JP2002172509A - Drill for dry cutting and drilling method - Google Patents

Drill for dry cutting and drilling method

Info

Publication number
JP2002172509A
JP2002172509A JP2000369877A JP2000369877A JP2002172509A JP 2002172509 A JP2002172509 A JP 2002172509A JP 2000369877 A JP2000369877 A JP 2000369877A JP 2000369877 A JP2000369877 A JP 2000369877A JP 2002172509 A JP2002172509 A JP 2002172509A
Authority
JP
Japan
Prior art keywords
drill
cutting
chips
dry
dry cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000369877A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kondo
芳弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2000369877A priority Critical patent/JP2002172509A/en
Publication of JP2002172509A publication Critical patent/JP2002172509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a twist drill performing dry cutting and aiming at the shape of a chip pocket from a tip end cutting edge to a part curled to stably generate cutting chips of transitional cutoff type to be excellent in durability, in the case of drilling a work of general structural steel and die steel or the like. SOLUTION: In this drill for dry cutting, constituted by using a cemented carbide alloy or TiCN cermet in a base body to cover a base body surface with a hard coat and/or a lubricating coat, an inflection point is provided in the halfway of a ridge line formed in recessed circular arc shape toward a land heel part from the vicinity of a web thickness of a chip pocket with the axial end view of the drill, the drill for dry cutting is characterized by retracting in the direction opposite to the rotational direction of the drill and retracting in the direction opposite to the rotational direction of the drill toward the land heel part from the vicinity of the web thickness of the chip pocket even in an axial right angle sectional view of this drill.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超硬合金又はTiCN
系サーメットを含む硬質合金を基体に硬質皮膜及び/又
は潤滑性硬質膜を被覆したツイストドリルを、水溶性切
削油を使わずに、ドライ又はセミドライにて穴明け加工
を行うドリル及び方法に関する。
The present invention relates to a cemented carbide or TiCN
The present invention relates to a drill and a method for performing a dry or semi-dry drilling process on a twist drill in which a hard alloy containing a base cermet is coated on a base with a hard coating and / or a lubricating hard coating without using a water-soluble cutting oil.

【0002】[0002]

【従来の技術】近年、穴明け加工用にも水溶性切削油を
用いないドライ加工が行われるようになっている。例え
ば、特開2000−198011号公報では、ツイスト
ドリルのリーディングエッジの強度を高め、ドライ加工
時に生ずるリーディングエッジに欠けを防止するドリル
が提案されている。また、上記潤滑性を皮膜の面から検
討した例として、特開2000−233324号公報に
は、皮膜に潤滑性があるMO(金属酸化物)膜とする提
案もある。更に、ドライ用の穴明け工具として、構造用
鋼〜高硬度鋼を切削する際、切り屑の排出が問題とな
る。切り屑の排出は、水溶性切削油を用いたときには、
切削油の流れに乗るようなかたちで切り屑排出が行われ
るため、遷移切断型と称される分断された切り屑を形成
すれば良かった。それに対し、ドライ切削では、切削油
の流れがなく、また、切削油の冷却効果、潤滑性もない
等より、切り屑排出にも検討を要するが、上記公報には
切り屑等の課題は記載されていない。
2. Description of the Related Art In recent years, dry machining without using a water-soluble cutting oil has been performed for drilling. For example, Japanese Patent Application Laid-Open No. 2000-198011 proposes a drill that increases the strength of the leading edge of a twist drill and prevents chipping of the leading edge that occurs during dry processing. As an example of examining the lubricity from the viewpoint of a film, Japanese Patent Application Laid-Open No. 2000-233324 also proposes a MO (metal oxide) film having a lubricity in the film. Further, when cutting structural steel to high hardness steel as a dry drilling tool, there is a problem of chip discharge. The discharge of chips is achieved when water-soluble cutting oil is used.
Since the chips are discharged in such a manner as to ride on the flow of the cutting oil, it was only necessary to form divided chips called transition cutting type. On the other hand, in dry cutting, there is no flow of the cutting oil, and there is no cooling effect of the cutting oil and no lubricity. It has not been.

【0003】また、切り屑形態の面から、特許2674
124号には、切り屑排出溝の形状を、切刃の外周端縁
にこの端縁と上記ドリル本体の軸線とを結んだ直線と直
交する垂線を引いたときに、この垂線に対して凹となる
形状とし、凹形状、すなわち、刃溝底部の曲率半径を規
定することにより、切り屑を強制的にカールさせてい
る。
[0003] Also, from the aspect of the chip form, Japanese Patent No.
No. 124 describes that the shape of the chip discharge groove is such that when a perpendicular line perpendicular to a straight line connecting this edge and the axis of the drill body is drawn on the outer peripheral edge of the cutting edge, The chip is forcibly curled by defining a concave shape, that is, a radius of curvature at the bottom of the blade groove.

【0004】[0004]

【発明が解決しようとする課題】ツイストドリルの刃先
で生成された切り屑は、切り屑排出溝を擦過しながら、
刃溝底部の曲率でカールされ、切り屑排出溝に沿って上
昇し、ドリル外部に排出される。その際、ドライ加工で
は、穴加工という連続切削のため切削による発熱や、刃
溝等との摩擦による温度の上昇で、更に温度上昇があ
り、切り屑の形態が変化し、分断されていた切り屑が、
連続する切り屑に変化する。また、水溶性切削油等を用
いる場合には、急速な冷却が行われるため、切り屑自体
の温度は問題とならず、安定した切り屑処理が行われ
る。しかし、ドライ切削では、切り屑温度の上昇による
形態変化が生じることから、分断された切り屑を長期に
亘って生成できないという課題がある。
The chips generated at the cutting edge of the twist drill, while rubbing the chip discharge groove,
It is curled at the curvature of the bottom of the blade groove, rises along the chip discharge groove, and is discharged outside the drill. At that time, in dry machining, heat generation due to cutting due to continuous cutting called hole drilling and temperature rise due to friction with blade grooves etc. further increased the temperature, the form of chips changed, and the cut Trash
Turns into continuous chips. Further, when a water-soluble cutting oil or the like is used, rapid cooling is performed, so that the temperature of the chip itself does not matter, and stable chip processing is performed. However, in dry cutting, since a morphological change occurs due to an increase in chip temperature, there is a problem that divided chips cannot be generated for a long period of time.

【0005】上記課題を解決するために、本願発明で
は、一般構造用鋼、ダイス鋼の様な被削材の穴明け加工
に際して、ドライ切削で行うと共に、先端切れ刃からカ
ールするまでの刃溝の形状に着目し遷移切断型の切り屑
を安定して生成させ、耐久性に優れたツイストドリルを
提供することを目的とする。
In order to solve the above problems, in the present invention, drilling of a work material such as general structural steel or die steel is performed by dry cutting, and the groove from the tip cutting edge to the curl. It is an object of the present invention to provide a twist drill excellent in durability by stably generating transition cutting chips by focusing on the shape of the drill.

【0006】[0006]

【課題を解決するための手段】そのため、本願発明で
は、基体に超硬合金又はTiCN系サーメットを用い、
基体表面に硬質皮膜及び/又は潤滑性被膜を被覆してな
るドライ切削用ドリルにおいて、前記ドリルの軸端視
で、刃溝の心厚近傍からランドヒール部に向けて凹円弧
状で形成された稜線の途中に変曲点を設け、ドリルの回
転方向と反対方向へ後退させるとともに、該ドリルの軸
直角断面視においても、刃溝の心厚近傍からランドヒー
ル部に向けてドリルの回転方向とは反対方向へ後退させ
たことを特徴とするドライ切削用ドリルである。
Therefore, in the present invention, a cemented carbide or TiCN-based cermet is used for the substrate,
In a drill for dry cutting in which a hard film and / or a lubricating film is coated on a substrate surface, the drill is formed in a concave arc shape from near the core thickness of the blade groove toward the land heel portion when viewed from the axial end of the drill. An inflection point is provided in the middle of the ridgeline, and the drill is retracted in the direction opposite to the rotation direction of the drill. Is a drill for dry cutting characterized by being retracted in the opposite direction.

【0007】[0007]

【発明の実施の形態】切り屑自体の温度を低減させるた
めに、刃先から切り屑をカールさせる刃溝底部の凹状部
までの距離、更に、凹状部の長さをできるだけ短くす
る。この距離は切り屑が擦過するだけであるが、カール
された切り屑をえられる長さが有れば、十分である。ま
た、長くなるほど、切り屑自体の温度が上がり、熱的な
影響が切り屑の形態の変化となってあらわれる。そのた
め、刃溝底部の凹状部の途中に変曲点を設け、ドリルの
回転方向と反対方向へ後退させ、切り屑との接触をしな
いように形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to reduce the temperature of chips themselves, the distance from the cutting edge to the concave portion at the bottom of the blade groove where the chips are curled, and the length of the concave portion are made as short as possible. This distance only scrapes the chips, but it is sufficient if the curled chips are long enough. Also, as the length increases, the temperature of the chip itself increases, and the thermal effect appears as a change in the form of the chip. Therefore, an inflection point is provided in the middle of the concave portion at the bottom of the blade groove, and the inflection point is retracted in the direction opposite to the rotation direction of the drill so as not to come into contact with the chips.

【0008】この変曲点を設けることにより、切り屑の
移動する方向は既に定まっており、加工された内壁とド
リルの回転により押し曲げられてドリル上方へ移動し、
ドリル外部に排出される。当然、ドリルの軸直角断面視
においても、同様に、刃溝の心厚近傍からランドヒール
部に向けてドリルの回転方向とは反対方向へ後退させ
て、同様の作用・効果を得る。また、凹状部の変曲点の
位置はドリル直径の50〜90%Dとしたのは、50%
D未満では、心厚等を差し引くと十分なカール径を与え
ることができず、切り屑の流出方向を定めることができ
ず、また、90%Dを越えると従来行われているドリル
と同じとなるため、50〜90%Dの範囲とした。更に
好ましくは60〜75%Dの範囲である。
By providing this inflection point, the direction in which the chips move is already determined, and the chips are pushed and bent by the rotation of the machined inner wall and the drill, and move upward of the drill.
It is discharged outside the drill. Naturally, in the cross section perpendicular to the axis of the drill, similarly, the same action and effect can be obtained by retreating from the vicinity of the thickness of the blade groove toward the land heel in the direction opposite to the rotation direction of the drill. Further, the position of the inflection point of the concave portion is set to 50 to 90% of the drill diameter D.
If the diameter is less than D, a sufficient curl diameter cannot be given by subtracting the core thickness and the like, and the outflow direction of the chips cannot be determined. If the diameter exceeds 90% D, it is the same as a conventional drill. Therefore, it was set in the range of 50 to 90% D. More preferably, it is in the range of 60 to 75% D.

【0009】次に、凹状部の曲率半径としては、刃溝内
に仮想的に1つの円を描けるような半径でよい。心厚と
の兼ね合いもあるが、ドリル径の10〜20%Dが好ま
しい。更に、好ましくは12〜17%Dである。また、
切り屑自体の温度をさらに低減させるために、刃先から
切り屑をカールさせる刃溝底部の凹状部までの距離をで
きるだけ短くする。この距離は切り屑が擦過するだけで
あるが、カールされた切り屑を排出するためのスペー
ス、すなわち溝幅比を考慮しドリル径の35〜45%の
範囲とした。35%未満では、相対的に刃溝の幅が狭く
なり、切り屑排出のスペースが確保できず、45%を越
えると相対的に溝幅比が広くなりすぎるため、ドリル径
の35〜45%の範囲とした。また、該刃先を通る垂線
と凹状の最奥部を通る垂線との距離をドリル径の45〜
60%としたのは、凹状部の曲率半径との兼ね合いもあ
るが、45%未満では、相対的に凹状部の曲率半径を小
さくしなければならず、曲率半径が小さい分、切り屑の
カール半径が小さく、強制的になりすぎるためである。
その反対に、60%を越えると、相対的に凹状部の曲率
半径を大きくしなければならず、曲率半径が大きい分、
切り屑のカール半径が大きくなり、切り屑が延びてカー
ルされて分断されなくなるため60%以下とした。以
下、実施例に基づき、本発明を具体的に説明する。
Next, the radius of curvature of the concave portion may be a radius that can virtually draw one circle in the blade groove. Although there is a balance with the core thickness, D is preferably 10 to 20% of the drill diameter. Furthermore, it is preferably 12 to 17% D. Also,
In order to further reduce the temperature of the chip itself, the distance from the cutting edge to the concave portion at the bottom of the blade groove for curling the chip is made as short as possible. Although this distance only scratches the chips, the distance is set in the range of 35 to 45% of the drill diameter in consideration of the space for discharging the curled chips, that is, the groove width ratio. If it is less than 35%, the width of the blade groove becomes relatively narrow, and a space for chip discharge cannot be secured. If it exceeds 45%, the groove width ratio becomes relatively too wide, so that 35 to 45% of the drill diameter. Range. Also, the distance between the perpendicular passing through the cutting edge and the perpendicular passing through the concave innermost part is 45 to 45 mm of the drill diameter.
The reason why the ratio is set to 60% has a balance with the radius of curvature of the concave portion. However, if the ratio is less than 45%, the radius of curvature of the concave portion must be relatively reduced. This is because the radius is too small to be too forcible.
Conversely, if it exceeds 60%, the radius of curvature of the concave portion must be relatively large, and the larger the radius of curvature is,
Since the curl radius of the chips becomes large and the chips are extended and curled so that they are not divided, the content is set to 60% or less. Hereinafter, the present invention will be specifically described based on examples.

【0010】[0010]

【実施例】(実施例1)市販の平均粒径0.5ミクロン
のWC粉末と同1ミクロンのCo粉末を用い通常の粉末
冶金法で、組成がCo10%、残WC粉からなるφ8m
mの本発明超硬合金製ツイストドリルを製作した。焼結
後の超硬合金の物性は、硬さHRA92、Coの格子定
数が3.570Å、クラック抵抗が90kg/mmのも
のが得られた。この超硬合金を用いて、2枚刃、外径8
mmのツイストドリルを、軸直角断面視で、刃先を結ん
だ仮想線上に刃先を通る垂線と、刃溝と心厚の接する点
を通る垂線との距離をドリル径の37.5%、該刃先を
通る垂線と凹状の最奥部を通る垂線との距離をドリル径
の50%、刃溝底部の曲率半径を12.5%で製作し、
穴明け加工を行った。尚、被覆はTiAlNで行った。
切削諸元は、炭素鋼S50Cを切削速度60m/mi
n、送り速度0.20mm/revで、穴深さ24mm
(ドリル径の3倍)の穴加工をドライ切削にて行った。
寿命は、切り屑等の形状を観察しつつ、一定加工穴数毎
に刃先の損傷状態を確認しつつ行った。
(Example 1) A commercially available powder metallurgy method using a commercially available WC powder having an average particle diameter of 0.5 micron and a Co powder having the same micron diameter of 0.5 micron, and having a composition of 10% Co and a residual WC powder having a diameter of 8 m.
m of the present invention was manufactured. The physical properties of the cemented carbide after sintering were HRA92, a lattice constant of Co of 3.570 °, and a crack resistance of 90 kg / mm. Using this cemented carbide, 2 blades, outer diameter 8
The distance between a perpendicular passing through the cutting edge on an imaginary line connecting the cutting edge and a perpendicular passing through the point where the core groove and the core thickness are in contact with each other is 37.5% of the drill diameter in a cross-section perpendicular to the axis when the twist drill is 37.5% of the drill diameter. The distance between the perpendicular passing through the hole and the perpendicular passing through the concave innermost part is 50% of the drill diameter, and the radius of curvature of the blade groove bottom is 12.5%.
Drilling was performed. The coating was performed with TiAlN.
Cutting specifications are as follows: Carbon steel S50C, cutting speed 60m / mi
n, feed rate 0.20mm / rev, hole depth 24mm
Hole processing (three times the diameter of the drill) was performed by dry cutting.
The life was determined while observing the shape of chips and the like, and checking the damage state of the cutting edge for each fixed number of processing holes.

【0011】その結果、本発明例は、切削初期には分断
された切り屑(遷移折断型)が生成され、切り屑排出性
もよく、スムーズな穴加工が行えた。また、穴加工数を
経過するに定常的な摩耗状態となった。この切り屑形態
が2000穴加工まで続き、摩耗量も増加したが、切り
屑形態の変化は少なく、排出は良好であった。更に加工
を継続すると、3000穴加工で切り屑が連なるように
なり、ドリル先端部と外周との交叉部の摩耗が大きくな
り、更に継続すると3200穴前後で切り屑が分断され
ず、連なるような切り屑なり、絡みつくようになったた
め、寿命と判断した。
As a result, in the example of the present invention, divided chips (transition cut type) were generated in the initial stage of cutting, the chip discharge property was good, and smooth drilling was performed. In addition, a steady state of wear occurred after the number of drilled holes. This chip form continued up to 2,000 hole machining and the amount of wear increased, but the change in chip form was small and the discharge was good. If the machining is further continued, the chips will be continuous in the 3000 hole processing, and the wear at the intersection of the drill tip and the outer periphery will increase. Since the chips became tangled and became entangled, it was judged that the life was over.

【0012】(実施例2)次に、実施例1と同様のドリ
ルを用いて、変曲点の位置をドリル径の40%、50
%、60%、65%、70%、75%、80%、95%
とのドリルを、刃溝底部の曲率半径を12.5%一定で
製作した。被削材にSCM440(焼鈍材)を用いて、
切り屑の形態を観察した。切削諸元は、切削速度60m
/min、送り速度0.2mm/revで、穴深さ24
mm(ドリル径の3倍)の穴加工をドライ切削にて行っ
た。切り屑形態の判断は、500穴程度までの穴明け加
工でのトラブルの有無により判断し、トラブルのないも
ののみ、試験を継続した。トラブルの有無とは、切り屑
がドリル本体に絡みついたり、切り屑詰まりを生じた場
合を有りとした。
(Embodiment 2) Next, using the same drill as in Embodiment 1, the position of the inflection point was set to 40% of the drill diameter, 50%.
%, 60%, 65%, 70%, 75%, 80%, 95%
Were manufactured with a constant curvature radius of 12.5% at the bottom of the blade groove. Using SCM440 (annealed material) for work material,
The morphology of the chips was observed. Cutting specifications are 60m cutting speed
/ Min, feed rate 0.2mm / rev, hole depth 24
mm (three times the diameter of the drill) was drilled by dry cutting. The determination of the swarf form was made based on the presence or absence of a trouble in drilling up to about 500 holes. The presence / absence of a trouble was defined as the case where chips were entangled with the drill body or chips were clogged.

【0013】その結果、50穴程度までの初期の加工
で、トラブルとなったものは、比較例の40%の試料で
切り屑形態が安定せず、切り屑が絡みついたため、試験
を中止した。従来例の95%の試料では、最初の100
穴すぎから切り屑が延びるようになり、不可と判断し
た。他の50%、60%、65%、70%、75%、8
0%は500穴までは切り屑の形態が変化せず、良好な
切り屑排出が行えた。更に、試験を継続し、1000穴
まで加工したが、切り屑の形態が変化せず、良好な切り
屑排出が行えたのは、60%、65%、70%、75%
の4試料であり、80%の試料ではやや切り屑が延び、
不安定となった。
As a result, in the initial processing of up to about 50 holes, the test was stopped because the chip form was not stable in 40% of the samples of the comparative example and the chips were entangled. For the 95% sample of the prior art, the first 100
Chips began to extend from too much holes, and it was judged impossible. Other 50%, 60%, 65%, 70%, 75%, 8
At 0%, the shape of the chips did not change up to 500 holes, and good chip discharge was possible. Further, the test was continued and processing was performed up to 1000 holes. However, the morphology of the chips did not change and good chip discharge was performed at 60%, 65%, 70%, and 75%.
4 samples, and 80% of the samples have slightly extended chips,
It became unstable.

【0014】(実施例3)次に、被削材にダイス鋼SK
D61(調質材、HRC45)を用いて、オイルホール
付きのドリルを用いて、完全ドライ切削とセミドライ切
削、湿式切削での比較を実施した。尚、ドリルの仕様
は、実施例2で用いた本発明例65%、従来例95%の
2つを用いた。切削諸元は、切削速度30m/min、
送り速度0.15mm/revで、穴深さ24mm(ド
リル径の3倍)の穴加工を行った。被削材に調質鋼を用
いたのは、切削時の熱の発生がより高いためである。セ
ミドライ切削では、オイルホールよりエアー、ミスト等
の供給を行い、湿式切削では、水溶性切削油を用い、切
削時の発熱を影響しないよう、冷却した。50穴加工毎
に刃先の状態を観察し、切り屑形態の変化を確認した。
切り屑形態は分断された切り屑、連続した切り屑等の形
態の変化を観察し、切り屑がドリル本体に絡みついた場
合に、試験を中止した。完全ドライ切削では、50穴ま
での初期の加工では切り屑形態が分断され、良好な排出
であり、500穴まではその状態が継続したが摩耗が大
きくなり、600穴を過ぎると切り屑が連なるようにな
り、ドリル先端部と外周との交叉部の摩耗が大きくな
り、更に継続すると800穴前後で切り屑が分断され
ず、連なるような切り屑なり、絡みつくようになったた
め、寿命と判断した。セミドライ切削では、ほとんど完
全ドライ切削と同じ経過で推移した。特に、エアーによ
る強制冷却では水溶性切削油を用いた場合のような顕著
な効果がなく、切り屑の排出が早まる程度である。湿式
切削では、安定した切り屑が得られ、800穴迄分断さ
れた切り屑が形成され、肩部の摩耗により950穴で切
り屑が延びるようになり、ドリル本体へ絡みつくように
なったので試験を中止した。このように、ドライ切削に
おいてもドリル刃形を工夫することにより、湿式切削時
の切削諸元を落とさずに80%程度の寿命が得られる。
(Embodiment 3) Next, a die steel SK is used as a work material.
Using D61 (heat treatment material, HRC45) and a drill with an oil hole, a comparison was made between completely dry cutting, semi-dry cutting, and wet cutting. The specifications of the drill used were 65% of the present invention used in Example 2 and 95% of the conventional example. Cutting specifications are: cutting speed 30m / min,
Hole processing was performed at a feed rate of 0.15 mm / rev and a hole depth of 24 mm (three times the drill diameter). The reason why the tempered steel is used as the work material is that heat generation during cutting is higher. In semi-dry cutting, air, mist, etc. were supplied from an oil hole, and in wet cutting, water-soluble cutting oil was used and cooled so as not to affect the heat generated during cutting. The state of the cutting edge was observed at every 50-hole machining, and a change in the chip shape was confirmed.
As for the chip morphology, changes in morphology such as divided chips and continuous chips were observed, and when the chips were entangled with the drill body, the test was stopped. In complete dry cutting, the swarf form is cut off in the initial processing up to 50 holes, and the discharge is good, and the state continues up to 500 holes, but the wear increases, and the swarf continues after 600 holes As a result, the wear at the intersection of the drill tip and the outer periphery increased, and if it continued, the chips were not divided at around 800 holes, and the chips became continuous and became entangled. . Semi-dry cutting showed almost the same progress as completely dry cutting. In particular, the forced cooling by air does not have a remarkable effect as compared with the case of using a water-soluble cutting oil, and the discharge of chips is accelerated. In wet cutting, stable chips were obtained, chips cut up to 800 holes were formed, and chips were extended at 950 holes due to abrasion of the shoulder, and became entangled with the drill body. Ceased. In this way, even in dry cutting, by devising the drill blade shape, a life of about 80% can be obtained without reducing cutting data in wet cutting.

【0015】(実施例4)次に、被削材に炭素鋼S50
C(調質材、HRC20)を用いて、実施例1と同様の
ドリルを用いて、凹状の曲率半径10%、12.5%、
15%、17.5%、20%の試料を作成し、刃溝底部
の曲率半径の影響を試験した。切削諸元は、切削速度6
0m/min、送り速度0.20mm/revで、穴深
さ24mm(ドリル径の3倍)の穴加工をドライ切削に
て行った。切り屑形態の判断は、100穴程度までの穴
明け加工でのトラブルの有無により判断し、トラブルの
ないもののみ、試験を継続した。トラブルの有無とは、
切り屑がドリル本体に絡みついたり、切り屑詰まりを生
じた場合を有りとした。その結果、500穴程度までの
初期加工では良好な切り屑が得られた。更に試験を継続
すると、曲率半径の大きな試料から、切り屑が連なるよ
うになり、不可と判断した。他の試料では良好な切り屑
排出が行えた。
(Embodiment 4) Next, carbon steel S50 was used as the work material.
Using C (tempering material, HRC20) and the same drill as in Example 1, a concave curvature radius of 10%, 12.5%,
15%, 17.5%, and 20% samples were prepared, and the influence of the radius of curvature at the bottom of the blade groove was tested. Cutting specifications are: cutting speed 6
A hole with a hole depth of 24 mm (three times the drill diameter) was dry-cut at 0 m / min and a feed rate of 0.20 mm / rev. The chip form was determined based on the presence or absence of troubles in drilling up to about 100 holes, and the test was continued only for those having no troubles. If there is any trouble,
There were cases where chips were entangled with the drill body or chips were clogged. As a result, good chips were obtained in the initial processing up to about 500 holes. When the test was further continued, chips from the sample having a large radius of curvature became continuous, and it was determined that the sample was not acceptable. Good chip discharge was achieved with the other samples.

【0016】[0016]

【発明の効果】本発明を適用することにより、ドライ切
削における課題である分断された切り屑が長期に亘って
得られ、また、耐チッピング性を保ちつつ、寿命をを向
上させることができた。特に、ドライ切削では、切り屑
を巻き込みチッピング、欠損等を生じ易いため、安定し
た長寿命なドリルが得られる。
By applying the present invention, divided chips, which are problems in dry cutting, can be obtained for a long period of time, and the life can be improved while maintaining chipping resistance. . In particular, in dry cutting, a chip having a stable and long life can be obtained because chips are easily entrained by chipping and chipping.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明例のドリルの正面図を示す。FIG. 1 shows a front view of a drill according to an embodiment of the present invention.

【図2】図2は、本発明例のドリルの軸方向先端視を示
す。
FIG. 2 is a front view in the axial direction of the drill of the example of the present invention.

【図3】図3は、図1の軸直角断面図を示す。FIG. 3 shows a cross-section perpendicular to the axis of FIG. 1;

【図4】図4は、従来例の軸直角断面図を示す。FIG. 4 is a sectional view taken along a line perpendicular to the axis of a conventional example.

【符号の説明】[Explanation of symbols]

1 ドリル本体 2 外周刃 3 先端刃 4 切り屑排出溝 5 ランド部 6 S字状 D 直径 W 心厚 O 軸心 DESCRIPTION OF SYMBOLS 1 Drill main body 2 Perimeter blade 3 Tip blade 4 Chip discharge groove 5 Land part 6 S-shape D diameter W Core thickness O Shaft center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基体に超硬合金又はTiCN系サーメッ
トを用い、基体表面に硬質皮膜及び/又は潤滑性被膜を
被覆してなるドライ切削用ドリルにおいて、前記ドリル
の軸端視で、刃溝の心厚近傍からランドヒール部に向け
て凹円弧状で形成された稜線の途中に変曲点を設け、ド
リルの回転方向と反対方向へ後退させるとともに、該ド
リルの軸直角断面視においても、刃溝の心厚近傍からラ
ンドヒール部に向けてドリルの回転方向とは反対方向へ
後退させたことを特徴とするドライ切削用ドリル。
1. A dry cutting drill in which a hard metal and / or a lubricating coating is coated on the surface of a substrate using a cemented carbide or a TiCN-based cermet as a substrate. An inflection point is provided in the middle of a ridge line formed in a concave arc shape from the vicinity of the core thickness toward the land heel portion, and the inflection point is retracted in the direction opposite to the rotation direction of the drill, and the cutting edge is also seen in a cross section perpendicular to the axis of the drill. A drill for dry cutting, wherein the drill is retracted in a direction opposite to a rotation direction of the drill from a vicinity of a groove thickness toward a land heel portion.
【請求項2】 請求項1記載のドライ切削用ドリルにお
いて、該変曲点の位置をドリル径の50〜90%Dとし
たことを特徴とするツイストドリル。
2. The twist drill according to claim 1, wherein the position of the inflection point is set to 50 to 90% D of the drill diameter.
【請求項3】 請求項1乃至2記載のドライ切削用ドリ
ルにおいて、該凹状部の曲率半径をドリル径の10〜2
0%としたことを特徴とするドライ切削用ドリル。
3. The dry cutting drill according to claim 1, wherein the radius of curvature of the concave portion is 10 to 2 times the drill diameter.
Drill for dry cutting, characterized in that it is 0%.
【請求項4】 請求項1乃至3記載のドライ切削用ドリ
ルを用いて、ドライ及び/又はセミドライにより穴明け
加工を行うことを特徴とする穴加工方法。
4. A hole drilling method, comprising: performing drilling by dry and / or semi-dry using the dry cutting drill according to claim 1.
JP2000369877A 2000-12-05 2000-12-05 Drill for dry cutting and drilling method Pending JP2002172509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369877A JP2002172509A (en) 2000-12-05 2000-12-05 Drill for dry cutting and drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369877A JP2002172509A (en) 2000-12-05 2000-12-05 Drill for dry cutting and drilling method

Publications (1)

Publication Number Publication Date
JP2002172509A true JP2002172509A (en) 2002-06-18

Family

ID=18839850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369877A Pending JP2002172509A (en) 2000-12-05 2000-12-05 Drill for dry cutting and drilling method

Country Status (1)

Country Link
JP (1) JP2002172509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226040A (en) * 2016-06-22 2017-12-28 本田技研工業株式会社 Processing method and tool, and method of manufacturing power transmission component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226040A (en) * 2016-06-22 2017-12-28 本田技研工業株式会社 Processing method and tool, and method of manufacturing power transmission component

Similar Documents

Publication Publication Date Title
JP5762547B2 (en) drill
JP5816364B2 (en) 3-flute drill
JPWO2013065201A1 (en) drill
JP2006326790A (en) Twist drill
CN109070239A (en) Small-diameter drill
WO2019244796A1 (en) Rotary tool and method for manufacturing cut workpiece
JP4975395B2 (en) Ball end mill
JP2012030306A (en) Drill and drilling method using the same
WO2017082251A1 (en) Cutting insert, cutting tool, and manufacturing method for machined product
JP2000198011A (en) Twist drill
JP4097515B2 (en) Ball end mill
JP2002172509A (en) Drill for dry cutting and drilling method
JP2002172506A (en) Covered twist drill
JP2003275909A (en) Drill
JP2002172507A (en) Drill for dry cutting and drilling method
JP2003275910A (en) Drill
JP2001341026A (en) Ball end mill
JP3786188B2 (en) Ball end mill
JP2005186247A (en) Twist drill
JP2006095628A (en) Twist drill
JP2005059120A (en) Cutting tool
JP2001170810A (en) Twist drill
JP2005205526A (en) Deep hole boring tool
JP2000015511A (en) Twist drill
JP2001341021A (en) Twist drill