JP2002170869A - Electrostatic chuck - Google Patents
Electrostatic chuckInfo
- Publication number
- JP2002170869A JP2002170869A JP2000363973A JP2000363973A JP2002170869A JP 2002170869 A JP2002170869 A JP 2002170869A JP 2000363973 A JP2000363973 A JP 2000363973A JP 2000363973 A JP2000363973 A JP 2000363973A JP 2002170869 A JP2002170869 A JP 2002170869A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric layer
- electrode
- stainless steel
- insulating layer
- electrostatic chuck
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Jigs For Machine Tools (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に半導体製造装
置等においてシリコンウエハ等を固定するために用いる
静電チャックに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck particularly used for fixing a silicon wafer or the like in a semiconductor manufacturing apparatus or the like.
【0002】耐熱性、耐食性に優れた酸化アルミニウム
や窒化アルミニウムなどのセラミック材にタングステン
などの導電材からなる薄い電極を埋設した静電チャック
が、半導体のウエハなどのエッチング装置やCVD装置
において、ウエハを静電引力(クーロン力)により吸着
保持する機構として用いられている。図2に示す静電チ
ャック13は、誘電体膜となる矩形状のセラミックグリ
ーンシート11aの上に、電極12となるタングステ
ン、アルミナ、溶剤、バインダを混合したペースト状材
料を印刷し、その表面に矩形状のセラミックグリーンシ
ート11bを熱圧着し順次積層した後、円形状に切断加
工する。その後、還元雰囲気炉にて焼成することによ
り、セラミック材に電極が埋設された静電チャック13
が作製される。[0002] An electrostatic chuck in which a thin electrode made of a conductive material such as tungsten is embedded in a ceramic material such as aluminum oxide or aluminum nitride having excellent heat resistance and corrosion resistance is used in an etching apparatus such as a semiconductor wafer or a CVD apparatus. Is used as a mechanism for adsorbing and holding by electrostatic attraction (Coulomb force). The electrostatic chuck 13 shown in FIG. 2 prints a paste-like material obtained by mixing tungsten, alumina, a solvent, and a binder, which become the electrode 12, on a rectangular ceramic green sheet 11a, which becomes a dielectric film. The ceramic green sheets 11b having a rectangular shape are thermocompressed and sequentially laminated, and then cut into a circular shape. Thereafter, by firing in a reducing atmosphere furnace, the electrostatic chuck 13 having the electrodes embedded in the ceramic material is formed.
Is produced.
【0003】[0003]
【発明が解決しようとする課題】近年、ウエハの生産効
率を向上させるため大型で薄型の静電チャックが望まれ
ている。しかしながら、セラミック材に電極が埋設され
た静電チャックは、セラミックの性質(破壊靱性が低い
ため脆い、機械加工性が低いなど)、製造(セラミック
グリーンシートを積層する、焼成時に収縮するなど)
上、薄型、大型化が不向きである。また、エッチング加
工等で高温に加熱されたウエハを、静電チャックを介し
て冷却する際、直接冷水や冷気がセラミック材表面に接
すると、セラミック材の耐冷熱衝撃性は低いためクラッ
クが発生し電極が断線し吸着性能の低下を招く恐れがあ
る。In recent years, a large and thin electrostatic chuck has been desired in order to improve the production efficiency of wafers. However, an electrostatic chuck in which electrodes are embedded in a ceramic material has the properties of ceramic (brittle due to low fracture toughness, low machinability, etc.) and manufacturing (lamination of ceramic green sheets, shrinkage during firing, etc.)
Moreover, it is unsuitable for a thin, large size. In addition, when cooling a wafer heated to a high temperature by etching or the like through an electrostatic chuck, if cold water or cold air comes into direct contact with the ceramic material surface, cracks occur because the cold resistance of the ceramic material is low. There is a possibility that the electrode is disconnected and the adsorption performance is reduced.
【0004】本発明は、上記課題を解決するためになさ
れたもので、大型および薄型で熱応答性が良好な静電チ
ャックを提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a large and thin electrostatic chuck having good thermal responsiveness.
【0005】[0005]
【課題を解決するための手段および作用・効果】上記課
題を解決する為、請求項1記載の発明は、ステンレス材
と、該ステンレス材の表面に形成された結晶化ガラスか
らなる絶縁層と、該絶縁層表面にパターンをなして広が
る電極と、該電極表面を被覆する誘電層と、を備え該電
極に直流電圧を印加することにより、前記誘電層の表面
に正または負の静電荷を発生させ前記誘電層の表面に載
置された基板を吸着することを特徴とする静電チャック
である。形状が安定したステンレス材の表面に、結晶化
ガラスからなる絶縁層、電極、誘電層を順次形成するこ
とにより、収縮による形状の変化はほとんどなく、大型
化を図ることができる。また、ステンレス材を用いるこ
とにより製造、使用上において十分な機械強度を得られ
るため、絶縁層および誘電層の厚みを絶縁・吸着性能を
満足する程度に薄型化を図ることができる。従って、熱
応答性を向上させることができ、静電チャックの表面温
度を精度良く温度調節が可能になる。熱応答性をさらに
向上させるためステンレス材の厚みを、絶縁層と誘電層
の膜厚を加算した厚みより薄くしたい場合、ステンレス
材の絶縁層、電極、誘電層が形成されない他表面(以
下、裏面)に、絶縁層と誘電層の膜厚を加算した厚みを
有した応力緩和層を絶縁層と同材料で形成することによ
り、ステンレス材の反りを防止し、絶縁層や誘電層の割
れによる絶縁不良、電極の断線による吸着不良を防止で
きる。そして、エッチング加工等で高温に加熱されたウ
エハを、静電チャックを介して冷却する際、ステンレス
材の裏面に直接冷水や冷気が接しても絶縁層や誘電層に
支障をきたすことなく冷却することができる。Means for Solving the Problems and Action / Effect In order to solve the above problems, the invention according to claim 1 comprises a stainless steel, an insulating layer made of crystallized glass formed on the surface of the stainless steel, An electrode that spreads in a pattern on the surface of the insulating layer; and a dielectric layer that covers the surface of the electrode. A positive or negative electrostatic charge is generated on the surface of the dielectric layer by applying a DC voltage to the electrode. An electrostatic chuck for adsorbing a substrate placed on the surface of the dielectric layer. By sequentially forming an insulating layer, an electrode, and a dielectric layer made of crystallized glass on the surface of a stainless steel having a stable shape, there is almost no change in shape due to shrinkage, and the size can be increased. In addition, since sufficient mechanical strength can be obtained in production and use by using a stainless steel material, the thickness of the insulating layer and the dielectric layer can be reduced to a level that satisfies the insulation / adsorption performance. Therefore, the thermal responsiveness can be improved, and the surface temperature of the electrostatic chuck can be accurately adjusted. If the thickness of the stainless steel material is to be made smaller than the sum of the thicknesses of the insulating layer and the dielectric layer in order to further improve the thermal responsiveness, the other surface on which the stainless steel insulating layer, electrode, and dielectric layer are not formed (hereinafter referred to as the back surface) ), A stress relaxation layer having a thickness obtained by adding the thicknesses of the insulating layer and the dielectric layer is formed of the same material as the insulating layer, thereby preventing the warpage of the stainless steel material and insulating due to cracking of the insulating layer and the dielectric layer. It is possible to prevent poor suction and defective suction due to electrode disconnection. Then, when cooling the wafer heated to a high temperature by etching or the like via an electrostatic chuck, even if cold water or cold air is directly in contact with the back surface of the stainless steel material, the wafer is cooled without disturbing the insulating layer and the dielectric layer. be able to.
【0006】請求項2記載の発明は、スクリーン印刷に
て、前記絶縁層、前記電極、前記誘電層を形成したこと
を特徴とする。任意の位置に精度良く絶縁層、電極、誘
電層を形成できるとともに、絶縁層や誘電層の膜厚を1
0μmレベルで調整ができる。従って、必要な膜厚だけ
絶縁層や誘電層を形成できるため、仕様に応じた薄型化
が容易にできる。また、あらかじめ円形状をなしたステ
ンレス材に、絶縁層、電極、誘電層を形成することがで
きるため、印刷後に円形状に加工する必要性がなく、剥
離や割れ等の製造不具合が発生しない。精度良く絶縁
層、電極、誘電層を形成したい場合は、印刷位置決め用
の切欠きをステンレス材の端面に1つ以上設け、その切
欠きを用いて印刷機に固定すれば良い。そして、基板
(ウエハ)が載置される誘電層表面の任意の位置に、数
十μmの凹凸を容易に設けることができるため、基板と
誘電層間での摩擦係数が低下し脱着性能を向上させるこ
とができる。According to a second aspect of the present invention, the insulating layer, the electrode, and the dielectric layer are formed by screen printing. An insulating layer, an electrode, and a dielectric layer can be accurately formed at an arbitrary position, and the thickness of the insulating layer and the dielectric layer can be reduced by one.
Adjustment can be made at the 0 μm level. Therefore, since the insulating layer and the dielectric layer can be formed in a required thickness, the thickness can be easily reduced according to the specification. Further, since an insulating layer, an electrode, and a dielectric layer can be formed on a stainless steel material that has been previously formed into a circular shape, there is no need to process the product into a circular shape after printing, and production defects such as peeling and cracking do not occur. When it is desired to form an insulating layer, an electrode, and a dielectric layer with high precision, one or more notches for printing positioning may be provided on the end face of the stainless steel material, and the notches may be fixed to the printing press using the notches. Further, since irregularities of several tens of μm can be easily provided at an arbitrary position on the surface of the dielectric layer on which the substrate (wafer) is mounted, the coefficient of friction between the substrate and the dielectric layer is reduced, and the desorption performance is improved. be able to.
【0007】請求項3記載の発明は、前記誘電層にアル
ミナを含有したことを特徴とする。誘電層にアルミナ粒
子を混合させることにより誘電率が増加し、吸着性能を
向上させることができるため、更なる薄型化を図ること
ができる。アルミナ粒子の含有比率は、絶縁層、電極と
の密着性を考慮すると、数%〜20%程度が好ましい。The invention according to claim 3 is characterized in that the dielectric layer contains alumina. By mixing alumina particles in the dielectric layer, the dielectric constant increases, and the adsorption performance can be improved, so that a further reduction in thickness can be achieved. The content ratio of the alumina particles is preferably about several% to 20% in consideration of the adhesion to the insulating layer and the electrode.
【0008】[0008]
【発明の実施形態】以下、本発明にかかる静電チャック
の実施の形態を図面により詳細に説明する。図1に示す
静電チャック5は、ステンレス材1の表面に、ステンレ
ス材1と熱膨張率が同程度の結晶化ガラスを主成分とし
膜厚が200μm程度の絶縁層2、銀を主成分としガラ
スフリットを数%混合し膜厚が10μm程度の電極3、
結晶化ガラスを主成分としアルミナ粒子を10%程度混
合し膜厚が400μm程度の誘電層4が順次形成されて
いる。なお、本実施例に記載した図面においては、各部
材の厚みは実際の厚みとは異なっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the electrostatic chuck according to the present invention will be described below in detail with reference to the drawings. The electrostatic chuck 5 shown in FIG. 1 has, on the surface of a stainless steel material 1, a crystallized glass having the same thermal expansion coefficient as that of the stainless steel material 1 as a main component, an insulating layer 2 having a thickness of about 200 μm, and silver as a main component. An electrode 3 having a thickness of about 10 μm by mixing several percent of glass frit,
A dielectric layer 4 having a thickness of about 400 μm is formed by mixing about 10% of alumina particles with crystallized glass as a main component. In the drawings described in the present embodiment, the thickness of each member is different from the actual thickness.
【0009】ステンレス材は、耐食性に優れたSUS3
04、SUS444、またはアルミナを含有したものが
好ましく、熱応答性、製造性を考慮しその厚みを2mm
とする。熱応答性を重視しステンレス材の厚みを、絶縁
層と誘電層の膜厚を加算した厚みより薄くしたい場合、
例えば、ステンレス材の厚みを0.4mm、絶縁層の膜
厚が200μm、誘電層の膜厚が400μmの時、絶縁
層、電極、誘電層が形成されない他表面(裏面)に、絶
縁層と誘電層の膜厚を加算した600μm程度の膜厚を
有する応力緩和層を絶縁層と同材料で形成することによ
り、ステンレス材の反りを防止し、絶縁層や誘電層の割
れによる絶縁不良、電極の断線による吸着不良を防止で
きる。あらかじめ固定用の貫通穴をステンレス材の外周
または任意の位置に1つ以上設けるか、固定用ネジをス
テンレス材の裏面に溶接にて接続することで、半導体装
置への取付が容易に行える。[0009] Stainless steel is SUS3, which has excellent corrosion resistance.
04, SUS444 or those containing alumina are preferable, and the thickness thereof is 2 mm in consideration of thermal responsiveness and manufacturability.
And If you want to make the thickness of stainless steel thinner than the sum of the thickness of the insulating layer and the thickness of the dielectric layer with emphasis on thermal response,
For example, when the thickness of the stainless material is 0.4 mm, the thickness of the insulating layer is 200 μm, and the thickness of the dielectric layer is 400 μm, the insulating layer, the electrode, and the dielectric layer are not formed. By forming a stress relaxation layer having a thickness of about 600 μm, which is the sum of the thicknesses of the layers, from the same material as the insulating layer, the warpage of the stainless steel material is prevented, insulation failure due to cracks in the insulating layer and the dielectric layer, insulation failure of the electrode, Adsorption failure due to disconnection can be prevented. The mounting to the semiconductor device can be easily performed by providing one or more fixing through holes in the outer periphery or an arbitrary position of the stainless steel material in advance, or by connecting the fixing screws to the back surface of the stainless steel material by welding.
【0010】ステンレス材1の表面に、ステンレス材1
と熱膨張率が同程度の結晶化ガラスを主成分としたペー
スト材料をスクリーン印刷にて印刷し、150℃の予備
乾燥後に850℃で大気焼成することで、ステンレス材
1との密着性、耐熱性に優れた絶縁層2が形成される。[0010] The stainless steel material 1
The paste material mainly composed of crystallized glass having the same coefficient of thermal expansion is printed by screen printing, pre-dried at 150 ° C., and then fired at 850 ° C. in the air, so that the adhesiveness to the stainless steel material 1 and heat resistance The insulating layer 2 having excellent properties is formed.
【0011】絶縁層2の表面に、銀を主成分としガラス
フリットを数%混合したペースト材料をスクリーン印刷
にて印刷し、150℃の予備乾燥後に850℃で大気焼
成することで、任意のパターンをなした電極3が形成さ
れる。必要に応じて、銀にパラジウムを数%〜50%程
度混合することにより、耐熱性が向上するとともに、抵
抗温度係数を低くすることができるため、常温と高温で
の抵抗値変化を抑制できるため、制御性が向上する。The surface of the insulating layer 2 is printed with a paste material containing silver as a main component and a glass frit of several percent by screen printing, pre-dried at 150 ° C., and then fired at 850 ° C. in the air to obtain an arbitrary pattern. Is formed. If necessary, by mixing palladium with silver in a range of several percent to 50%, the heat resistance can be improved and the temperature coefficient of resistance can be reduced, so that a change in the resistance value between normal temperature and high temperature can be suppressed. , Controllability is improved.
【0012】電極3表面を被覆するように、結晶化ガラ
スを主成分としアルミナ粒子を10%程度混合したペー
スト材料をスクリーン印刷にて印刷し、150℃の予備
乾燥後に850℃で大気焼成することで誘電層4が形成
される。電極接触面と基板(ウエハ)が載置される誘電
層表面とで、印刷パターンを変更して印刷することによ
り、任意の位置に数十μmの凹凸を容易に設けることが
できる。A paste material containing crystallized glass as a main component and containing about 10% of alumina particles is printed by screen printing so as to cover the surface of the electrode 3, and is preliminarily dried at 150 ° C. and then fired at 850 ° C. in the air. Thus, the dielectric layer 4 is formed. By changing and printing the printing pattern between the electrode contact surface and the surface of the dielectric layer on which the substrate (wafer) is mounted, irregularities of several tens of μm can be easily provided at arbitrary positions.
【0013】かかる構成により、形状が安定したステン
レス材1の表面に、結晶化ガラスからなる絶縁層2、電
極3、誘電層4を順次形成することにより、収縮による
形状の変化はほとんどなく、大型化を図ることができ
る。また、ステンレス材1を用いることにより製造、使
用上において十分な機械強度を得られるため、絶縁層2
および誘電層4の厚みを絶縁・吸着性能を満足する程度
に薄型化を図ることができる。従って、熱応答性を向上
させることができ、静電チャック5の表面温度を精度良
く温度調節することが可能となる。そして、エッチング
加工等で高温に加熱されたウエハを、静電チャック5を
介して冷却する際、ステンレス材1の裏面に直接冷水や
冷気が接しても絶縁層2や誘電層4に支障をきたすこと
なく冷却することができる。さらに、電極の下層部また
はステンレス材の裏面に絶縁層を介してヒータ回路を形
成することにより、静電チャックを素速くかつ均一に加
熱することもできるため、誘電層表面に吸着されたウエ
ハの温度を任意の温度に調整することも可能である。With this configuration, the insulating layer 2, the electrode 3, and the dielectric layer 4 made of crystallized glass are sequentially formed on the surface of the stainless steel 1 having a stable shape, so that the shape is hardly changed due to shrinkage, and the size is large. Can be achieved. In addition, since the use of the stainless steel material 1 provides sufficient mechanical strength in production and use, the insulating layer 2
In addition, the thickness of the dielectric layer 4 can be reduced so as to satisfy the insulation / adsorption performance. Therefore, the thermal responsiveness can be improved, and the surface temperature of the electrostatic chuck 5 can be accurately adjusted. When the wafer heated to a high temperature by etching or the like is cooled via the electrostatic chuck 5, even if cold water or cold air is in direct contact with the back surface of the stainless steel material 1, the insulating layer 2 and the dielectric layer 4 are hindered. It can be cooled without. Furthermore, by forming a heater circuit on the lower layer of the electrode or on the back surface of the stainless steel through an insulating layer, the electrostatic chuck can be heated quickly and uniformly, so that the wafer adsorbed on the surface of the dielectric layer can be heated. It is also possible to adjust the temperature to any temperature.
【0014】また、本発明は上記の実施例や実施形態に
なんら限定されるものではなく、本発明の要旨を逸脱し
ない範囲において種々なる態様で実施し得ることは勿論
である。例えば、ステンレス表面全体に電気泳動法を用
いて、結晶化化ガラスを塗布しそれを、乾燥、焼結させ
て絶縁層を形成することもでき、その表面に電極、誘電
層を形成することで同様の効果を得ることができる。Further, the present invention is not limited to the above-mentioned examples and embodiments at all, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention. For example, using an electrophoresis method, a crystallized glass can be applied to the entire surface of stainless steel, dried and sintered to form an insulating layer, and an electrode and a dielectric layer can be formed on the surface. Similar effects can be obtained.
【図1】 本発明にかかる静電チャックの概略構成を示
す、断面図である。FIG. 1 is a sectional view showing a schematic configuration of an electrostatic chuck according to the present invention.
【図2】 従来技術に記載する静電チャックの概略構成
を示す、断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration of an electrostatic chuck described in the related art.
1:ステンレス材、2:絶縁層、3:電極(銀)、4:
誘電層、5:静電チャック(本発明)、11(11a、
11b):セラミックグリーンシート、12:電極(タ
ングステン)、13:静電チャック(従来技術)1: stainless steel, 2: insulating layer, 3: electrode (silver), 4:
Dielectric layer, 5: electrostatic chuck (the present invention), 11 (11a,
11b): ceramic green sheet, 12: electrode (tungsten), 13: electrostatic chuck (prior art)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 隆弘 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 Fターム(参考) 3C016 GA10 5F031 CA02 HA02 HA03 HA16 PA18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takahiro Ohashi 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka F-term (reference) in TOTO Kiki Co., Ltd. 3C016 GA10 5F031 CA02 HA02 HA03 HA16 PA18
Claims (3)
に形成された結晶化ガラスからなる絶縁層と、該絶縁層
表面にパターンをなして広がる電極と、該電極表面を被
覆する誘電層と、を備え該電極に直流電圧を印加するこ
とにより、前記誘電層の表面に正または負の静電荷を発
生させ前記誘電層の表面に載置された基板を吸着するこ
とを特徴とする静電チャック。1. A stainless steel material, an insulating layer made of crystallized glass formed on the surface of the stainless steel material, an electrode extending in a pattern on the insulating layer surface, and a dielectric layer covering the electrode surface. Applying a DC voltage to the electrode to generate a positive or negative electrostatic charge on the surface of the dielectric layer and attracting a substrate mounted on the surface of the dielectric layer. .
電極、前記誘電層を形成したことを特徴とする請求項1
記載の静電チャック。2. The method according to claim 1, wherein the insulating layer, the electrode, and the dielectric layer are formed by screen printing.
An electrostatic chuck as described.
特徴とする請求項1乃至2いずれか1項記載の静電チャ
ック。3. The electrostatic chuck according to claim 1, wherein the dielectric layer contains alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000363973A JP2002170869A (en) | 2000-11-30 | 2000-11-30 | Electrostatic chuck |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000363973A JP2002170869A (en) | 2000-11-30 | 2000-11-30 | Electrostatic chuck |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002170869A true JP2002170869A (en) | 2002-06-14 |
Family
ID=18834994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000363973A Pending JP2002170869A (en) | 2000-11-30 | 2000-11-30 | Electrostatic chuck |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002170869A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203768A (en) * | 2003-12-18 | 2005-07-28 | Miraial Kk | Lid for thin plate support container and method for mounting same |
JP2013008746A (en) * | 2011-06-22 | 2013-01-10 | Ulvac Japan Ltd | Substrate holding apparatus |
KR101967424B1 (en) * | 2018-10-02 | 2019-08-19 | (주)제니스월드 | Manufacturing method of Bipolar Electrostatic chuck using Ceramic Paste Composition |
-
2000
- 2000-11-30 JP JP2000363973A patent/JP2002170869A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203768A (en) * | 2003-12-18 | 2005-07-28 | Miraial Kk | Lid for thin plate support container and method for mounting same |
JP4764001B2 (en) * | 2003-12-18 | 2011-08-31 | ミライアル株式会社 | Thin plate support container lid |
JP2013008746A (en) * | 2011-06-22 | 2013-01-10 | Ulvac Japan Ltd | Substrate holding apparatus |
KR101967424B1 (en) * | 2018-10-02 | 2019-08-19 | (주)제니스월드 | Manufacturing method of Bipolar Electrostatic chuck using Ceramic Paste Composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW442888B (en) | Electrostatic holding apparatus and method of producing the same | |
JPH11111828A (en) | Electrostatic sucking device | |
JP2006140367A (en) | Heating element for semiconductor manufacturing apparatus and heating apparatus loading heating element | |
JPH05235152A (en) | Electrostatic chuck | |
US6122159A (en) | Electrostatic holding apparatus | |
JP2009238949A (en) | Electrostatic chuck and method of manufacturing the same | |
JP7306915B2 (en) | Ceramic substrate, electrostatic chuck, manufacturing method of electrostatic chuck | |
JP2003179128A (en) | Electrostatic chuck | |
JP4686996B2 (en) | Heating device | |
JP2001338970A (en) | Electrostatically attracting apparatus | |
JP5644161B2 (en) | Electrostatic chuck for holding semiconductor and method for manufacturing the same | |
JP2000332089A (en) | Electrostatic chuck for heating and holding wafer | |
JP2000277599A (en) | Electrostatic chuck | |
JP2002170869A (en) | Electrostatic chuck | |
JP2001077185A (en) | Electrostatic chuck and its manufacture | |
JP3602908B2 (en) | Wafer holding member | |
JP2001358207A (en) | Silicon wafer support member | |
JP4567249B2 (en) | Electrostatic chuck | |
JP4241571B2 (en) | Manufacturing method of bipolar electrostatic chuck | |
JP2003188247A (en) | Electrostatic chuck and manufacturing method thereof | |
JPH1187479A (en) | Electrostatic chuck | |
JPH10189698A (en) | Electrostatic chuck | |
JPH06302677A (en) | Ceramic electrostatic chuck | |
JP2000031254A (en) | Ceramic electrostatic chuck and manufacture thereof | |
JP4069875B2 (en) | Wafer holding member |