持体182は、例えば、SUS304、SUS316等の非磁性体で形成される。支持体182は、最表面部材181(高摩擦材)と、バネ183との間に介在される。支持体182は、最表面部材181(高摩擦材)より、硬度が高い高硬度材料により形成される。このように、配置されることで、最表面部材181とバネ183との直接の当接を回避し、バネ183による最表面部材181の摩耗を効果的に防止できる。支持体182は、溝部173に嵌め込まれた場合に、支持体182の各側面182a,182aと溝部173の各側面173a,173aとの間の隙間がほぼ無くなるよう形成される。ただし、このときの隙間は、溝部173内において、少なくとも支持体182を、図6における上下方向に移動自在とするだけの大きさは確保される。なお、支持体182の材質は、SUS304、SUS316等の金属に限らず、最表面部材181の硬度より高い硬度を有する樹脂によって形成されてもよい。   The support 182 is formed of a nonmagnetic material such as SUS304 or SUS316, for example. The support body 182 is interposed between the outermost surface member 181 (high friction material) and the spring 183. The support body 182 is formed of a high hardness material having higher hardness than the outermost surface member 181 (high friction material). By arranging in this way, direct contact between the outermost surface member 181 and the spring 183 can be avoided, and wear of the outermost surface member 181 by the spring 183 can be effectively prevented. When the support body 182 is fitted in the groove portion 173, the support body 182 is formed such that there is almost no gap between the side surfaces 182a and 182a of the support body 182 and the side surfaces 173a and 173a of the groove portion 173. However, the size of the gap at this time is ensured so that at least the support 182 can move in the vertical direction in FIG. 6 within the groove 173. The material of the support 182 is not limited to a metal such as SUS304 or SUS316, and may be formed of a resin having a hardness higher than that of the outermost surface member 181.

バネ183(弾性体)は、例えば、SUS304、SUS316等の非磁性体で形成される。本実施形態では、バネ183は、ウェーブワッシャを含む複数(N個)の板バネである。前述したように、バネ183は、支持体182と底面173bとの間(最表面部材181と溝部173の底面173bとの間に相当)に、必要な個数(N個)だけ配置され、工作物Wが、磁極部172の保持面172aに固定された際に、最表面部材181を工作物Wの下面に向かって押圧力Fg(=fg×N)で付勢する。   The spring 183 (elastic body) is formed of, for example, a nonmagnetic material such as SUS304 or SUS316. In the present embodiment, the spring 183 is a plurality (N) of leaf springs including wave washers. As described above, the necessary number (N) of the springs 183 is disposed between the support 182 and the bottom surface 173b (corresponding to the space between the outermost surface member 181 and the bottom surface 173b of the groove portion 173), and the workpiece When W is fixed to the holding surface 172a of the magnetic pole portion 172, the outermost surface member 181 is urged toward the lower surface of the workpiece W with a pressing force Fg (= fg × N).

また、図1に示すように、この複合研削盤1は、制御装置30を備えており、制御装置30の機能的構成として、コラム3a,3b,3cの送りの制御、砥石台4a,4b,4cの昇降の制御、旋回テーブル5の旋回の制御、主軸台81〜84の回転と保持装置61〜64の吸引の制御、砥石車9a,9b,9cの回転の制御、旋回アーム3dの旋回と砥石9dの回転及び昇降の制御、及びデータやプログラムの記録等を行なう。制御装置30は、予め設定された制御データに基づき、各装置を制御することで、複数の研削工程を実施できる。   As shown in FIG. 1, the composite grinding machine 1 includes a control device 30. As a functional configuration of the control device 30, the feed control of the columns 3 a, 3 b, 3 c, the grindstone tables 4 a, 4 b, 4c elevation control, turning table 5 turning control, rotation of spindle heads 81-84 and holding device 61-64 suction control, grinding wheel 9a, 9b, 9c rotation control, turning arm 3d turning Control of rotation and elevation of the grindstone 9d and recording of data and programs are performed. The control device 30 can perform a plurality of grinding steps by controlling each device based on preset control data.

(3.複合研削盤の作動)
次に、複数種類の工作物Wの研削としてベアリングの外輪Waの外周面研削、外輪軌道面研削、外輪軌道面超仕上げ研削、及び内輪Wbの内周面研削、内輪軌道面研削、及び内輪軌道面超仕上げ研削を行なう複合研削盤1の動作を図2及び図7A〜図7Gを参照して説明する。ここで、複合研削盤1では、保持装置61が周面研削位置Ppに位置決めされている状態(図2、図7Aに示す状態)を初期状態とし、この時の旋回テーブル5の旋回位置を基準位置の0度とする。
(3. Operation of composite grinding machine)
Next, grinding of the outer ring Wa of the bearing, outer ring raceway surface grinding, outer ring raceway surface superfinishing grinding, inner ring Wb inner circumference surface grinding, inner ring raceway surface grinding, and inner ring raceway as grinding of a plurality of types of workpieces W The operation of the composite grinding machine 1 that performs surface superfinish grinding will be described with reference to FIGS. 2 and 7A to 7G. Here, in the composite grinding machine 1, the state in which the holding device 61 is positioned at the circumferential grinding position Pp (the state shown in FIGS. 2 and 7A) is set as an initial state, and the turning position of the turning table 5 at this time is used as a reference. The position is 0 degree.

先ず、制御装置30は、最初の外輪Waaを磁気による吸着力(磁気吸引力)によって保持装置61の磁極部172の保持面172aに吸引固定する(図7A参照)。そして、制御装置30は、外周面研削プログラムに基づき外輪Waaの外周面研削を制御する(図7A参照)。   First, the control device 30 sucks and fixes the first outer ring Waa to the holding surface 172a of the magnetic pole portion 172 of the holding device 61 by magnetic attraction (magnetic attraction) (see FIG. 7A). Then, the control device 30 controls the outer peripheral surface grinding of the outer ring Waa based on the outer peripheral surface grinding program (see FIG. 7A).

このとき、外輪Waaの外周面を研削するため、砥石9aを外輪Waaの外周面に押し付ける。これにより、外輪Waaは、砥石9aとの接点において、法線方向、及び接線方向に大きな研削抵抗を受ける。保持装置61は、外輪Waaが、砥石9aから、このような大きな研削抵抗を受けても、面板(保持面172a)上で移動しないよう固定する必要がある。本発明は、このような場合に、外輪Waaが面板上で移動しないよう、保持装置61に大きな固定力(吸着力)を発生させることを目的とする。また、外輪Waの内周面、及び各軌道溝面に対する各研削、又は内輪Wbの外周面、内周面、及び各軌道溝面に対する各研削においても、外輪Wa又は内輪Wbは、上記と同様に各砥石から大きな研削抵抗を受ける。そこで、このような研削抵抗を受けても、外輪Wa又は内輪Wbが、保持装置61〜64の面板上で移動しないよう十分な固定力(吸着力)を保持装置61〜64に発生させることを目的とする。なお、本発明に係る磁気の吸着力による外輪Wa又は内輪Wbの保持装置61〜64への固定の詳細については、後に詳述する。   At this time, in order to grind the outer peripheral surface of the outer ring Waa, the grindstone 9a is pressed against the outer peripheral surface of the outer ring Waa. Accordingly, the outer ring Waa receives a large grinding resistance in the normal direction and the tangential direction at the contact point with the grindstone 9a. The holding device 61 needs to be fixed so that the outer ring Waa does not move on the face plate (holding surface 172a) even when the outer ring Waa receives such a large grinding resistance from the grindstone 9a. An object of the present invention is to generate a large fixing force (adsorption force) in the holding device 61 so that the outer ring Waa does not move on the face plate in such a case. The outer ring Wa or the inner ring Wb is also the same as described above in each grinding on the inner circumferential surface of the outer ring Wa and each raceway groove surface, or in each grinding on the outer circumferential surface, inner circumference surface, and each raceway groove surface of the inner ring Wb. Each wheel receives a large grinding resistance. Therefore, the holding devices 61 to 64 generate a sufficient fixing force (adsorption force) so that the outer ring Wa or the inner ring Wb does not move on the face plates of the holding devices 61 to 64 even when receiving such grinding resistance. Objective. The details of fixing the outer ring Wa or the inner ring Wb to the holding devices 61 to 64 by the magnetic attractive force according to the present invention will be described in detail later.

次に、制御装置30は、外輪Waaの外周面研削が完了したら、旋回テーブル5を90度旋回させる(図7B参照)。これにより、保持装置61は、外輪研削位置Poに位置決めされ、保持装置64は、周面研削位置Ppに位置決めされることになる。そして、制御装置30は、最初の内輪Wbaを保持装置64に取り付ける(図7C図参照)。このときにも、保持装置61における外輪Waaと同様、内輪Wbaは、保持装置64の磁極部172の保持面172aに磁気による吸着力(磁気吸引力)によって固定される。   Next, when the outer peripheral surface grinding of the outer ring Waa is completed, the control device 30 turns the turning table 5 by 90 degrees (see FIG. 7B). Thereby, the holding device 61 is positioned at the outer ring grinding position Po, and the holding device 64 is positioned at the circumferential surface grinding position Pp. Then, the control device 30 attaches the first inner ring Wba to the holding device 64 (see FIG. 7C). Also at this time, like the outer ring Waa in the holding device 61, the inner ring Wba is fixed to the holding surface 172a of the magnetic pole portion 172 of the holding device 64 by a magnetic attraction force (magnetic attraction force).

そして、制御装置30は、内周面研削プログラムに基づき内輪Wbaの内周面研削を制御するとともに、外輪軌道溝面研削プログラムに基づき外輪Waaの外輪軌道溝面研削を制御する(図7C参照)。これらの制御は、平行して行われる。なお、以降においても、保持装置62、63に対して、外輪Wa又は内輪Wbは、保持装置64の磁極部172の保持面172aに磁気による吸着力によって固定される。   Then, the control device 30 controls the inner circumferential surface grinding of the inner ring Wba based on the inner circumferential surface grinding program, and also controls the outer ring raceway groove grinding of the outer ring Waa based on the outer ring raceway groove surface grinding program (see FIG. 7C). . These controls are performed in parallel. In the following, the outer ring Wa or the inner ring Wb is fixed to the holding surface 172a of the magnetic pole portion 172 of the holding device 64 by the magnetic attraction force with respect to the holding devices 62 and 63.

次に、制御装置30は、内輪Wbaの内周面研削及び外輪Waaの外輪軌道溝面研削が完了したら、旋回テーブル5を180度旋回させる(図7D参照)。これにより、保持装置61は、超仕上げ研削位置Pbに位置決めされる。保持装置64は、内輪研削位置Piに位置決めされ、保持装置62は、周面研削位置Ppに位置決めされる。そして、保持装置63は、外輪Wa及び内輪Wbが吸着されていない空の状態で外輪研削位置Poに位置決めされる。   Next, when the inner peripheral surface grinding of the inner ring Wba and the outer ring raceway groove surface grinding of the outer ring Waa are completed, the control device 30 turns the turning table 5 by 180 degrees (see FIG. 7D). Thereby, the holding device 61 is positioned at the superfinishing grinding position Pb. The holding device 64 is positioned at the inner ring grinding position Pi, and the holding device 62 is positioned at the circumferential surface grinding position Pp. The holding device 63 is positioned at the outer ring grinding position Po in an empty state in which the outer ring Wa and the inner ring Wb are not attracted.

次に、制御装置30は、次の外輪Wabを保持装置62に磁気力によって固定する(図7E参照)。そして、制御装置30は、外周面研削プログラムに基づき外輪Wabの外周面研削を制御する。また、制御装置30は、内輪軌道溝面研削プログラムに基づき内輪Wbaの内輪軌道溝面研削を制御する。さらに、制御装置30は、外輪超仕上げ研削プログラムに基づき外輪Waaの外輪軌道溝面超仕上げ研削を制御する(図7E参照)。これらの制御は、平行して行われる。   Next, the control device 30 fixes the next outer ring Wab to the holding device 62 by magnetic force (see FIG. 7E). And the control apparatus 30 controls the outer peripheral surface grinding of the outer ring Wab based on an outer peripheral surface grinding program. Further, the control device 30 controls the inner ring raceway surface grinding of the inner ring Wba based on the inner ring raceway surface grinding program. Further, the control device 30 controls the outer ring raceway surface super finishing grinding of the outer ring Waa based on the outer ring super finishing grinding program (see FIG. 7E). These controls are performed in parallel.

また、制御装置30は、旋回アーム3dを旋回させるとともに砥石9dを回転及び下降させ、砥石9dを保持装置61上の外輪Waaの軌道溝面に接触させて外輪超仕上げ研削を行い、外輪超仕上げ研削を完了後、砥石9dを待機位置へ退避させる。制御装置30は、外輪Waaの外輪軌道溝面超仕上げ研削が完了したら、保持装置61の磁気吸着力を解除し、外輪Waaを保持装置61から取り出す(図7E参照)。   Further, the control device 30 turns the turning arm 3d, rotates and lowers the grindstone 9d, and contacts the grindstone 9d with the raceway surface of the outer ring Waa on the holding device 61 to perform super-finishing of the outer ring, thereby super-finishing the outer ring. After the grinding is completed, the grindstone 9d is retracted to the standby position. When the outer ring raceway surface superfinishing grinding of the outer ring Waa is completed, the control device 30 releases the magnetic attraction force of the holding device 61 and takes out the outer ring Waa from the holding device 61 (see FIG. 7E).

次に、制御装置30は、外輪Waaの外周面研削、及び内輪Wbaの内輪軌道溝面研削が完了したら、旋回テーブル5を90度旋回させる(図7F参照)。これにより、保持装置61は、周面研削位置Ppに位置決めされ、保持装置62は、外輪研削位置Poに位置決めされ、保持装置64は、超仕上げ研削位置Pbに位置決めされる。そして、保持装置63は、外輪Wa及び内輪Wbが吸着されていない空の状態で内輪研削位置Piに位置決めされることになる。   Next, when the outer peripheral surface grinding of the outer ring Waa and the inner ring raceway groove surface grinding of the inner ring Wba are completed, the control device 30 turns the turning table 5 by 90 degrees (see FIG. 7F). As a result, the holding device 61 is positioned at the circumferential grinding position Pp, the holding device 62 is positioned at the outer ring grinding position Po, and the holding device 64 is positioned at the superfinishing grinding position Pb. The holding device 63 is positioned at the inner ring grinding position Pi in an empty state in which the outer ring Wa and the inner ring Wb are not attracted.

制御装置30は、次の内輪Wbbを保持装置61に磁気力によって固定する(図7G参照)。そして、制御装置30は、内周面研削プログラムに基づき内輪Wbbの内周面研削を制御し、外輪軌道溝面研削プログラムに基づき外輪Wabの外輪軌道溝面研削(内周面)を制御し、内輪軌道溝面超仕上げ研削プログラムに基づき内輪Wbaの内輪軌道溝面超仕上げ研削(外周面)を制御する(図7G参照)。これらの制御は、平行して行われる。   Control device 30 fixes the next inner ring Wbb to holding device 61 by magnetic force (see FIG. 7G). The control device 30 controls the inner peripheral surface grinding of the inner ring Wbb based on the inner peripheral surface grinding program, and controls the outer ring raceway groove surface grinding (inner peripheral surface) of the outer ring Wab based on the outer ring raceway groove surface grinding program. Based on the inner ring raceway groove surface superfinishing grinding program, the inner ring raceway groove surface superfinishing grinding (outer peripheral surface) of the inner ring Wba is controlled (see FIG. 7G). These controls are performed in parallel.

次に、制御装置30は、内輪Wbaの内輪超仕上げ加工を完了後、砥石9dを待機位置へ退避させる。そして、制御装置30は、保持装置64の磁気吸着力を解除し、内輪Wbaを保持装置64から取り出す(図7G参照)。   Next, the control device 30 retracts the grindstone 9d to the standby position after completing the inner ring super finishing of the inner ring Wba. And the control apparatus 30 cancels | releases the magnetic attraction force of the holding | maintenance apparatus 64, and takes out the inner ring | wheel Wba from the holding | maintenance apparatus 64 (refer FIG. 7G).

(4.電磁チャックの作用)
次に、保持装置61〜64(電磁チャック)の作用について詳細に説明する。説明には、代表として、外輪Waaを磁気による吸着力(磁気吸引力)によって保持装置61(電磁チャック)の磁極部172の保持面172aに吸引固定する場合について説明する。
(4. Action of electromagnetic chuck)
Next, the operation of the holding devices 61 to 64 (electromagnetic chuck) will be described in detail. As a representative, a case will be described in which the outer ring Waa is attracted and fixed to the holding surface 172a of the magnetic pole portion 172 of the holding device 61 (electromagnetic chuck) by magnetic attraction (magnetic attraction).

まず、外輪Waaが、磁極部172の保持面172aに載置されていない状態について説明する。図8に示すように、外輪Waaが磁極部172の保持面172a上に載置されていない状態において、押圧部材180を構成する最表面部材181,支持体182,及びバネ183(弾性体)を上述に従い溝部173内に配置する。本実施形態においては、バネ183は、一つの溝部173に、例えば5個ずつ配置する(図5参照)。これにより、最表面部材181は、溝部173の開口から上方へ若干、突出(図8の寸法L参照)する。これは、バネ183が、圧縮されておらず自由高さ(自由長)状態であることによる。このときの溝部173の開口から突出する寸法は、例えば数十μmオーダーである。ただし、この態様には限らず、溝部173の開口から突出する寸法は、押圧部材180が、溝部173内に完全に収容されるのであれば、いくつでもよく任意に設定すればよい。   First, a state where the outer ring Waa is not placed on the holding surface 172a of the magnetic pole portion 172 will be described. As shown in FIG. 8, in the state where the outer ring Waa is not placed on the holding surface 172a of the magnetic pole portion 172, the outermost surface member 181, the support 182 and the spring 183 (elastic body) constituting the pressing member 180 are moved. It arrange | positions in the groove part 173 according to the above-mentioned. In the present embodiment, for example, five springs 183 are arranged in one groove 173 (see FIG. 5). Thereby, the outermost surface member 181 slightly protrudes upward from the opening of the groove 173 (see dimension L in FIG. 8). This is because the spring 183 is not compressed and is in a free height (free length) state. At this time, the dimension protruding from the opening of the groove 173 is, for example, on the order of several tens of μm. However, the present invention is not limited to this aspect, and the dimensions protruding from the opening of the groove 173 may be any number as long as the pressing member 180 is completely accommodated in the groove 173.

次に、磁極用鋼材(図略)に巻いたコイル(図略)に通電することによって磁極部172を磁化する。これにより、各磁極部172の保持面172aに外輪Waaの底面が磁気力によって吸引され、外輪Waaが各保持面172a上に密着固定される(図6参照)。   Next, the magnetic pole portion 172 is magnetized by energizing a coil (not shown) wound around the steel for a magnetic pole (not shown). As a result, the bottom surface of the outer ring Waa is attracted by the magnetic force to the holding surface 172a of each magnetic pole portion 172, and the outer ring Waa is tightly fixed on each holding surface 172a (see FIG. 6).

外輪Waaが磁極部172の保持面172a上に固定された状態においては、外輪Waaの下面が、溝部173の開口から上方へ突出していた最表面部材181の上面を下方に押圧して、下方に移動させる。このとき、最表面部材181の上面と保持面172aとが同一面高さとなる。従って、バネ183(弾性体)が、最表面部材181,支持体182を介して下方に押され、圧縮方向に所定の撓み量δ(=L)だけ撓む。このとき、一個のバネ183のバネ定数をkとすると、バネ183の1個あたりの押圧力fgは、fg=kδとなる。これにより、全部でN個配置されるバネ183は、撓んだ反力として、押圧力Fg(=fg×N)で外輪Waaを吸着方向と反対方向に押圧する。   In a state where the outer ring Waa is fixed on the holding surface 172a of the magnetic pole portion 172, the lower surface of the outer ring Waa presses the upper surface of the outermost surface member 181 protruding upward from the opening of the groove portion 173 downward, and moves downward. Move. At this time, the upper surface of the outermost member 181 and the holding surface 172a have the same height. Accordingly, the spring 183 (elastic body) is pushed downward via the outermost surface member 181 and the support body 182 and is bent by a predetermined deflection amount δ (= L) in the compression direction. At this time, if the spring constant of one spring 183 is k, the pressing force fg per spring 183 is fg = kδ. Thereby, the N springs 183 arranged in total press the outer ring Waa in the direction opposite to the attracting direction with a pressing force Fg (= fg × N) as a reaction force deflected.

このとき、押圧力Fgは、磁極部172の磁化による外輪Waa(工作物W)に対する吸着力Fmagよりも小さな押圧力となるよう設定されている(Fmag>Fg)。このため、押圧部材180(最表面部材181、支持体182、及びバネ183)は、外輪Waaの保持面172a上への固定によって、最表面部材181が外輪Waaの下面と当接し、溝部173の内部に確実に押し込まれ収容される。   At this time, the pressing force Fg is set to be a pressing force smaller than the attractive force Fmag to the outer ring Waa (workpiece W) due to the magnetization of the magnetic pole portion 172 (Fmag> Fg). For this reason, the pressing member 180 (the outermost surface member 181, the support 182, and the spring 183) is fixed to the holding surface 172 a of the outer ring Waa, so that the outermost surface member 181 contacts the lower surface of the outer ring Waa, It is securely pushed into the interior.

上記より、外輪Waa(工作物W)と保持装置61との間の摩擦力Fは、(数1)式によって求められる。
(数1)
F=μ1×(Fmag−N×fg)+μ2×N×fg
F;外輪Waa(工作物W)と保持装置61との間の摩擦力
μ1;各磁極部172の8個の保持面172a(上面)と外輪Waaの下面との間の摩擦係数
Fmag;磁極部172の磁化による外輪Waaに対する吸着力
μ2;8個の最表面部材181と外輪Waaの下面との間の摩擦係数
N;バネ183の総個数
fg;バネ183の一個あたりの押圧力(バネ荷重)(fg=kδ)
From the above, the frictional force F between the outer ring Waa (workpiece W) and the holding device 61 is obtained by the equation (1).
(Equation 1)
F = μ1 × (Fmag−N × fg) + μ2 × N × fg
F: Friction force between the outer ring Waa (workpiece W) and the holding device 61 μ1; Friction coefficient between the eight holding surfaces 172a (upper surface) of each magnetic pole portion 172 and the lower surface of the outer ring Waa Fmag: Magnetic pole portion Adsorption force μ2 on the outer ring Waa due to magnetization of 172; friction coefficient between the eight outermost surface members 181 and the lower surface of the outer ring Waa N; total number of springs 183 fg; pressing force per one spring 183 (spring load) (Fg = kδ)

上記(数1)式からわかるように、吸着力Fmagが変化した場合には、バネ183の総個数Nを変更する、若しくはバネ183の1個あたりの押圧力fg(バネ荷重)を構成するバネ定数k、または撓み量δの少なくとも一方を変更することによって、対応すればよい。そして、摩擦力Fが所定の値以上となるよう、各数値を設定する。なお、摩擦力Fの所定の値は、事前に実験等によって設定すればよい。   As can be seen from the above equation (1), when the attractive force Fmag changes, the total number N of the springs 183 is changed, or the springs constituting the pressing force fg (spring load) per one spring 183 What is necessary is just to respond | correspond by changing at least one of the constant k or bending amount (delta). Each numerical value is set so that the frictional force F is equal to or greater than a predetermined value. In addition, what is necessary is just to set the predetermined value of the frictional force F by experiment etc. beforehand.

上記より、保持装置61だけでなく、保持装置61と同様の構成を有する保持装置62〜64においても、外輪Waa(工作物W)又は内輪Wba(工作物W)が、保持装置61〜64の各磁極部172の各保持面172aに十分な摩擦力Fによって強固に固定される。これにより、工作物Wは、初期に保持装置61〜64の上面に配置された位置からずれないので、精度よく各研削ができる。   From the above, not only the holding device 61 but also the holding devices 62 to 64 having the same configuration as the holding device 61, the outer ring Waa (workpiece W) or the inner ring Wba (workpiece W) is the same as the holding devices 61 to 64. It is firmly fixed to each holding surface 172a of each magnetic pole portion 172 by a sufficient frictional force F. Thereby, since the workpiece W does not shift | deviate from the position initially arrange | positioned on the upper surface of the holding | maintenance apparatuses 61-64, each grinding | polishing can be performed accurately.

(5.実施形態による効果)
上述の説明から明らかなように、上記実施形態によれば、保持装置61〜64(電磁チャック)は、面板171上面に磁極部172及び隣り合う磁極部172の間に形成された溝部173を備える。そして、磁極部172の磁気力によって磁極部172の保持面172aに工作物Wを吸着し固定する電磁チャック本体170と、非磁性体で形成されて溝部173に配置され、工作物Wが磁極部172の上面に固定された場合、工作物Wの下面に対して、磁極部172による工作物Wに対する吸着力Fmag(磁気吸引力)よりも小さな押圧力Fg(=fg×N)で工作物Wを吸着方向と反対方向に押圧する押圧部材180を備える。
(5. Effect by embodiment)
As is clear from the above description, according to the above embodiment, the holding devices 61 to 64 (electromagnetic chucks) include the groove portion 173 formed between the magnetic pole portion 172 and the adjacent magnetic pole portion 172 on the upper surface of the face plate 171. . The magnetic chuck body 170 that attracts and fixes the workpiece W to the holding surface 172a of the magnetic pole portion 172 by the magnetic force of the magnetic pole portion 172 and the nonmagnetic material is disposed in the groove portion 173, and the workpiece W is disposed in the magnetic pole portion. When fixed to the upper surface of the workpiece 172, the workpiece W is applied to the lower surface of the workpiece W with a pressing force Fg (= fg × N) smaller than the attractive force Fmag (magnetic attractive force) of the magnetic pole portion 172 to the workpiece W. There is provided a pressing member 180 for pressing in the direction opposite to the suction direction.

このように、面板171上面に形成された溝部173に、非磁性体で形成された押圧部材180が配置され、工作物Wの下面に対して、押圧部材180が工作物Wを吸着方向と反対方向に押圧する。このとき、押圧部材180が工作物Wの下面を押圧する押圧力Fg(=fg×N)は、磁極部172による工作物Wに対する吸着力Fmagよりも小さな力である。このため、保持装置61〜64(電磁チャック)が工作物Wを磁気力によって面板171上に吸引し、工作物Wを固定する力を維持させながら、押圧部材180が工作物Wの下面を押圧することによって発生させる摩擦力Fを付与することができる。従って、工作物Wの下面と、保持装置61〜64(電磁チャック)の面板171との間の摩擦力に加え、工作物Wの下面と押圧部材180との間の摩擦力が追加されるので、研削加工時においても工作物Wは面板171上に良好に保持される。   In this way, the pressing member 180 formed of a non-magnetic material is disposed in the groove portion 173 formed on the upper surface of the face plate 171, and the pressing member 180 opposes the workpiece W against the lower surface of the workpiece W in the attracting direction. Press in the direction. At this time, the pressing force Fg (= fg × N) at which the pressing member 180 presses the lower surface of the workpiece W is smaller than the attracting force Fmag to the workpiece W by the magnetic pole portion 172. For this reason, the holding members 61 to 64 (electromagnetic chucks) attract the workpiece W onto the face plate 171 by magnetic force, and the pressing member 180 presses the lower surface of the workpiece W while maintaining the force for fixing the workpiece W. Thus, the frictional force F generated can be applied. Therefore, in addition to the frictional force between the lower surface of the workpiece W and the face plate 171 of the holding devices 61 to 64 (electromagnetic chuck), the frictional force between the lower surface of the workpiece W and the pressing member 180 is added. Even during grinding, the workpiece W is satisfactorily held on the face plate 171.

また、上記実施形態によれば、押圧部材180は、工作物Wが磁極部172の上面に載置されていない状態において、溝部173の開口から上方へ突出し、工作物Wが磁極部172の上面に固定された状態において、溝部173の内部に収容される。
これにより、圧縮された押圧部材180の反力で工作物Wの下面が押圧され、工作物Wの下面と押圧部材180との間に十分な大きさの摩擦力Fが発生する。このように、工作物Wが、磁極部172の上面に載置されていない状態において、押圧部材180を溝部173の開口から上方へ突出させておくことで、確実に工作物Wの下面と押圧部材180との間に摩擦力Fを発生させることができる。
Further, according to the above embodiment, the pressing member 180 protrudes upward from the opening of the groove portion 173 in a state where the workpiece W is not placed on the upper surface of the magnetic pole portion 172, and the workpiece W protrudes from the upper surface of the magnetic pole portion 172. In the state fixed to the groove portion 173, the groove portion 173 is accommodated.
Thereby, the lower surface of the workpiece W is pressed by the reaction force of the compressed pressing member 180, and a sufficiently large friction force F is generated between the lower surface of the workpiece W and the pressing member 180. As described above, when the workpiece W is not placed on the upper surface of the magnetic pole portion 172, the pressing member 180 protrudes upward from the opening of the groove portion 173, so that the lower surface of the workpiece W can be reliably pressed. A frictional force F can be generated between the member 180 and the member 180.

また、上記実施形態によれば、押圧部材180は、非磁性体で形成され、工作物Wの下面に当接する最表面部材181と、非磁性体で形成され、最表面部材181と溝部173の底面173bとの間に配置され、最表面部材181を工作物Wの下面に向かって付勢するバネ183(弾性体)と、を備える。
これにより、押圧部材180の押圧力は、バネ183の仕様や個数を変更することによって容易に調整できる。
In addition, according to the above embodiment, the pressing member 180 is formed of a nonmagnetic material and is formed of the outermost surface member 181 that contacts the lower surface of the workpiece W, and is formed of a nonmagnetic material, and includes the outermost surface member 181 and the groove portion 173. A spring 183 (elastic body) disposed between the bottom surface 173b and urging the outermost surface member 181 toward the lower surface of the workpiece W.
Thereby, the pressing force of the pressing member 180 can be easily adjusted by changing the specifications and the number of the springs 183.

また、上記実施形態によれば、最表面部材181は、最表面部材181と工作物Wの下面との間の摩擦係数μ2が、磁極部172の上面と工作物Wの下面との間の摩擦係数μ1より大きな高摩擦材によって形成される。これにより、容易に工作物Wと面板171との間で大きな摩擦力Fが得られる。   Further, according to the above embodiment, the outermost surface member 181 has a friction coefficient μ2 between the outermost surface member 181 and the lower surface of the workpiece W so that the friction between the upper surface of the magnetic pole part 172 and the lower surface of the workpiece W is the same. It is formed of a high friction material larger than the coefficient μ1. Thereby, a large frictional force F can be easily obtained between the workpiece W and the face plate 171.

また、上記実施形態によれば、弾性体は、バネ183であり、押圧部材180は、非磁性体で形成され、高摩擦材(最表面部材181)とバネ183との間に介在し、高摩擦材(最表面部材181)より高硬度材料(例えばSUS304)により形成される支持体182を備える。これにより、高摩擦材(最表面部材181)がバネ183によって摩耗することを防止することができる。   Further, according to the above-described embodiment, the elastic body is the spring 183, and the pressing member 180 is formed of a non-magnetic body, and is interposed between the high friction material (outermost surface member 181) and the spring 183, and has a high height. A support body 182 formed of a material harder than the friction material (outermost surface member 181) (eg, SUS304) is provided. Thereby, it is possible to prevent the high friction material (outermost surface member 181) from being worn by the spring 183.

また、上記実施形態によれば、複合研削盤1は、旋回軸線回りに旋回可能な旋回テーブル5と、旋回テーブル5における旋回軸線を中心とする円周上にそれぞれ設けられ、旋回軸線と平行な主軸線回りに回転可能な工作主軸812〜842(工作主軸822,832、842は図示しない)を有する複数の主軸台81〜84と、工作主軸812〜842に設けられ、それぞれ工作物Wの保持が可能な複数の保持装置61〜64と、旋回テーブル5に対して相対移動可能にそれぞれ設けられ、旋回テーブル5の旋回により工作物Wが順次搬送されることで、対応するそれぞれの研削旋回位置に工作物Wが位置決めされる場合に、対応する工作物Wを研削する複数の砥石と、を備え、保持装置61〜64は、上述の電磁チャックである。   Further, according to the above embodiment, the composite grinding machine 1 is provided on the turning table 5 that can turn around the turning axis, and on the circumference around the turning axis in the turning table 5, and is parallel to the turning axis. A plurality of spindle stocks 81 to 84 having work spindles 812 to 842 (work spindles 822, 832, and 842 are not shown) rotatable around the spindle and work spindles 812 to 842, respectively, for holding the workpiece W Can be moved relative to the swivel table 5, and the workpieces W are sequentially conveyed by the swivel of the swivel table 5. A plurality of grindstones for grinding the corresponding workpiece W when the workpiece W is positioned, and the holding devices 61 to 64 are the above-described electromagnetic chucks.

このように、ベアリングの内輪及び外輪の研削が連続的に多数行なわれる複合研削盤1の保持装置61〜64に本発明に係る電磁チャックを適用することによって、X−Y軸平面で研削抵抗を受ける工作物Wは、加工中に面板171上でズレることなく安定して研削できる。これにより、内輪Wb及び外輪Waは、加工精度が向上する。また、工作物Wとして、加工精度が必要な複数の部品(組合わせて製品となる部品)を同時加工する場合には、加工効率も向上する(工作物Wとして、ボールベアリング,プレーンベアリングなどのベアリング、その他の組合せ製品等を適用した場合)。   In this way, by applying the electromagnetic chuck according to the present invention to the holding devices 61 to 64 of the composite grinding machine 1 in which a large number of grindings of the inner ring and outer ring of the bearing are continuously performed, the grinding resistance is reduced on the XY axis plane. The workpiece W to be received can be stably ground without being displaced on the face plate 171 during processing. Thereby, the processing accuracy of the inner ring Wb and the outer ring Wa is improved. In addition, when a plurality of parts that require machining accuracy (parts that are combined to form a product) are simultaneously machined as the workpiece W, machining efficiency is also improved (such as ball bearings, plain bearings, etc. as the workpiece W). When bearings and other combination products are applied).

(6.その他)
なお、上記実施形態においては、本発明に係る保持装置61〜64(電磁チャック)を複合研削盤1に適用したが、この態様には限らない。保持装置61〜64はどのような加工機の保持装置として適用してもよい。また、加工機に限らず、部品を固定する固定具として、どのような装置に用いてもよい。これらによっても同様の効果が期待できる。
(6. Others)
In the above embodiment, the holding devices 61 to 64 (electromagnetic chucks) according to the present invention are applied to the composite grinding machine 1, but the present invention is not limited to this mode. The holding devices 61 to 64 may be applied as holding devices for any processing machine. Moreover, you may use for not only a processing machine but what kind of apparatus as a fixing tool which fixes components. The same effect can be expected by these.

また、上記実施形態においては、最表面部材181は、例えば、エポキシ樹脂に所定の粒径の砥粒を混ぜ込んで形成されるものと説明した。しかし、この態様には限らない。最表面部材181は、非磁性体で形成され、最表面部材181と工作物Wの下面との間の摩擦係数μ2が、磁極部172の保持面172aと工作物Wの下面との間の摩擦係数μ1より大きな高摩擦材であれば、どのような部材で形成されてもよい。たとえば、通常、自動車の変速機に使用されるクラッチ板を用いてもよい。また、さまざまな金属板の表面に凹凸を設けて摩擦係数を向上させたものでもよい。   Moreover, in the said embodiment, the outermost surface member 181 demonstrated that the abrasive grain of a predetermined particle size was mixed with an epoxy resin, for example. However, it is not limited to this aspect. The outermost surface member 181 is formed of a non-magnetic material, and the friction coefficient μ2 between the outermost surface member 181 and the lower surface of the workpiece W is a friction between the holding surface 172a of the magnetic pole portion 172 and the lower surface of the workpiece W. Any high friction material greater than the coefficient μ1 may be used. For example, you may use the clutch board normally used for the transmission of a motor vehicle. Moreover, the thing which provided the unevenness | corrugation on the surface of various metal plates, and improved the friction coefficient may be used.

また、上記実施形態においては、電磁チャックの磁極部172の磁化は、磁極用鋼材(図略)に巻いたコイル(図略)に通電することで実現するものとした。しかし、この態様には限らない。電磁チャックの磁極部172の磁化は、電磁チャック本体170内の永久磁石(図略)を移動することによって実現させる方式のものでもよい。これによっても同様の効果が得られる。   Moreover, in the said embodiment, the magnetization of the magnetic pole part 172 of an electromagnetic chuck shall be implement | achieved by supplying with electricity to the coil (not shown) wound around the steel material for magnetic poles (not shown). However, it is not limited to this aspect. Magnetization of the magnetic pole portion 172 of the electromagnetic chuck may be realized by moving a permanent magnet (not shown) in the electromagnetic chuck main body 170. This also provides the same effect.

1・・・複合研削盤、 2・・・ベッド、 4a,4b,4c・・・砥石台、 5・・・旋回テーブル、 9a,9b,9c・・・砥石車、 9d・・・砥石、 61〜64・・・保持装置(電磁チャック)、 170・・・電磁チャック本体、 171・・・面板、 172・・・磁極部、 172a・・・上面(保持面)、 173・・・溝部、 173a・・・側面、 173b・・・底面、 81〜84・・・主軸台、 180・・・押圧部材、 181・・・最表面部材、 182・・・支持体、 182a・・・側面、 183・・・バネ(弾性体)、 F・・・摩擦力、 Fg・・・押圧力(力)、 Fmag・・・吸着力(磁気吸引力)、 k・・・バネ定数、 N・・・個数、 W・・・工作物、 δ・・・撓み量、 μ1,μ2・・・摩擦係数。   DESCRIPTION OF SYMBOLS 1 ... Composite grinding machine, 2 ... Bed, 4a, 4b, 4c ... Grinding wheel base, 5 ... Turning table, 9a, 9b, 9c ... Grinding wheel, 9d ... Grinding wheel, 61 -64 ... Holding device (electromagnetic chuck), 170 ... Electromagnetic chuck body, 171 ... Face plate, 172 ... Magnetic pole part, 172a ... Upper surface (holding surface), 173 ... Groove part, 173a・ ・ ・ Side surface, 173b ・ ・ ・ bottom surface, 81 to 84 ・ ・ ・ headstock, 180 ・ ・ ・ pressing member, 181 ・ ・ ・ outmost surface member, 182 ・ ・ ・ support, 182a ・ ・ ・ side surface, 183 ・..Spring (elastic body), F ... friction force, Fg ... pressing force (force), Fmag ... adsorption force (magnetic attraction force), k ... spring constant, N ... number, W: Workpiece, δ: Deflection, μ1, μ2: Friction .

Claims (5)

外形が円形の面板上面に磁極部及び隣り合う前記磁極部の間に形成され溝部を備え、前記磁極部の磁気力によって前記磁極部の上面に工作物を吸着し固定する電磁チャック本体と、
前記溝部に配置され、前記工作物が前記磁極部の上面に固定された場合、前記工作物の下面に対して、前記磁極部による前記工作物に対する吸着力よりも小さな力で前記工作物を前記磁極部による吸着方向と反対方向に押圧する押圧部材と、を備え
前記磁極部は、前記溝部と交互に配置されるよう前記面板の軸線回りの周方向に等間隔で配置されるとともに、磁化されると前記周方向にS極及びN極が交互に形成され、
前記押圧部材は、
非磁性体で形成され、前記工作物の下面に当接する最表面部材と、
非磁性体で形成され、前記最表面部材と前記溝部の底面との間に配置され、前記最表面部材を前記工作物の下面に向かって付勢する弾性体と、を備え、
前記最表面部材は、前記最表面部材と前記工作物の前記下面との間の摩擦係数が、前記磁極部の上面と前記工作物の前記下面との間の摩擦係数より大きな高摩擦材によって形成される、電磁チャック。
An electromagnetic chuck body outer shape comprises a groove that will be formed between the magnetic pole magnetic pole portions and the adjacent face plate upper surface of the circular, it adsorbs to secure the workpiece by the magnetic force of the magnetic pole portion on the upper surface of the magnetic pole portions,
When the workpiece is fixed to the upper surface of the magnetic pole portion and disposed in the groove portion, the workpiece is applied to the lower surface of the workpiece with a force smaller than the attracting force of the magnetic pole portion to the workpiece. A pressing member that presses in a direction opposite to the attracting direction by the magnetic pole part ,
The magnetic pole portions are arranged at equal intervals in the circumferential direction around the axis of the face plate so as to be alternately arranged with the groove portions, and when magnetized, S poles and N poles are alternately formed in the circumferential direction,
The pressing member is
An outermost member formed of a non-magnetic material and in contact with the lower surface of the workpiece;
An elastic body formed of a non-magnetic material, disposed between the outermost surface member and the bottom surface of the groove, and biasing the outermost surface member toward the lower surface of the workpiece;
The outermost surface member is formed of a high friction material in which a friction coefficient between the outermost surface member and the lower surface of the workpiece is larger than a friction coefficient between the upper surface of the magnetic pole part and the lower surface of the workpiece. The electromagnetic chuck.
前記押圧部材は、
前記工作物が前記磁極部の上面に載置されていない状態において、前記溝部の開口から上方へ突出し、
前記工作物が前記磁極部の上面に固定された状態において、前記溝部の内部に収容される、請求項1に記載の電磁チャック。
The pressing member is
In a state where the workpiece is not placed on the top surface of the magnetic pole part, it protrudes upward from the opening of the groove part,
The electromagnetic chuck according to claim 1, wherein the workpiece is accommodated in the groove portion in a state where the workpiece is fixed to an upper surface of the magnetic pole portion.
前記弾性体は、バネであり、
前記押圧部材は、非磁性体で形成され、前記高摩擦材と前記バネとの間に介在し、前記高摩擦材より高硬度材料により形成される支持体を備える、請求項1又は2に記載の電磁チャック。
The elastic body is a spring;
The pressing member is formed of a nonmagnetic material, interposed between the spring and the high friction material comprises a support body formed by a high hardness material than the high friction material according to claim 1 or 2 Electromagnetic chuck.
旋回軸線回りに旋回可能な旋回テーブルと、
前記旋回テーブルにおける前記旋回軸線を中心とする円周上にそれぞれ設けられ、前記旋回軸線と平行な主軸線回りに回転可能な工作主軸を有する複数の主軸台と、
複数の前記工作主軸に設けられ、それぞれ工作物の保持が可能な複数の保持装置と、
前記旋回テーブルに対して相対移動可能にそれぞれ設けられ、前記旋回テーブルの旋回により前記工作物が順次搬送されることで、対応するそれぞれの研削旋回位置に前記工作物が位置決めされる場合に、対応する前記工作物を研削する複数の砥石と、
を備え、
前記保持装置は、請求項1〜の何れか一項に記載の電磁チャックである、複合研削盤。
A swivel table capable of swiveling around a swivel axis;
A plurality of headstocks each having a work spindle that is provided on a circumference around the swivel axis in the swivel table and is rotatable about a main axis parallel to the swivel axis;
A plurality of holding devices provided on the plurality of work spindles, each capable of holding a workpiece;
Corresponding to the case where the workpiece is positioned at each of the corresponding grinding turning positions by sequentially moving the workpiece by turning the turning table. A plurality of grindstones for grinding the workpiece;
With
The composite grinding machine, wherein the holding device is the electromagnetic chuck according to any one of claims 1 to 3 .
前記電磁チャックの前記面板は、前記軸線が前記主軸台の前記主軸線と一致するよう配置され、
前記工作物は、内周面と外周面とを備えてリング状に形成されるとともに、中心軸線が前記主軸線と一致するよう前記面板上面に固定され、
前記砥石は、前記中心軸線回りに回転する前記工作物の前記内周面又は前記外周面に押し付けられて前記内周面又は前記外周面を研削する、請求項4に記載の複合研削盤。
The face plate of the electromagnetic chuck is disposed such that the axis coincides with the main axis of the headstock,
The workpiece includes an inner peripheral surface and an outer peripheral surface and is formed in a ring shape, and is fixed to the upper surface of the face plate so that a center axis coincides with the main axis
5. The composite grinding machine according to claim 4, wherein the grindstone is pressed against the inner peripheral surface or the outer peripheral surface of the workpiece rotating around the central axis to grind the inner peripheral surface or the outer peripheral surface .
JP2015113842A 2015-06-04 2015-06-04 Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck Expired - Fee Related JP6589391B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015113842A JP6589391B2 (en) 2015-06-04 2015-06-04 Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck
CN201610388363.6A CN106239355B (en) 2015-06-04 2016-06-02 Electromagnetic chuck and multifunctional grinding machine with same
DE102016110185.0A DE102016110185A1 (en) 2015-06-04 2016-06-02 Electromagnetic chuck and multifunctional grinding machine with electromagnetic lining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113842A JP6589391B2 (en) 2015-06-04 2015-06-04 Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck

Publications (2)

Publication Number Publication Date
JP2017001102A JP2017001102A (en) 2017-01-05
JP6589391B2 true JP6589391B2 (en) 2019-10-16

Family

ID=57753368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113842A Expired - Fee Related JP6589391B2 (en) 2015-06-04 2015-06-04 Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck

Country Status (1)

Country Link
JP (1) JP6589391B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809310B2 (en) * 2017-03-14 2021-01-06 株式会社ジェイテクト Control method of electromagnetic chuck device and electromagnetic chuck device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1372287A (en) * 1918-07-31 1921-03-22 Pratt & Whitney Co Chuck
JP4488581B2 (en) * 2000-04-07 2010-06-23 株式会社ディスコ Grinding equipment
JP3165203U (en) * 2010-10-22 2011-01-06 パスカルエンジニアリング株式会社 Magnetic fixing device

Also Published As

Publication number Publication date
JP2017001102A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6459524B2 (en) Composite grinding machine and grinding method
CN106239355B (en) Electromagnetic chuck and multifunctional grinding machine with same
CN101224552B (en) Grinding method of a disk-shaped substrate and grinding apparatus
JP6575192B2 (en) Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck
CN102264508A (en) Device for grinding both sides of flat workpieces
CN101143422B (en) Method for milling inner circumference of disk shaped substrate
JP5968181B2 (en) Rolling bearing polishing equipment
JP3403418B2 (en) Double face polishing machine
CN204450169U (en) The accurate whole ball numerical control top gem of a girdle-pendant of a kind of follow-on four axles grinds machine
JP6589391B2 (en) Electromagnetic chuck and composite grinding machine equipped with electromagnetic chuck
JP2008290235A (en) Device for cylindrically grinding at least one section of component member
JP4681376B2 (en) Grinding method for workpiece grooves
JP2017001100A (en) Electromagnetic chuck and composite grinder with electromagnetic chuck
JP2019089194A (en) Work-piece support device, processing device, processing method, bearing manufacturing method, vehicle manufacturing method, and mechanical equipment manufacturing method
JP5206194B2 (en) Truing method and truing device for grinding wheel
JP2020529331A (en) Spindle for workpieces used in magnetic shoe type cylindrical grinders and magnetic shoe type cylindrical grinders
JP3141853U (en) Polishing tool and polishing apparatus using the polishing tool
WO2007099653A1 (en) Vertical-type double-head surface grinding machine for machining brake disk
JP2018149647A (en) Electromagnetic chuck device and grinder having electromagnetic chuck device
CN210010833U (en) Multi-direction floating power grinding head matched with robot for grinding burrs
JP2013137082A (en) Bearing and grinding device
KR200202579Y1 (en) Shoe type grinding machine
JP2019111620A (en) Chamfer device and chamfer method
JP2002036078A (en) Double face grinding device for thin disk work
JP3910207B1 (en) Polishing apparatus and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees