JP2002174540A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JP2002174540A
JP2002174540A JP2000374682A JP2000374682A JP2002174540A JP 2002174540 A JP2002174540 A JP 2002174540A JP 2000374682 A JP2000374682 A JP 2000374682A JP 2000374682 A JP2000374682 A JP 2000374682A JP 2002174540 A JP2002174540 A JP 2002174540A
Authority
JP
Japan
Prior art keywords
flow rate
support
rate measuring
flow
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000374682A
Other languages
Japanese (ja)
Other versions
JP3709339B2 (en
Inventor
Keiichi Nakada
圭一 中田
Izumi Watanabe
渡辺  泉
Junichi Horie
潤一 堀江
Kei Kamiyama
上山  圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2000374682A priority Critical patent/JP3709339B2/en
Publication of JP2002174540A publication Critical patent/JP2002174540A/en
Application granted granted Critical
Publication of JP3709339B2 publication Critical patent/JP3709339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To maintain initial characteristics even in prolonged use by preventing the accumulation of dirt in a clearance generated between a flow rate measuring element and a support. SOLUTION: It is so arranged that the position of the surface 14 of the support on the upstream side is higher than the position of the surface 16 of the flow rate measuring element and the position of the surface 15 of the support on the downstream side is lower than the position of the surface 16 of the flow rate measuring element with respect to the direction of a fluid to be measured flows. Thus, the fluid to be measured is kept from directly hitting the clearance 23 to prevent the accumulation of the dirt 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流量を計測
する装置に係り、特には発熱抵抗体を用いて流量を計測
する熱式流量計測装置に係り、例えば、内燃機関の吸入
空気流量を測定するのに好適な熱式空気流量計測装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a flow rate of a fluid, and more particularly to a thermal type flow rate measuring apparatus for measuring a flow rate using a heating resistor. The present invention relates to a thermal air flow measuring device suitable for measurement.

【0002】[0002]

【従来の技術】従来、自動車などの内燃機関の吸入空気
通路に設置され、吸入空気流量を計測する流量計測装置
としては、熱式のものが質量流量を直接検知できること
から主流となってきている。このような熱式流量計測装
置において、例えばシリコン(Si)等の半導体基板上
に半導体微細加工技術を用いて、薄膜状のセンサ領域を
有する熱式流量計測装置が比較的容易に、しかも大量生
産方式で生産できることから経済性があり、また、低電
力で駆動できることから注目されてきている。
2. Description of the Related Art Conventionally, as a flow rate measuring device installed in an intake air passage of an internal combustion engine such as an automobile and measuring an intake air flow rate, a thermal type flow rate measuring apparatus has become mainstream because it can directly detect a mass flow rate. . In such a thermal type flow rate measuring device, a thermal type flow rate measuring device having a thin film sensor region is relatively easily manufactured on a semiconductor substrate such as silicon (Si) using a semiconductor fine processing technique, and is mass-produced. It is economical because it can be produced in a system, and has attracted attention because it can be driven with low power.

【0003】このような薄膜状の流量検出領域を有する
流量計測装置として、例えば特開平9−26343号公
報,特開2000−2573号公報に記載のものが公知
である。これらの流量計測装置は主に流量計測素子、該
流量計測素子を設置するための窪みを有し、表面が吸入
空気流に対してほぼ平行に延びる支持体、該流量計測素
子を駆動する回路部、及びこれらの部品を実装し、吸入
空気が流通する管路に取付けられたケーシングから構成
される。
As a flow rate measuring device having such a thin film-shaped flow rate detecting region, for example, those described in JP-A-9-26343 and JP-A-2000-2573 are known. These flow rate measuring devices mainly include a flow rate measuring element, a support having a recess for installing the flow rate measuring element, a surface extending substantially parallel to the intake air flow, and a circuit section for driving the flow rate measuring element. And a casing on which these parts are mounted and attached to a pipeline through which intake air flows.

【0004】流量計測素子はシリコン基板上に絶縁層を
形成し、前記絶縁層上に発熱抵抗体、該発熱抵抗体の両
脇に測温抵抗体を形成、さらに前記の各抵抗体上に保護
層を形成し、前記の発熱抵抗体裏面のシリコン基板を除
去して薄膜部を形成した構造となっている。ここで、吸
入空気が流量計測素子表面を流れる時の前記測温抵抗体
の抵抗値変化を利用して流量を検出するものである。
In the flow rate measuring element, an insulating layer is formed on a silicon substrate, a heating resistor is formed on the insulating layer, and a temperature measuring resistor is formed on both sides of the heating resistor, and is further protected on each of the resistors. A layer is formed, and the silicon substrate on the back surface of the heating resistor is removed to form a thin film portion. Here, the flow rate is detected by utilizing a change in the resistance value of the temperature measuring resistor when the intake air flows on the surface of the flow rate measuring element.

【0005】[0005]

【発明が解決しようとする課題】特開平9−26343
号公報,特開2000−2573号公報に記載の従来技
術による流量計測装置では流量計測素子表面と支持体表
面が同一面となるように、または、流量計測素子表面が
支持体表面よりも低い高さ位置になるように接着剤によ
り取付けられている。このように流量計測素子表面と支
持体表面をほぼ同一面とすることにより流量計測素子表
面を流れる空気の乱れが少なく、高精度に流量計測を行
うことができる。
Problems to be Solved by the Invention
In the flow measurement device according to the prior art described in Japanese Patent Application Laid-Open No. 2000-2573, the flow measurement element surface and the support surface are flush with each other or the flow measurement element surface is lower than the support surface. It is attached by an adhesive so as to be in the position. By making the surface of the flow measuring element and the surface of the support substantially the same, the turbulence of the air flowing on the surface of the flow measuring element is small, and the flow rate can be measured with high accuracy.

【0006】しかし、これらの従来技術では長時間使用
する場合の耐汚損性について不十分である。以下にその
理由を説明する。前述のように流量計測素子は支持体に
設けられた窪みの中に設置されるが、大量生産の上で
は、支持体の窪みの大きさは必ず流量計測素子の大きさ
よりもある程度大きく設計される。その結果、流量計測
素子と支持体窪みの間に図2に示すように隙間23が生
じる。また、流量計測素子表面と支持体表面が一致する
ように設計しても、大量生産においては、流量計測素
子の厚さばらつき、支持体の加工ばらつき、接着剤
の厚みばらつき等により図3,図4に示すように流量計
測素子と支持体の表面位置が不一致となることは避けら
れない。
[0006] However, these prior arts are insufficient in the fouling resistance when used for a long time. The reason will be described below. As described above, the flow measurement element is installed in the depression provided in the support, but in mass production, the size of the depression of the support is always designed to be somewhat larger than the size of the flow measurement element. . As a result, a gap 23 is formed between the flow rate measuring element and the support recess as shown in FIG. Also, even if the surface of the flow rate measuring element is designed to coincide with the surface of the support, in mass production, the thickness variation of the flow rate measuring element, the processing variation of the support, the thickness variation of the adhesive, etc. As shown in FIG. 4, it is inevitable that the surface positions of the flow rate measuring element and the support do not match.

【0007】ここで、図3のように流量計測素子表面が
支持体表面よりも低くなる場合には流量計測素子の下流
側隙間、図4のように流量計測素子表面が支持体表面よ
りも高くなる場合には流量計測素子の上流側隙間に汚損
物質が堆積する。
Here, when the surface of the flow measuring element is lower than the surface of the support as shown in FIG. 3, the downstream gap of the flow measuring element is higher than the surface of the support as shown in FIG. In such a case, a fouling substance accumulates in the gap on the upstream side of the flow rate measuring element.

【0008】特に、特開2000−2573号公報に示
された一例では図3に示す構造となっており、流量計測
素子表面に汚損物質が堆積するため、流量特性変化が生
じ易い構造である。
[0008] In particular, in an example disclosed in Japanese Patent Application Laid-Open No. 2000-2573, the structure shown in FIG. 3 is adopted, and since the fouling substance is deposited on the surface of the flow rate measuring element, the flow rate characteristic changes easily.

【0009】流量計測素子部分は吸気管内に晒される構
造であるため、以上の構造より長時間の使用によりこの
隙間部分に汚損物質が堆積する。この汚損物質堆積によ
り流量計測素子表面の空気の流れ方が変化するため、
初期特性に対して特性変化が生じる、汚損物質が流量
計測素子表面に付着して流量特性変化が生じる、汚損
物質は水・油分を含んでいるため、隙間を介して流量計
測素子と駆動回路の接続部を腐食させ易いなどの問題が
発生する。
Since the flow rate measuring element portion has a structure exposed to the inside of the intake pipe, a pollutant accumulates in the gap portion by using the structure for a longer time than the above structure. Because the manner of air flow on the flow measurement element surface changes due to this fouling substance accumulation,
Changes in the characteristics from the initial characteristics, fouling substances adhere to the surface of the flow rate measuring element, causing a change in the flow rate characteristics.Since the fouling substance contains water and oil, the flow rate measuring element and the drive circuit are connected through a gap. Problems such as easy corrosion of the connection portion occur.

【0010】耐汚損物質に関する従来技術としては特開
昭57−208412号公報に記載の技術がある。この
技術は、プリント基板構造の検知素子を流体の流れ方向
に対して傾斜させることにより流体中の汚損物質付着を
抑制するものであるが、この特開昭57−208412
号公報の構造では、特開平9−26343号公報,特開
2000−2573号公報に記載の構造に観られるよう
な流量計測素子と支持体間に生じる隙間が存在しないた
め、特開平9−26343号公報,特開2000−2573
号公報に記載の構造において傾斜させると、流量計測素
子と支持体の隙間に流体が直接当たりやすくなるため、
かえって汚損物質が堆積し易い構造となる。
As a prior art relating to a stain resistant substance, there is a technique described in Japanese Patent Application Laid-Open No. 57-208412. This technique suppresses the adhesion of fouling substances in a fluid by inclining a sensing element having a printed circuit board structure with respect to the flow direction of the fluid.
In the structure disclosed in Japanese Patent Application Laid-Open No. 9-263343 and Japanese Patent Application Laid-Open No. 2000-2573, there is no gap between the flow rate measuring element and the support as seen in the structures described in Japanese Patent Application Laid-Open Nos. 9-26343 and 2000-2573. No., JP-A-2000-2573
In the structure described in Japanese Patent Application Laid-Open Publication No. H10-27, the fluid directly hits the gap between the flow rate measuring element and the support body,
Rather, the structure is such that the fouling substance is easily deposited.

【0011】本発明は上述した問題に鑑みてなされたも
のであり、長時間の使用においても特性変化が少なく信
頼性の高い流量計測装置を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide a highly reliable flow rate measuring device with little characteristic change even when used for a long time.

【0012】[0012]

【課題を解決するための手段】上述した課題を解決する
ために、本発明は流量計測素子よりも空気の流れ方向に
対し、上流側の支持体表面位置が流量計測素子表面位置
よりも高くなるように構成することを特徴としている。
このように構成することによって、流体の流れ方向にお
いて支持体表面を流れる流体が衝突する側面が存在しな
くなるため、流量計測素子と支持体の間に形成される隙
間に汚損物質が堆積しなくなる。従って、長時間の使用
においても特性変化が少なく信頼性の高い流量計測装置
を提供することが可能となる。
According to the present invention, in order to solve the above-mentioned problems, the surface position of the support on the upstream side is higher than the surface position of the flow measurement element in the direction of air flow from the flow measurement element. It is characterized by having such a configuration.
With this configuration, there is no side surface against which the fluid flowing on the surface of the support collides in the flow direction of the fluid, so that no fouling substance accumulates in the gap formed between the flow rate measuring element and the support. Therefore, it is possible to provide a highly reliable flow rate measurement device with little change in characteristics even when used for a long time.

【0013】さらに、下流側の支持体表面位置が流量計
測素子表面位置よりも低くなるようにすることによっ
て、大量生産において製造のばらつきが生じても、常に (支持体上流側表面高さ)>(流量計測素子表面高さ)>
(支持体下流側表面高さ) の関係が維持されるため流量特性ばらつきを小さくする
ことができる。また、上・下流何れの隙間にも汚損物質
が堆積しないため、更に特性変化が少なく信頼性の高い
流量計測装置を提供することができる。
Further, by making the surface position of the downstream support lower than the surface position of the flow rate measuring element, even if the production is varied in mass production, (the surface height of the upstream surface of the support) is always maintained. (Flow measurement element surface height)>
Since the relationship (surface height on the downstream side of the support) is maintained, it is possible to reduce variation in flow rate characteristics. Further, since no fouling substance is deposited in any of the upper and lower gaps, it is possible to provide a highly reliable flow rate measuring device with less characteristic change.

【0014】また、空気の流れ方向に対して支持体を傾
斜させることによって、エンジンからエアクリーナーの
方向に流れる空気流(逆流)が発生した場合にも汚損物
質が付着し難い流量計測装置を提供することができる。
[0014] Also, by inclining the support with respect to the direction of air flow, there is provided a flow rate measuring device in which pollutants are unlikely to adhere even when an air flow (backflow) flowing from the engine to the air cleaner is generated. can do.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照しながら説明する。図5は流量計測装置1の
断面図を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows a cross-sectional view of the flow measuring device 1.

【0016】流量計測素子10はガラスセラミック製の
支持体11にエポキシまたはシリコーン系接着剤12で
接着される。支持体11の流量計測素子10が接着され
る部分には窪み13が設けられており、流量計測素子1
0はこの窪み13の中に接着される。図6は流量計測素
子10を接着した支持体の平面図、図1は図6のA−A
断面を示す。
The flow measuring element 10 is bonded to a glass ceramic support 11 with an epoxy or silicone adhesive 12. A depression 13 is provided in a portion of the support 11 to which the flow rate measuring element 10 is adhered.
0 is adhered into the depression 13. FIG. 6 is a plan view of a support to which the flow rate measuring element 10 is adhered, and FIG. 1 is AA of FIG.
3 shows a cross section.

【0017】ここで、この窪み13は図1または図13
の断面図に示すように、流量計測素子を実装した場合に (支持体上流側表面14高さ)>(流量計測素子表面16
高さ)> (支持体下流側表面15高さ) の関係が成り立つような構成となっている。ここでは図
示しないが、流量計測素子表面16と支持体下流側表面
15が一致する構成、支持体11に支持体下流側表面1
5がない構成でもよい。以下に図5の各部品について説
明する。
Here, the depression 13 corresponds to FIG.
As shown in the cross-sectional view, when the flow rate measuring element is mounted, (the height of the support upstream surface 14)> (the flow rate measuring element surface 16
Height)> (Height of surface 15 on the downstream side of the support). Although not shown here, the flow measuring element surface 16 and the support downstream surface 15 coincide with each other.
5 may be omitted. Hereinafter, each component in FIG. 5 will be described.

【0018】流量計測素子10は半導体製造技術により
作製される。以下にその説明をする。単結晶シリコン基
板上に電気絶縁層として二酸化シリコン層を熱酸化ある
いはCVD(Chemical Vapor Deposition)等の方法で形
成,窒化シリコン層をCVD等の方法で形成する。次に
多結晶シリコン層をCVD等の方法で形成し、所望の抵
抗値とするために不純物としてリン(P)を熱拡散また
はイオン注入によりドーピングする。その後、多結晶シ
リコン層をパターニングすることにより発熱抵抗体,空
気温度測温抵抗体,測温抵抗体等を形成する。次に、保
護層として窒化シリコン層,二酸化シリコン層をCVD
等の方法で形成する。その後、保護層をパターニングし
て、電極を形成する部分の保護層を取り除く。次に、ア
ルミニウム層を形成し、エッチングによりパターンニン
グを行う。最後に、空洞部26を形成するために、単結
晶シリコン基板の発熱抵抗体22を形成していない面に
CVD等の方法によりマスクとなる窒化シリコン層を形
成してパターニングを行う。その後、異方性エッチング
により空洞部を形成する。このように空洞部を形成する
ことにより発熱抵抗体,測温抵抗体を熱的に絶縁するこ
とによって、省電力により抵抗を発熱させることが可能
となり熱伝達を利用した流量計測が可能となる。最後に
ダイシングによりチップに分割する。分割された流量計
測素子10は、例えば長辺が5mm、短辺が2.5mm程度
である。
The flow measuring element 10 is manufactured by a semiconductor manufacturing technique. This is described below. A silicon dioxide layer is formed as an electrical insulating layer on a single crystal silicon substrate by a method such as thermal oxidation or CVD (Chemical Vapor Deposition), and a silicon nitride layer is formed by a method such as CVD. Next, a polycrystalline silicon layer is formed by a method such as CVD, and phosphorus (P) is doped as an impurity by thermal diffusion or ion implantation to obtain a desired resistance value. Thereafter, a heating resistor, an air temperature measuring resistor, a temperature measuring resistor, and the like are formed by patterning the polycrystalline silicon layer. Next, a silicon nitride layer and a silicon dioxide layer are formed as a protective layer by CVD.
And the like. After that, the protective layer is patterned to remove the protective layer at a portion where an electrode is to be formed. Next, an aluminum layer is formed and patterning is performed by etching. Finally, in order to form the cavity 26, a silicon nitride layer serving as a mask is formed on a surface of the single crystal silicon substrate on which the heating resistor 22 is not formed by a method such as CVD, and patterning is performed. Thereafter, a cavity is formed by anisotropic etching. By thus thermally insulating the heating resistor and the temperature measuring resistor by forming the cavity, it is possible to generate the resistor with power saving, and to measure the flow rate using heat transfer. Finally, the wafer is divided into chips by dicing. The divided flow measuring element 10 has a long side of about 5 mm and a short side of about 2.5 mm, for example.

【0019】次に流量計測素子10を実装する支持体1
1について説明する。本発明の支持体11はガラスセラ
ミック製積層基板17により形成される。以下にその製
造方法を説明する。まず、厚さ0.1〜0.3mm程度の流
量計測素子表面16状態のガラスセラミック製基板に同
様の流量計測素子表面16状態のガラスセラミック製基
板を所望の枚数だけ密着して重ね、加圧して積層させ
る。このとき流量計測素子10を配置するための窪み1
3はこの流量計測素子表面16状態で打抜き型等により
所望の形状に打抜いておくことにより形成する。また、
この支持体11には流量計測素子10への電力供給およ
び、流量計測素子10からの信号処理を行うための回路
が実装されている。積層基板の表面又は裏面には印刷な
どにより支持体上流側表面14を形成することが可能で
ある。また、積層基板17の表・裏面及び内層には印刷
等により内層導体18を形成することが可能である。表
・裏面と内層導体18はビアホール19により接続され
る。このように、積層基板17の内層導体18を使用し
て流量計測素子10を制御するための回路を構成するこ
とにより回路の小型化をすることができ、従って流量計
測装置1の小型化を図ることができる。流量計測素子1
0と回路は金線等の接続線20により電気的に接続され
ている。
Next, the support 1 on which the flow rate measuring element 10 is mounted
1 will be described. The support 11 of the present invention is formed by a glass ceramic laminated substrate 17. The manufacturing method will be described below. First, a desired number of glass ceramic substrates having the same flow rate measuring element surface 16 state are superimposed on a glass ceramic substrate having the same flow rate measuring element surface state 16 having a thickness of about 0.1 to 0.3 mm and pressurized. And stack them. At this time, the depression 1 for disposing the flow rate measuring element 10
3 is formed by punching a desired shape in a state of the flow rate measuring element surface 16 by a punching die or the like. Also,
A circuit for supplying power to the flow rate measuring element 10 and performing signal processing from the flow rate measuring element 10 is mounted on the support 11. On the front surface or the back surface of the laminated substrate, the support upstream surface 14 can be formed by printing or the like. The inner conductor 18 can be formed on the front and back surfaces and the inner layer of the laminated substrate 17 by printing or the like. The front and rear surfaces and the inner layer conductor 18 are connected by via holes 19. As described above, by configuring a circuit for controlling the flow rate measuring element 10 using the inner layer conductor 18 of the laminated substrate 17, the circuit can be downsized, and thus the flow rate measuring device 1 can be downsized. be able to. Flow measurement element 1
0 and the circuit are electrically connected by a connection line 20 such as a gold wire.

【0020】ここで、実施流量計測素子10実装部の段
差21は最表層の流量計測素子表面16を図7に示す形
状として積層する。ここで、焼成後の流量計測素子表面
16厚さを100μm、接着剤12厚さを20μm程
度、流量計測素子10厚さを330μm、支持体11上
流側から流量計測素子10を実装する窪み13深さを4
00μmとすると、支持体11上流側高さ位置と流量計
測素子10表面の段差21は50μm程度、流量計測素
子10表面と支持体11下流側高さ位置の段差21は5
0μm程度となる。
Here, the step 21 of the mounting portion of the actual flow rate measuring element 10 is formed by laminating the flow rate measuring element surface 16 on the outermost surface in the shape shown in FIG. Here, the thickness of the flow measurement element surface 16 after firing is 100 μm, the thickness of the adhesive 12 is about 20 μm, the thickness of the flow measurement element 10 is 330 μm, and the depth of the recess 13 for mounting the flow measurement element 10 from the upstream side of the support 11. 4
If the height is set to 00 μm, the step 21 between the upstream height position of the support 11 and the surface of the flow measurement element 10 is about 50 μm, and the step 21 between the surface of the flow measurement element 10 and the downstream position of the support 11 is 5 μm.
It is about 0 μm.

【0021】流量計測素子表面の厚さ,層数を選択する
ことにより、この段差21の高さは変更することが可能
である。このように積層基板を利用することによって、
精度良く段差を形成することができ、大量生産において
も流量特性ばらつきの少ない流量計測装置を提供するこ
とができる。
The height of the step 21 can be changed by selecting the thickness and the number of layers of the flow measuring element surface. By using a laminated substrate in this way,
A step can be formed with high accuracy, and a flow rate measuring device with little variation in flow rate characteristics can be provided even in mass production.

【0022】段差21により空気流2は図1のように流
れるため、流量計測素子10と支持体11の隙間には汚
損物質が堆積しないため、長時間の使用においても初期
特性に対して特性変化しない流量計測装置を提供するこ
とができる。ここで、 (支持体上流側表面14高さ)>(流量計測素子表面16
高さ)≧(支持体下流側表面15高さ) の関係を維持するためには、少なくとも前述した流量
計測素子の厚さばらつき、支持体の加工ばらつき、
接着剤の厚みばらつきにより生じる支持体上流側表面と
流量計測素子表面のばらつき以上の段差が必要である。
本発明の実施例においては、流量計測素子の厚さばらつ
きはシリコン基板の厚さばらつきに依存する。また支持
体の加工ばらつきは積層基板に形成する窪み深さのばら
つきに依存する。製造時の精度が良好な場合には上記の
ばらつきの総和は10〜20μm程度に押さえ込むこと
ができるため、この場合段差は20μm程度あれば十分
である。
Since the air flow 2 flows as shown in FIG. 1 due to the step 21, no fouling substance is deposited in the gap between the flow rate measuring element 10 and the support 11, so that the characteristic changes with respect to the initial characteristic even when used for a long time. It is possible to provide a flow rate measurement device that does not use the flow. Here, (the height of the support upstream surface 14)> (the flow measurement element surface 16
In order to maintain the relationship of (height) ≧ (height of the surface 15 on the downstream side of the support), at least the thickness variation of the flow rate measuring element, the processing variation of the support,
It is necessary to have a step that is equal to or greater than the variation between the surface on the upstream side of the support and the surface of the flow rate measuring element caused by the variation in the thickness of the adhesive.
In the embodiment of the present invention, the thickness variation of the flow rate measuring element depends on the thickness variation of the silicon substrate. Further, the processing variation of the support depends on the variation of the depth of the depression formed in the laminated substrate. If the precision at the time of manufacturing is good, the sum of the above variations can be suppressed to about 10 to 20 μm, and in this case, a step of about 20 μm is sufficient.

【0023】一方、段差をあまり大きくし過ぎると流量
計測素子10表面を流れる流体の乱れが大きくなる。従
って、最大値は150μm程度ある。
On the other hand, if the step is too large, the turbulence of the fluid flowing on the surface of the flow rate measuring element 10 becomes large. Therefore, the maximum value is about 150 μm.

【0024】以上、段差21を形成する手段として積層
基板17を利用する手法を述べたが、他の手法として
は、ここでは図示しないが、金属製の支持体11に機械
加工等を行う、図8に示すように支持体11の上流側に
発熱抵抗体22を設ける等により段差21を形成するこ
とも可能である。
As described above, the method using the laminated substrate 17 as a means for forming the step 21 has been described. As another method, although not shown here, machining or the like is performed on the metal support 11. As shown in FIG. 8, it is also possible to form the step 21 by providing a heating resistor 22 on the upstream side of the support 11 or the like.

【0025】また、支持体11表面に段差21を設けな
い場合にも、図9に示すように流量計測素子10を傾斜
させて取付けることによっても、本発明の効果を得るこ
とが可能である。
Further, even when the step 21 is not provided on the surface of the support 11, the effect of the present invention can be obtained by mounting the flow rate measuring element 10 at an inclination as shown in FIG.

【0026】一方、段差21を大きくすると空気流2が
流量計測素子10表面に当たり難くなり、流量計測装置
1の感度が低下することが懸念される。また、自動車の
運転状態によっては空気の脈動が発生し、図1に示す流
れとは逆方向から空気が流れる場合があり、その場合に
は汚損物質が付着し易くなる。特に、近年の排気ガス規
制に対応した排気ガスの一部を吸気管に戻す手段を備え
たエンジンや、運転状態に応じてバルブタイミングを変
化させるエンジン等においてはこの脈動が発生しやすい
傾向にある。
On the other hand, if the step 21 is increased, the air flow 2 becomes less likely to hit the surface of the flow rate measuring element 10, and there is a concern that the sensitivity of the flow rate measuring device 1 is reduced. In addition, depending on the driving state of the vehicle, air pulsation may occur, and air may flow from the direction opposite to the flow shown in FIG. 1, in which case the fouling substance is likely to adhere. In particular, this pulsation tends to occur in an engine equipped with a means for returning a part of the exhaust gas to the intake pipe in accordance with the recent exhaust gas regulation, an engine in which the valve timing is changed according to the operating state, and the like. .

【0027】これを解決する手段を備えた流量計測装置
の実施例を図10に示す。図10に示すように傾斜させ
ることによって、順流3の場合には空気流が流量計測素
子10に当たり易くなるため計測感度の低下を防止する
ことが可能となる。また、逆流4の場合には空気流2が
直接当たり難いため、脈動の発生し易いエンジンにおい
ても汚損物質が付着し難く、信頼性の高い流量計測装置
を提供するいことが可能となる。
FIG. 10 shows an embodiment of a flow rate measuring device provided with means for solving this problem. By inclining as shown in FIG. 10, in the case of the forward flow 3, the air flow easily hits the flow rate measuring element 10, so that it is possible to prevent the measurement sensitivity from lowering. Further, in the case of the backflow 4, since the airflow 2 is hard to hit directly, even in an engine in which pulsation is likely to occur, a pollutant is hardly attached, and a highly reliable flow measurement device can be provided.

【0028】ここで、流量計測素子10を実装する支持
体11を副通路41中に配置する場合、傾斜角度を大き
くし過ぎると空気が流れ難くなり、流量計測素子表面1
6での流速が低下する。従って、傾斜させる場合には図
12に示すように、支持体11の空気の流れ方向の長さ
をw、傾斜角度をx、副通路の最広部幅をLとした場合
に L≧2×w×sin(x) が成り立つ程度の副通路41幅であれば、流速低下によ
り流量計測装置1の計測性能が悪化することを防止する
ことができる。ここで、図12は図3のB−B断面を表
している。
Here, when the support 11 on which the flow rate measuring element 10 is mounted is disposed in the sub-passage 41, if the inclination angle is too large, it becomes difficult for air to flow, and the flow rate measuring element surface 1
The flow rate at 6 decreases. Accordingly, as shown in FIG. 12, when the inclination is made, as shown in FIG. 12, when the length of the support 11 in the air flow direction is w, the inclination angle is x, and the widest part width of the auxiliary passage is L, L ≧ 2 × If the width of the sub passage 41 is such that w × sin (x) is satisfied, it is possible to prevent the measurement performance of the flow rate measuring device 1 from being deteriorated due to a decrease in flow velocity. Here, FIG. 12 shows a BB cross section of FIG.

【0029】また、支持体11を傾斜させる場合には図
11に示すように、傾斜角度をx、支持体11の支持体
上流側表面14位置と流量計測素子表面16位置の段差
21をy、支持体11と流量計測素子10の隙間23を
zとした場合に、 y≧z×sin(x) が成り立つように段差21を設計することが有効であ
る。これにより隙間23に空気流が直接当たらないた
め、隙間23への汚損物質30堆積を防止することが可
能となる。例えば、隙間23が200μm程度、傾斜角
度が10度であれば約35μm以上の段差21があれば
隙間23には直接空気流2が当たらない構成となる。
When the support 11 is inclined, as shown in FIG. 11, the inclination angle is x, the step 21 between the position of the support upstream surface 14 of the support 11 and the flow measurement element surface 16 is y, and When the gap 23 between the support 11 and the flow rate measuring element 10 is z, it is effective to design the step 21 so that y ≧ z × sin (x) holds. As a result, the air flow does not directly hit the gap 23, so that the accumulation of the fouling substance 30 in the gap 23 can be prevented. For example, if the gap 23 is about 200 μm and the inclination angle is 10 degrees, the airflow 2 does not directly hit the gap 23 if there is a step 21 of about 35 μm or more.

【0030】また、図示はしないが流量計測素子表面1
6と支持体下流側表面15間の段差21にも上記の式が
成り立つようにすることで、更に信頼性を向上すること
ができる。
Although not shown, the flow rate measuring element surface 1
By making the above formula hold for the step 21 between the support 6 and the downstream surface 15 of the support, the reliability can be further improved.

【0031】[0031]

【発明の効果】本発明よれば、長時間の使用に際しても
特性変化が少ない流量計測装置を提供することができ
る。また、製造時にばらつきが生じても流量特性ばらつ
きの小さい流量計測装置を提供することができる。
According to the present invention, it is possible to provide a flow rate measuring device which has a small characteristic change even when used for a long time. In addition, it is possible to provide a flow rate measuring device having a small flow rate characteristic variation even when a variation occurs during manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による流量計測装置の部分断面図。FIG. 1 is a partial sectional view of a flow measuring device according to the present invention.

【図2】従来技術による流量計測装置示す部分平面図。FIG. 2 is a partial plan view showing a flow measurement device according to the related art.

【図3】従来技術による流量計測装置示す部分平面図。FIG. 3 is a partial plan view showing a flow measurement device according to the related art.

【図4】従来技術による流量計測装置示す部分平面図FIG. 4 is a partial plan view showing a flow measurement device according to the related art.

【図5】本発明による流量計測装置を示す断面図。FIG. 5 is a sectional view showing a flow measuring device according to the present invention.

【図6】本発明による流量計測素子を実装した支持体を
示す部分平面図。
FIG. 6 is a partial plan view showing a support on which the flow rate measuring element according to the present invention is mounted.

【図7】本発明による流量計測装置の支持体11を示す
鳥瞰図。
FIG. 7 is a bird's-eye view showing a support 11 of the flow measuring device according to the present invention.

【図8】本発明による流量計測装置を示す部分断面図。FIG. 8 is a partial sectional view showing a flow rate measuring device according to the present invention.

【図9】本発明による流量計測装置を示す部分断面図。FIG. 9 is a partial sectional view showing a flow rate measuring device according to the present invention.

【図10】本発明による流量計測装置を示す部分断面
図。
FIG. 10 is a partial sectional view showing a flow rate measuring device according to the present invention.

【図11】本発明による流量計測装置を示す部分断面
図。
FIG. 11 is a partial sectional view showing a flow rate measuring device according to the present invention.

【図12】本発明による流量計測装置を示す部分断面
図。
FIG. 12 is a partial cross-sectional view showing a flow measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1…流量計測装置、2…空気流、3…順流、4…逆流、
10…流量計測素子、11…支持体、12…接着剤、1
3…窪み、14…支持体上流側表面、15…支持体下流
側表面、16…流量計測素子表面、17…積層基板、1
8…内層導体、19…ビアホール、20…接続線、21
…段差、22…発熱抵抗体、23…隙間、30…汚損物
質、41…副通路、42…カバー、43…ハウジングケ
ース、44…ダクト。
1: Flow rate measuring device, 2: Air flow, 3: Forward flow, 4: Reverse flow,
10 flow rate measuring element, 11 support, 12 adhesive, 1
Reference numeral 3: recess, 14: upstream surface of the support, 15: downstream surface of the support, 16: surface of the flow rate measuring element, 17: laminated substrate, 1
8 inner conductor, 19 via hole, 20 connection line, 21
... steps, 22 ... heating resistors, 23 ... gaps, 30 ... fouling substances, 41 ... sub-passages, 42 ... covers, 43 ... housing cases, 44 ... ducts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 泉 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 (72)発明者 堀江 潤一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 (72)発明者 上山 圭 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 Fターム(参考) 2F035 AA02 EA08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Izumi Watanabe 2477 Takaba, Hitachinaka-shi, Ibaraki Prefecture Inside Hitachi Car Engineering Co., Ltd. Within the automotive equipment group (72) Inventor Kei Ueyama 2520 Oaza Takaba, Hitachinaka-shi, Ibaraki F-term in the automotive equipment group, Hitachi, Ltd. (reference) 2F035 AA02 EA08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも発熱抵抗体を有する流量計測素
子と前記流量計測素子を実装する支持体を含んで構成さ
れる流量計測装置において、 被測定流体の流れ方向に対して上流側の前記支持体表面
位置が、前記流量計測素子表面位置よりも高くなるよう
に、前記流量計測素子が前記支持体に実装されているこ
とを特徴とする流量計測装置。
1. A flow measuring device comprising at least a flow measuring element having a heating resistor and a support on which the flow measuring element is mounted, wherein the support is located upstream with respect to the flow direction of the fluid to be measured. The flow rate measuring device, wherein the flow rate measuring element is mounted on the support so that a surface position is higher than a surface position of the flow rate measuring element.
【請求項2】請求項1に記載の流量計測装置において、
下流側の前記支持体表面位置が前記流量計測素子表面位
置よりも低くなるように前記流量計測素子が前記支持体
に実装されていることを特徴とする流量計測装置。
2. The flow measuring device according to claim 1, wherein
The flow rate measuring device, wherein the flow rate measuring element is mounted on the support so that the surface position of the support body on the downstream side is lower than the surface position of the flow rate measuring element.
【請求項3】請求項1または請求項2に記載の流量計測
装置において、前記上流側の支持体表面と流量計測素子
表面間および/または前記下流側の支持体表面と熱式空
気流量計測素子表面間の段差が20μmから150μm
であることを特徴とする熱式流量計測装置。
3. The flow rate measuring device according to claim 1, wherein the surface of the upstream side support and the surface of the flow rate measuring element and / or the surface of the downstream side support and the thermal type air flow measuring element are arranged. Step between the surfaces is from 20 μm to 150 μm
A thermal type flow measuring device, characterized in that:
【請求項4】請求項1から請求項3に記載の流量計測装
置において、前記支持体が被測定流体の流れ方向に対し
て、傾斜してハウジングケースに取付けられていること
を特徴とする流量計測装置。
4. A flow rate measuring apparatus according to claim 1, wherein said support is attached to said housing case at an angle to a flow direction of a fluid to be measured. Measuring device.
【請求項5】請求項4に記載の流量計測装置において、
前記支持体が挿入されている副通路最広部幅をL、前記
支持体の傾斜角度をx、前記支持体の空気の流れ方向の
幅をwとした場合に L≧2×w×sin(x) の関係が成り立つことを特徴とする流量計測装置。
5. The flow measuring device according to claim 4, wherein
When the width of the widest part of the sub passage in which the support is inserted is L, the angle of inclination of the support is x, and the width of the support in the air flow direction is w, L ≧ 2 × w × sin ( x) The flow rate measuring device characterized by the following relationship:
【請求項6】請求項4または請求項5に記載の流量計測
装置において、前記流量計測素子表面と前記支持体表面
間の段差yと、被測定流体と前記支持体のなす傾斜角度
xと、前記流量計測素子と前記支持体間に発生する隙間
zの間には、 y≧z×sin(x) の関係が成り立つことを特徴とする流量計測装置。
6. The flow measuring device according to claim 4, wherein a step y between the surface of the flow measuring element and the surface of the support, an inclination angle x between the fluid to be measured and the support, A flow rate measuring device, wherein a relationship of y ≧ z × sin (x) is established between a gap z generated between the flow rate measuring element and the support.
【請求項7】請求項1から3に記載の流量計測装置にお
いて、前記流量計測素子を実装する支持体は2層以上の
部材を積層して形成し、被測定流体の流れ方向に対して
上流側の前記支持体表面は、前記積層した部材の最表面
層により構成され、被測定流体の流れ方向に対して下流
側の前記支持体表面は内層部材表面により構成されるこ
とを特徴とする流量計測装置。
7. The flow rate measuring device according to claim 1, wherein the support on which the flow rate measuring element is mounted is formed by laminating two or more layers of members, and is provided upstream in the flow direction of the fluid to be measured. The support surface on the side is constituted by the outermost surface layer of the laminated member, and the support surface on the downstream side with respect to the flow direction of the fluid to be measured is constituted by the inner layer member surface. Measuring device.
JP2000374682A 2000-12-05 2000-12-05 Flow measuring device Expired - Fee Related JP3709339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000374682A JP3709339B2 (en) 2000-12-05 2000-12-05 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000374682A JP3709339B2 (en) 2000-12-05 2000-12-05 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2002174540A true JP2002174540A (en) 2002-06-21
JP3709339B2 JP3709339B2 (en) 2005-10-26

Family

ID=18843824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374682A Expired - Fee Related JP3709339B2 (en) 2000-12-05 2000-12-05 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3709339B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140544A (en) * 2003-11-04 2005-06-02 Denso Corp Device for measuring flow rate
KR100720613B1 (en) 2004-09-24 2007-05-21 가부시키가이샤 덴소 Thermal-type flow rate sensor and manufacturing method thereof
DE102006053646A1 (en) * 2006-11-14 2008-05-15 Siemens Ag flow sensor
JP2009505087A (en) * 2005-08-16 2009-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Hot film air mass sensor with flow separation member
JP2012503172A (en) * 2008-09-17 2012-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor device for identifying parameters of a fluid medium
JP2014185867A (en) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd Thermal type flowmeter
EP2629065A4 (en) * 2010-10-13 2017-12-13 Hitachi Automotive Systems, Ltd. Flow sensor and production method therefor, and flow sensor module and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140544A (en) * 2003-11-04 2005-06-02 Denso Corp Device for measuring flow rate
KR100720613B1 (en) 2004-09-24 2007-05-21 가부시키가이샤 덴소 Thermal-type flow rate sensor and manufacturing method thereof
JP2009505087A (en) * 2005-08-16 2009-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Hot film air mass sensor with flow separation member
US8448503B2 (en) 2005-08-16 2013-05-28 Robert Bosch Gmbh Hot-film air-mass meter having a flow separating element
DE102006053646A1 (en) * 2006-11-14 2008-05-15 Siemens Ag flow sensor
DE102006053646B4 (en) * 2006-11-14 2008-09-18 Continental Automotive Gmbh flow sensor
JP2012503172A (en) * 2008-09-17 2012-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor device for identifying parameters of a fluid medium
US8607624B2 (en) 2008-09-17 2013-12-17 Robert Bosch Gmbh Sensor system for determining a parameter of a fluid medium
EP2629065A4 (en) * 2010-10-13 2017-12-13 Hitachi Automotive Systems, Ltd. Flow sensor and production method therefor, and flow sensor module and production method therefor
JP2014185867A (en) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd Thermal type flowmeter

Also Published As

Publication number Publication date
JP3709339B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
EP1882911B1 (en) Thermal type flow sensor
JP3709373B2 (en) Flow measuring device
JP3583773B2 (en) Thermal air flow meter
JP3455473B2 (en) Thermal flow sensor
EP1291622B1 (en) Thermal mass flow meter with particle protection
US8186213B2 (en) Thermal-type flowmeter
JP3514666B2 (en) Thermal air flow sensor
EP1895278A2 (en) Thermal type gas flow meter
US6675644B2 (en) Thermo-sensitive flow rate sensor
JPWO2004106863A1 (en) Thermal flow sensor
JP4474308B2 (en) Flow sensor
JP2002174540A (en) Flow rate measuring apparatus
JP3920247B2 (en) THERMAL SENSITIVE FLOW DETECTOR AND MANUFACTURING METHOD THEREOF
JP3919829B2 (en) Measuring device for measuring the mass of a medium flowing in a conduit
KR100626763B1 (en) Flow-rate detecting device for heat-sensitive type flow sensor
US6301960B1 (en) Thermo-sensitive flow rate sensor
KR100546930B1 (en) Air flow rate measuring device
JP2001004420A (en) Measuring apparatus of flow rate and flow velocity
JP5883740B2 (en) Thermal air flow sensor
KR20020033492A (en) Heat-sensitive flow rate sensor
JP2008026278A (en) Thermal gas flow sensor and apparatus for controlling internal combustion engine using the same
JP2008026279A (en) Thermal gas flow sensor and apparatus for controlling internal combustion engine using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees