JP2002178109A - Method for producing continuously cast slab - Google Patents

Method for producing continuously cast slab

Info

Publication number
JP2002178109A
JP2002178109A JP2001299192A JP2001299192A JP2002178109A JP 2002178109 A JP2002178109 A JP 2002178109A JP 2001299192 A JP2001299192 A JP 2001299192A JP 2001299192 A JP2001299192 A JP 2001299192A JP 2002178109 A JP2002178109 A JP 2002178109A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic pole
slab
cast slab
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001299192A
Other languages
Japanese (ja)
Other versions
JP3617484B2 (en
Inventor
Yasuo Kishimoto
康夫 岸本
Kimiharu Yamaguchi
公治 山口
Hiromitsu Shibata
浩光 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001299192A priority Critical patent/JP3617484B2/en
Publication of JP2002178109A publication Critical patent/JP2002178109A/en
Application granted granted Critical
Publication of JP3617484B2 publication Critical patent/JP3617484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent variations of the thickness of surface layer in a cast slab and solute element concentration and to improve the yield of a product when double-layer cast slab is produced. SOLUTION: In an impressing state of a DC magnetic field over the whole width of the cast slab in the direction crossing the thickness of the cast slab with magnetic poles at a position in the lower part having a fixed distance in the casting direction from molten metal surface in a continuous casting mold, in the lower part of these magnetic poles, only the base molten steel is supplied and on the other hand, in the upper part of these magnetic poles, the base molten steel together with a specified element are supplied. In this way, when the double-layer cast slab concentrated with the specified element is produced, the supplying speed of the molten steel to the upper part of the magnetic poles, is made to 0.2<1.0 times of the speed consuming the molten steel with this solidification at the upper part from the upper end of the magnetic poles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造鋳片の製
造方法に関し、特に鋳片の表層部における特定元素の濃
度が高い複層鋳片の安定した製造を可能ならしめようと
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuous cast slab, and more particularly to a method for stably producing a multilayer slab having a high concentration of a specific element in a surface layer of the slab. is there.

【0002】[0002]

【従来の技術】従来から、成分組成が表層部と内部とで
異なる複層鋳片を連続鋳造によって製造する方法が種々
提案されている。例えば、特公平3−20295 号公報に
は、連鋳鋳型内の湯面レベルから一定の距離だけ離れた
下方位置で、鋳造方向と垂直な方向に鋳片全幅にわたっ
て直流磁束を付与し、その直流磁束によって形成される
静磁場帯を境界としてその上下に異なる2種類の金属溶
湯を供給する方法が記載されている。
2. Description of the Related Art Conventionally, various methods have been proposed for producing a multilayer cast slab in which the component composition differs between the surface layer portion and the inside by continuous casting. For example, Japanese Patent Publication No. 3-20295 discloses that a direct magnetic flux is applied over the entire width of a slab in a direction perpendicular to the casting direction at a position below a fixed distance from a molten metal level in a continuous casting mold. A method is described in which two different types of molten metal are supplied above and below a static magnetic field zone formed by a magnetic flux as a boundary.

【0003】しかしながら、上記特公平3−20295 号公
報に記載の方法は、鋳片の表層用溶鋼と内部用溶鋼とを
別々に精錬し、さらにそれらを別々のタンディッシュと
浸漬ノズルを介して鋳型内に供給するという極めて煩雑
なプロセスを必要とするため、生産障害を起こし易く、
またコストの上昇を招くという問題があった。
However, the method disclosed in Japanese Patent Publication No. 3-20295 described above separates the molten steel for the surface layer and the molten steel for the inside of the cast slab separately, and further molds them through separate tundishes and immersion nozzles. Because it requires an extremely complicated process of supplying the product inside, it is easy to cause production failure,
There is also a problem that the cost is increased.

【0004】この点、特開平8−257692号公報に記載の
方法は、メニスカスから一定距離下方において鋳型全幅
にわたり直流磁界を印加して制動域を形成しつつ、その
上部および下部にノズル吐出孔を有する浸漬ノズルを用
いて一定組成の溶鋼をそれぞれ注入し、さらにワイヤー
を用いて合金元素を制動域よりも上部の溶鋼プールに連
続的に供給しつつ溶鋼注入流による撹拌を行うことによ
って、表層の合金元素濃度が均一な鋳片を製造する方法
であり、プロセスが簡素であるため、上記のような問題
は発生しない。
In this respect, the method described in Japanese Patent Application Laid-Open No. Hei 8-257692 discloses a method in which a DC magnetic field is applied over the entire width of a mold below a certain distance from a meniscus to form a braking region, and nozzle discharge holes are formed at the upper and lower portions. By injecting molten steel of a constant composition using the immersion nozzle having, and further stirring the molten steel by the molten steel injection flow while continuously supplying the alloy element to the molten steel pool above the braking zone using a wire, This is a method for producing a slab having a uniform alloy element concentration, and the process is simple, so that the above-described problem does not occur.

【0005】しかしながら、上記の方法では、磁場帯の
上部、下部への溶鋼の分配を浸漬ノズル内で行う必要が
あるところ、溶鋼の連続鋳造プロセスにおいては浸漬ノ
ズルの吐出孔への非金属介在物の付着や脱落あるいはノ
ズル吐出孔の溶損といった現象が不可避に発生するた
め、鋳造中に上部、下部への溶鋼の分配比が変動すると
いう問題があった。このような変動は鋳造中に検知でき
ないため、鋳造中に磁場帯下部に対して上部への溶鋼の
供給比が増加した場合には、その変動がわずかであって
も上下溶鋼の境界が下方に移動して鋳片表層の厚みが増
加するのみならず、表層の溶質元素濃度が低下するため
に、製品品質のばらつきを生じる。また、特にこの変動
が大きい場合には、境界が磁場帯から外れて上部溶鋼が
下方に流出することになる結果、製品の歩留りが著しく
低下するという問題があった。
[0005] However, in the above method, the distribution of molten steel to the upper and lower portions of the magnetic field zone must be performed in the immersion nozzle. In the continuous casting process of molten steel, non-metallic inclusions in the discharge hole of the immersion nozzle are required. Inevitably, phenomena such as adhesion and detachment of the steel or erosion of the nozzle discharge hole occur, so that there is a problem that the distribution ratio of the molten steel to the upper part and the lower part fluctuates during casting. Since such fluctuations cannot be detected during casting, if the supply ratio of molten steel to the upper part relative to the lower part of the magnetic field zone increases during casting, even if the fluctuation is slight, the boundary between the upper and lower molten steels will be lower. Not only does the slab surface move to increase the thickness of the slab surface layer, but also the product quality varies because the solute element concentration in the surface layer decreases. In particular, when this variation is large, the boundary deviates from the magnetic field zone and the upper molten steel flows downward, resulting in a problem that the product yield is significantly reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の諸問
題を有利に解決するもので、鋳片表層の厚みや溶質元素
濃度の変動を効果的に防止できるだけでなく、製品の歩
留りを大幅に向上させることができる複層鋳片の安定し
た製造方法を提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and not only can effectively prevent fluctuations in the thickness of the slab surface layer and the concentration of solute elements, but also significantly increase the product yield. It is an object of the present invention to propose a method for stably producing a multilayer slab which can be improved.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上記
の問題を解決すべく鋭意研究を重ねた結果、以下に述べ
る知見を得た。 1)磁場帯上部への溶鋼供給比が低下した場合の鋳型内
での溶質濃度分布 発明者らは、鋳造途中における浸漬ノズルの回収による
上下流量比の調査と、回収直前に鋳造した鋳片の調査を
行うことによって、次の知見を得た。磁場帯上部への溶
鋼供給速度が、磁極上端より上部で凝固により消費され
る溶鋼の消費速度よりも大きく、かつ磁極下端より上部
で凝固により消費される溶鋼の消費速度よりも小さい場
合、上下溶鋼の境界は磁極の上端と下端の間に存在す
る。この磁極の上端と下端の間では、磁場による制動に
より溶鋼の流動が著しく抑制されるため、上下溶鋼は混
合せず、その境界は溶鋼の供給速度比のわずかな変化に
応じて上下に移動する。一方、磁場帯上部への溶鋼供給
速度が、磁極上端より上部で凝固により消費される溶鋼
の消費速度よりも小さい場合には、磁極の上端と下端と
の間では磁極上端より上の領域での溶鋼の供給不足を補
うため、磁場により整流化された上向きの緩やかな流れ
が発生する。また、磁極上端より上の領域では磁場が急
激に減少して溶鋼の混合が進行するため、上下溶鋼の境
界は磁極上端で一定となる。すなわち、磁場帯の上部へ
の溶鋼供給速度をその消費速度よりも低下させることに
より、磁場帯を全体にわたって上向きの流れを有する整
流域とすることができ、その結果、上下溶鋼の境界を磁
極上端部に固定することが可能となる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and have obtained the following findings. 1) Distribution of solute concentration in the mold when the supply ratio of molten steel to the upper part of the magnetic field zone is reduced The inventors investigated the vertical flow rate ratio by recovering the immersion nozzle during casting, and examined the slab cast just before the recovery. The following findings were obtained by conducting the survey. If the molten steel supply rate to the upper part of the magnetic field zone is higher than the consumption rate of molten steel consumed by solidification above the upper end of the magnetic pole and smaller than the consumption rate of molten steel consumed by solidification above the lower end of the magnetic pole, Boundary exists between the upper and lower ends of the magnetic pole. Between the upper and lower ends of this magnetic pole, the flow of the molten steel is significantly suppressed by the braking by the magnetic field, so that the upper and lower molten steels do not mix, and the boundary moves up and down according to a slight change in the molten steel feed rate ratio . On the other hand, when the molten steel supply rate to the upper part of the magnetic field zone is smaller than the consumption rate of the molten steel consumed by solidification above the upper end of the magnetic pole, in the region above the upper end of the magnetic pole between the upper end and the lower end of the magnetic pole. To compensate for the supply shortage of molten steel, a gentle upward flow rectified by the magnetic field is generated. Further, in a region above the upper end of the magnetic pole, the magnetic field sharply decreases and the mixing of the molten steel proceeds, so that the boundary between the upper and lower molten steels becomes constant at the upper end of the magnetic pole. In other words, by lowering the molten steel supply rate to the upper part of the magnetic field zone from its consumption rate, the magnetic field zone can be made into a rectification region having an upward flow over the whole, and as a result, the boundary between the upper and lower molten steels becomes the upper end of the magnetic pole. It becomes possible to fix to the part.

【0008】2)溶鋼分配比の変動 前述したように、磁場帯の上下部への溶鋼分配比はノズ
ル吐出孔への非金属介在物の付着や脱落あるいはノズル
吐出孔の溶損により変化する。この際、磁場帯上部への
溶鋼供給速度の変化は、設計された供給比に対し概ね20
%程度の変化を繰り返しつつ、その平均値は徐々に増加
あるいは減少していく。この平均値の増減は鋳造する鋼
種や鋳造時間によって変化する。なお、複数の吐出孔を
有する浸漬ノズルで溶鋼を分配供給する場合、その供給
比は吐出孔の断面積比や吐出孔形状などで決定される
が、この供給比は、水を用いたモデル実験による流量比
の実測などにより決定することが可能である。
2) Fluctuation of molten steel distribution ratio As described above, the distribution ratio of molten steel to the upper and lower portions of the magnetic field zone changes due to the attachment or detachment of nonmetallic inclusions to the nozzle discharge holes or the erosion of the nozzle discharge holes. At this time, the change in the molten steel supply rate to the upper part of the magnetic field zone is approximately 20% of the designed supply ratio.
While repeating the change of about%, the average value gradually increases or decreases. The increase or decrease in the average value varies depending on the type of steel to be cast and the casting time. Note that when distributing and supplying molten steel using an immersion nozzle having a plurality of discharge holes, the supply ratio is determined by the cross-sectional area ratio of the discharge holes, the shape of the discharge holes, and the like. It can be determined by actual measurement of the flow rate ratio by the following method.

【0009】本発明は、上記の知見に基づいて開発され
たものであり、その要旨構成は次のとおりである。すな
わち、本発明は、溶融金属の連続鋳造に際し、連鋳鋳型
内の湯面レベルから鋳造方向に一定の距離下方の位置に
おいて、磁極により鋳片の厚みを横切る向きに鋳片全幅
にわたり直流磁場を印加した状態で、該磁極の下部に対
しては母溶鋼のみを、一方該磁極の上部に対しては母溶
鋼と特定元素を併せて供給することにより、鋳片の表層
に特定元素が濃化した複層鋳片を製造する連続鋳造方法
において、該磁極の上部に対する溶鋼の供給速度を、磁
極上端より上部において凝固により溶鋼が消費される速
度の 0.2倍以上 1.0倍未満とすることを特徴とする連続
鋳造鋳片の製造方法である。
The present invention has been developed based on the above findings, and the gist configuration thereof is as follows. That is, in the present invention, at the time of continuous casting of molten metal, a DC magnetic field over the entire width of the slab in a direction crossing the thickness of the slab by the magnetic pole, at a position below a certain distance in the casting direction from the molten metal level in the continuous casting mold. In the applied state, the specific element is concentrated on the surface layer of the slab by supplying only the mother molten steel to the lower part of the magnetic pole and supplying the mother molten steel and the specific element together to the upper part of the magnetic pole. In a continuous casting method for producing a multilayered cast slab, the feed rate of molten steel to the upper part of the magnetic pole is 0.2 times or more and less than 1.0 times the rate at which molten steel is consumed by solidification above the upper end of the magnetic pole. This is a method for producing a continuous cast slab.

【0010】また、本発明において、連鋳鋳型内部への
溶鋼の供給は、磁極の上部への溶鋼の供給速度が磁極上
端より上部において凝固により消費される溶鋼の消費速
度の0.3倍以上 0.8倍以下となるよう設計された、上下
2段の吐出孔を有する浸漬ノズルを用いて行うことが好
ましい。
In the present invention, the supply rate of molten steel into the continuous casting mold is 0.3 to 0.8 times the consumption rate of molten steel consumed by solidification above the top of the magnetic pole. It is preferable to use an immersion nozzle having two upper and lower discharge holes designed to be as follows.

【0011】[0011]

【発明の実施の形態】以下、本発明を図面に従い具体的
に説明する。図1に、本発明に従う溶鋼の注入要領の一
例を模式で示す。図中、番号1は鋳型、2は浸漬ノズ
ル、3は磁極(例えば電磁石)であり、この磁極3によ
り、鋳片の厚み方向に鋳片全幅にわたって直流磁場を印
加できるようになっている。また4は、上部溶鋼(溶質
元素が濃化した溶鋼)と下部溶鋼(母溶鋼)との境界で
あり、この境界4は磁極3の上端と一致する。さらに、
5は浸漬ノズル2の下部吐出孔、6は上部吐出孔であ
り、番号7,8で下部吐出孔および上部吐出孔からの注
入流を示す。9は溶質元素(ワイヤー)、10は凝固シェ
ルであり、11で直流磁場帯の下部から上部ヘの溶鋼の上
昇流を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 schematically shows an example of an injection procedure of molten steel according to the present invention. In the figure, reference numeral 1 denotes a mold, 2 denotes an immersion nozzle, and 3 denotes a magnetic pole (for example, an electromagnet). The magnetic pole 3 enables a DC magnetic field to be applied in the thickness direction of the slab over the entire width of the slab. Reference numeral 4 denotes a boundary between the upper molten steel (the molten steel in which the solute elements are concentrated) and the lower molten steel (the mother molten steel). The boundary 4 coincides with the upper end of the magnetic pole 3. further,
Reference numeral 5 denotes a lower discharge hole of the immersion nozzle 2, and 6 denotes an upper discharge hole. Numerals 7 and 8 denote injection flows from the lower discharge hole and the upper discharge hole. 9 is a solute element (wire), 10 is a solidified shell, and 11 shows the upward flow of molten steel from the lower part to the upper part of the DC magnetic field zone.

【0012】さて、本発明では、磁極の上部への溶鋼の
供給速度を磁極上端より上部で凝固により消費される溶
鋼の消費速度の 1.0倍未満としているため、上下溶鋼の
境界4は常に磁極上端で一定であり、従って添加した溶
質元素濃度の高い鋳片表層の厚みも一定となる。また、
凝固量に対し不足する溶鋼は下部から磁極部を通って上
部に供給されるため、上部に供給される母溶鋼と特定元
素との比は常に一定であり、従って鋳片表層の溶質元素
濃度も一定となる。しかしながら、上部への溶鋼の供給
量があまりに少なくなると、逆に緩やかに流入する下部
からの流入量が増加し、上部領域での撹拌効果が低減
し、鋳片表層部の濃度が均一にならなくなるので、磁極
の上部への溶鋼の供給速度は磁極上端より上部で凝固に
より消費される溶鋼の消費速度の0.2 倍以上とする必要
がある。好ましくは 0.3倍以上である。
In the present invention, the supply speed of molten steel to the upper part of the magnetic pole is set to be less than 1.0 times the consumption rate of molten steel consumed by solidification above the upper end of the magnetic pole. Therefore, the thickness of the surface layer of the slab having a high concentration of the added solute element is also constant. Also,
Since the molten steel that is insufficient for the solidification amount is supplied from the lower part to the upper part through the magnetic pole part, the ratio of the base molten steel supplied to the upper part and the specific element is always constant, and therefore the solute element concentration in the surface layer of the slab also It will be constant. However, if the supply of molten steel to the upper part becomes too small, the inflow from the lower part, which flows in slowly, on the contrary, increases, the stirring effect in the upper part decreases, and the concentration of the surface layer of the slab becomes non-uniform Therefore, the supply speed of molten steel to the upper part of the magnetic pole needs to be 0.2 times or more the consumption rate of molten steel consumed by solidification above the upper end of the magnetic pole. It is preferably at least 0.3 times.

【0013】また、上記したような鋳型上,下部への溶
鋼の供給を単一の浸漬ノズルを用いて行う場合には、磁
極の上部への溶鋼の供給速度を磁極上端より上部で凝固
により消費される溶鋼の消費速度が 0.3倍以上 0.8倍以
下となるように設計された、上下2段の吐出孔を有する
浸漬ノズルを用いることが好ましい。これは、前述した
ように、上下部への溶鋼供給比の変動が20%程度あると
いう知見に基づくものであり、このようなノズルを使用
した場合には、溶鋼供給比に変動が生じても、鋳片表層
の厚みおよび溶質元素濃度分布を一定とすることができ
る。
When the supply of molten steel to the upper and lower portions of the mold as described above is performed using a single immersion nozzle, the supply speed of the molten steel to the upper portion of the magnetic pole is increased by solidification above the upper end of the magnetic pole. It is preferable to use an immersion nozzle having two upper and lower discharge holes designed so that the consumption speed of the molten steel to be used is 0.3 times or more and 0.8 times or less. This is based on the finding that the variation of the molten steel supply ratio to the upper and lower portions is about 20%, as described above. When such a nozzle is used, the variation of the molten steel supply ratio occurs. In addition, the thickness and the solute element concentration distribution of the surface layer of the slab can be made constant.

【0014】なお、供給比の長期的な増加あるいは減少
に対しては、増加する鋼種の鋳造の場合には上部への供
給比が小さいノズルを、一方減少する鋼種の鋳造に際し
ては上部への供給比が大きめのノズルを予め使用するこ
とにより、長期間の連続鋳造を可能とすることができ
る。
For a long-term increase or decrease in the supply ratio, a nozzle having a small supply ratio to the upper part is used in the case of casting of an increasing steel type, while a nozzle to the upper part is used in casting of a decreasing steel type. By using a nozzle having a relatively high ratio in advance, continuous casting can be performed for a long period of time.

【0015】比較のため、特開平8−257692号公報に記
載の方法に従う溶鋼の供給要領を、図2に示す。この方
法では、磁極の上部への溶鋼の供給速度を磁極の上部で
凝固により消費される速度と同等かつ一定にすることに
よって、上下溶鋼の境界位置を磁場帯内で固定すること
が可能となる。しかしながら、前述したように、上下へ
の溶鋼の供給速度の比は鋳造中に不可避的に変動するた
め、上部への供給速度がわずかに大きくなっただけで
も、上下溶鋼の境界は下方に移動して、表層厚みの増加
や溶質元素濃度の低下をもたらす。また、特にこの変動
が大きい場合には、境界が磁場帯から外れて上部溶鋼の
溶質元素が下方に流出することになり、製品の歩留りを
著しく低下させてしまう。
For comparison, FIG. 2 shows a procedure for supplying molten steel according to the method described in Japanese Patent Application Laid-Open No. 8-257692. In this method, it is possible to fix the boundary position between the upper and lower molten steels in the magnetic field zone by making the supply speed of the molten steel to the upper part of the magnetic pole equal to and constant to the speed consumed by solidification at the upper part of the magnetic pole. . However, as described above, the ratio of the supply rates of molten steel to the upper and lower sides inevitably fluctuates during casting, so even if the supply rate to the upper part is slightly increased, the boundary between the upper and lower molten steels moves downward. This causes an increase in the surface layer thickness and a decrease in the solute element concentration. In particular, when this variation is large, the boundary deviates from the magnetic field zone and the solute element of the upper molten steel flows downward, which significantly lowers the product yield.

【0016】[0016]

【実施例】図1に示した連鋳鋳型を用い、次の条件(本
発明の適合例)で連続鋳造鋳片を製造した。 ・鋳型の内径寸法 長辺:1.2 m 短辺:0.26m 高さ:1.0 m ・直流磁場 印加位置(鋳型内湯面レベルから磁極の高さ中心までの
距離):0.6 m 磁極の高さ:0.2 m 鋳型内湯面レベルから磁極上端までの距離:0.5 m 印加磁場の強さ:0.3 T ・浸漬ノズル 上部吐出孔:2孔、吐出角θ=0°(水平方向)、孔の
大きさ16×31mm□ 下部吐出孔:2孔、吐出角θ=60°(下向き)、孔の大
きさ 77mmφ ・下部吐出孔から磁極の高さ中心までの距離h:−0.3
m ・上部吐出孔から磁極の高さ中心までの距離h′:0.2
m ・溶質元素(純Niワイヤー) 純Niワイヤーの供給位置:湯面 ・鋳造速度Vc :1.6 m/min
EXAMPLE A continuous cast slab was produced using the continuous casting mold shown in FIG. 1 under the following conditions (an example of adaptation of the present invention).・ Inner diameter of the mold Long side: 1.2 m Short side: 0.26 m Height: 1.0 m ・ DC magnetic field application position (distance from the level of the mold surface to the center of the magnetic pole height): 0.6 m Magnetic pole height: 0.2 m Distance from mold level in mold to top of magnetic pole: 0.5 m Strength of applied magnetic field: 0.3 T ・ Immersion nozzle Upper discharge hole: 2 holes, discharge angle θ = 0 ° (horizontal direction), hole size 16 × 31 mm □ Lower discharge hole: 2 holes, discharge angle θ = 60 ° (downward), hole size 77 mmφ ・ Distance h from lower discharge hole to center of height of magnetic pole: h: -0.3
m ・ Distance h 'from the upper discharge hole to the center of height of the magnetic pole: 0.2
m ・ Solute element (pure Ni wire) Supply position of pure Ni wire: hot surface ・ Casting speed Vc: 1.6 m / min

【0017】なお、上記の連鋳機における凝固殻の成長
厚d(m) は次式で与えられることが分かっている。 d= 0.022×(L/Vc)0.5 ここで、Lは湯面レベルから磁極上端までの距離
(m)、またVc は鋳造速度(m/min)である。従って、
上掲式から、上下プール境界部での凝固シェル厚さは12
mm程度であることが分かる。その結果、磁極上端よりも
上部で凝固する溶鋼の消費速度Qは0.39 t/minとなる。
一方、上部吐出孔からの溶鋼供給速度Q′については水
モデルなどから全スループットの 6.7%であることが分
かっており、Q′=0.234 t/min となる。従って、上部
吐出孔からの溶鋼供給速度Q′は、 Q′=0.6 Q(磁極上端よりも上部で凝固する溶鋼の消
費速度の 0.6倍) となる。
It is known that the growth thickness d (m) of the solidified shell in the above continuous caster is given by the following equation. d = 0.022 × (L / Vc) 0.5 where L is the distance (m) from the level of the molten metal to the top of the magnetic pole, and Vc is the casting speed (m / min). Therefore,
From the above formula, the solidified shell thickness at the upper and lower pool boundary is 12
It turns out that it is about mm. As a result, the consumption rate Q of the molten steel solidified above the upper end of the magnetic pole is 0.39 t / min.
On the other hand, the molten steel supply rate Q ′ from the upper discharge port is known to be 6.7% of the total throughput from a water model or the like, and Q ′ = 0.234 t / min. Therefore, the supply speed Q 'of molten steel from the upper discharge hole is Q' = 0.6 Q (0.6 times the consumption speed of molten steel solidified above the upper end of the magnetic pole).

【0018】また比較のため、図2に示した従来の溶鋼
供給要領(特開平8−257692号公報に開示の方法)で
も、連続鋳造鋳片を製造した。その際、鋳造条件を、 ・浸漬ノズル 上部吐出孔:2孔、吐出角θ=0°(水平方向)、孔の
大きさ26×32mm□ 下部吐出孔:2孔、吐出角θ=60°(下向き)、孔の大
きさ 75mmφ に変更し、その結果 ・上部吐出孔からの溶鋼供給速度Q′:Q′=Q、かつ ・下部吐出孔から磁極の高さ中心までの距離h:−0.1
m(磁極中心の下方0.1m)とした。それ以外の条件は本発
明の適合例と同じとした。
For comparison, continuous cast slabs were also produced by the conventional molten steel supply procedure shown in FIG. 2 (the method disclosed in Japanese Patent Application Laid-Open No. Hei 8-257692). At that time, the casting conditions were as follows: ・ Immersion nozzle Upper discharge hole: 2 holes, discharge angle θ = 0 ° (horizontal direction), hole size 26 × 32 mm □ Lower discharge hole: 2 holes, discharge angle θ = 60 ° ( (Downward), the hole size was changed to 75 mmφ. As a result, the molten steel supply speed Q ′ from the upper discharge hole Q ′: Q ′ = Q, and the distance h from the lower discharge hole to the center of the height of the magnetic pole h: −0.1
m (0.1 m below the center of the magnetic pole). Other conditions were the same as those of the applicable example of the present invention.

【0019】本発明の適合例および比較例の鋳片を比較
し、鋳片表層の厚みおよび濃度のばらつき(標準偏差)
について調べた結果を図3、図4に、また鋳片内部の濃
度が増加したことによる製品不良の発生率について調査
した結果を図5に示す。図3〜5に示したとおり、比較
例と比べて、適合例では表層厚みおよび表層濃度のばら
つきが格段に小さくなるだけでなく、不良品の発生率が
大幅に低減することが分かる。また、介在物の混入が原
因である鋳片内部の欠陥の発生率も半減することが分か
る。
The slabs of the conforming example and the comparative example of the present invention are compared, and the thickness and concentration of the slab surface layer are varied (standard deviation).
FIGS. 3 and 4 show the results of an investigation on the above, and FIG. 5 shows the results of an investigation on the incidence of product defects due to an increase in the concentration inside the slab. As shown in FIGS. 3 to 5, it can be understood that the variation in the surface layer thickness and the surface layer concentration is remarkably reduced and the occurrence rate of defective products is significantly reduced in the conforming example as compared with the comparative example. In addition, it can be seen that the incidence of defects inside the slab due to the inclusion of inclusions is reduced by half.

【0020】[0020]

【発明の効果】かくして、本発明によれば、鋳型内にお
ける上下溶鋼の境界が変化せず、また上部領域に供給さ
れる母溶鋼の供給速度も一定となるため、鋳片表層部の
厚みおよび溶質元素濃度のばらつきが極めて小さい複層
鋳片を安定して製造することができ、さらに溶質元素の
鋳型下方への流出も抑制できるため、製品の歩留りを格
段に向上させることができる。
As described above, according to the present invention, the boundary between the upper and lower molten steels in the mold does not change, and the supply speed of the mother molten steel supplied to the upper region becomes constant. Multilayer cast slabs with extremely small solute element variations can be stably manufactured, and furthermore, the outflow of solute elements below the mold can be suppressed, so that the product yield can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従う溶鋼の注入要領の一例を示す模
式図である。
FIG. 1 is a schematic diagram showing an example of a procedure for pouring molten steel according to the present invention.

【図2】 比較例に従う溶鋼の注入要領の一例を示す模
式図である。
FIG. 2 is a schematic diagram showing an example of a procedure for injecting molten steel according to a comparative example.

【図3】 本発明の実施例と比較例における、鋳片表層
の厚みのばらつき(標準偏差)を比較して示した図であ
る。
FIG. 3 is a diagram showing a comparison of a variation (standard deviation) in the thickness of a slab surface layer in an example of the present invention and a comparative example.

【図4】 本発明の実施例と比較例における、鋳片表層
のNi濃度のばらつき(標準偏差)を比較して示した図で
ある。
FIG. 4 is a view showing a comparison (variation (standard deviation)) of the Ni concentration in the surface layer of the cast slab in an example of the present invention and a comparative example.

【図5】 本発明の実施例と比較例における、鋳片内部
のNi濃度の増加による製品不良の発生率を比較して示し
た図である。
FIG. 5 is a diagram showing a comparison between the examples of the present invention and a comparative example in terms of the rate of occurrence of product defects due to an increase in the Ni concentration in the slab.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 磁極 4,4′上部溶鋼と下部溶鋼との境界 5 下部吐出孔 6 上部吐出孔 7 下部吐出孔からの注入流 8 上部吐出孔からの注入流 9 溶質元素(ワイヤー) 10 凝固シェル 11 溶鋼の上昇流 REFERENCE SIGNS LIST 1 mold 2 immersion nozzle 3 magnetic pole 4, boundary between upper molten steel and lower molten steel 5 lower discharge hole 6 upper discharge hole 7 injection flow from lower discharge hole 8 injection flow from upper discharge hole 9 solute element (wire) 10 Solidification shell 11 Upflow of molten steel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/108 B22D 11/108 D 11/11 11/11 D (72)発明者 柴田 浩光 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4E004 AA09 FB06 FB10 MB11 MB14──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 11/108 B22D 11/108 D 11/11 11/11 D (72) Inventor Hiromitsu Shibata Chiba, Chiba 1F Kawasaki-cho, Chuo-ku F-term in Kawasaki Steel Engineering Laboratory (reference) 4E004 AA09 FB06 FB10 MB11 MB14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属の連続鋳造に際し、連鋳鋳型内
の湯面レベルから鋳造方向に一定の距離下方の位置にお
いて、磁極により鋳片の厚みを横切る向きに鋳片全幅に
わたり直流磁場を印加した状態で、該磁極の下部に対し
ては母溶鋼のみを、一方該磁極の上部に対しては母溶鋼
と特定元素を併せて供給することにより、鋳片の表層に
特定元素が濃化した複層鋳片を製造する連続鋳造方法に
おいて、 該磁極の上部に対する溶鋼の供給速度を、磁極上端より
上部において凝固により溶鋼が消費される速度の 0.2倍
以上 1.0倍未満とすることを特徴とする連続鋳造鋳片の
製造方法。
In a continuous casting of a molten metal, a DC magnetic field is applied across the entire width of a slab by a magnetic pole at a position below a level in a casting direction by a predetermined distance from a molten metal level in a continuous casting mold. In this state, the specific element was concentrated on the surface layer of the slab by supplying only the mother molten steel to the lower part of the magnetic pole and supplying the mother molten steel and the specific element together to the upper part of the magnetic pole. A continuous casting method for producing a multilayer slab, wherein a supply speed of molten steel to an upper portion of the magnetic pole is set to be 0.2 times or more and less than 1.0 times a speed at which molten steel is consumed by solidification above an upper end of the magnetic pole. A method for producing continuous cast slabs.
【請求項2】 請求項1において、連鋳鋳型内への溶鋼
の供給を、磁極の上部への溶鋼の供給速度が磁極上端よ
り上部において凝固により溶鋼が消費される速度の 0.3
倍以上 0.8倍以下となるよう設計された、上下2段の吐
出孔を有する浸漬ノズルを用いて行うことを特徴とする
連続鋳造鋳片の製造方法。
2. The method according to claim 1, wherein the supply rate of the molten steel into the continuous casting mold is set at a rate of 0.3% of a rate at which the molten steel is consumed by solidification above the upper end of the magnetic pole.
A method for producing a continuous cast slab, wherein the method is performed using an immersion nozzle having two upper and lower discharge holes, which is designed to be at least twice and at most 0.8 times.
JP2001299192A 2000-10-03 2001-09-28 Manufacturing method of continuous cast slab Expired - Fee Related JP3617484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299192A JP3617484B2 (en) 2000-10-03 2001-09-28 Manufacturing method of continuous cast slab

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000303414 2000-10-03
JP2000-303414 2000-10-03
JP2001299192A JP3617484B2 (en) 2000-10-03 2001-09-28 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2002178109A true JP2002178109A (en) 2002-06-25
JP3617484B2 JP3617484B2 (en) 2005-02-02

Family

ID=26601445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299192A Expired - Fee Related JP3617484B2 (en) 2000-10-03 2001-09-28 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP3617484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198655A (en) * 2005-01-20 2006-08-03 Nippon Steel Corp Porous immersion nozzle, and continuous casting method using the same
JP2007319923A (en) * 2006-06-05 2007-12-13 Nippon Steel Corp Continuous casting method for molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198655A (en) * 2005-01-20 2006-08-03 Nippon Steel Corp Porous immersion nozzle, and continuous casting method using the same
JP2007319923A (en) * 2006-06-05 2007-12-13 Nippon Steel Corp Continuous casting method for molten steel

Also Published As

Publication number Publication date
JP3617484B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP2002522227A (en) Continuous casting method and apparatus therefor
US6557623B2 (en) Production method for continuous casting cast billet
CN202291392U (en) Four-hole submerged nozzle used for sheet billet continuous casting machine
JP2002178109A (en) Method for producing continuously cast slab
JP2001232450A (en) Method for manufacturing continuous cast slab
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP3573096B2 (en) Manufacturing method of continuous cast slab
CN210848317U (en) Side-hole asymmetric submerged five-hole water gap for rectangular large square billet
CN108495727A (en) Continuous casting sprue with baffle
JP2000233262A (en) Flat nozzle for casting thin slab
JPH03110048A (en) Tundish stopper
JP2002501438A (en) Method and apparatus for manufacturing a slab
JPH10128506A (en) Immersion nozzle for continuous casting
JP7389335B2 (en) Method for producing thin slabs
RU2419508C2 (en) Mixer
CA1281167C (en) Wire casting
JP2001105108A (en) Method for continuously producing cast slab
JP3111346B2 (en) Powder for continuous casting
JPH09164457A (en) Immersion nozzle for continuously casting wide and thin cast slab and continuous casting method
JPS6087957A (en) Apparatus for casting continuously thin metallic sheet
KR20030054625A (en) Submerged entry nozzle for reducing nozzle clogging
US20060118272A1 (en) Method and apparatus for melt flow control in continuous casting mold
JPH0646598Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JP2983400B2 (en) Casting nozzle for twin belt continuous casting machine
CN110918918A (en) Process method for controlling center carbon segregation of bearing steel casting blank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees