JP2002168419A - Dust incineration method - Google Patents

Dust incineration method

Info

Publication number
JP2002168419A
JP2002168419A JP2001254107A JP2001254107A JP2002168419A JP 2002168419 A JP2002168419 A JP 2002168419A JP 2001254107 A JP2001254107 A JP 2001254107A JP 2001254107 A JP2001254107 A JP 2001254107A JP 2002168419 A JP2002168419 A JP 2002168419A
Authority
JP
Japan
Prior art keywords
dust
incineration
aluminum hydroxide
incinerator
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001254107A
Other languages
Japanese (ja)
Other versions
JP2002168419A5 (en
Inventor
Satoshi Araha
智 新葉
Toshiyuki Mizoe
利之 溝江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001254107A priority Critical patent/JP2002168419A/en
Publication of JP2002168419A publication Critical patent/JP2002168419A/en
Publication of JP2002168419A5 publication Critical patent/JP2002168419A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dust incineration method for preventing abnormal temperature increase in an incineration furnace and preventing damage, and at the same time inhibiting the generation of a harmful exhaust gas, and adsorbing and fixing heavy metal ions in residual ash of the incineration. SOLUTION: Dust is incinerated in the incineration furnace under the presence of aluminum hydroxide such as gibbsite, bayerite, boehmite, nordstrandite or the like, and/or transition alumina expressed by a general expression Al2O3 having a crystal form mainly of γ, ρ, θ, χ, δ, κ or the like and having a BET specific surface area of 30 m2/g or larger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焼却炉を用いた塵焼
却方法に関する。詳しくは、焼却炉内での異常な発熱を
抑制し、かつ焼却時に発生するダイオキシン等の有毒ガ
ス成分の焼却炉よりの排出を抑制し、さらには燃焼残灰
中に重金属イオン等が存在する場合には、雨水等による
重金属イオンの漏洩抑制効果を持つ、環境保護に優れた
塵焼却方法に関するものである。
[0001] The present invention relates to a dust incineration method using an incinerator. For details, suppress abnormal heat generation in the incinerator, suppress emission of toxic gas components such as dioxin generated during incineration from the incinerator, and furthermore, when heavy metal ions etc. are present in the combustion ash The present invention relates to a dust incineration method having an effect of suppressing the leakage of heavy metal ions due to rainwater or the like and having excellent environmental protection.

【0002】[0002]

【従来の技術】昨今、わが国では生活様式の変化、所得
水準の向上に伴い、家庭塵や商業塵の量が増加してい
る。さらに塵の種類にも変化が見られ、石油関連商品の
増加により樹脂製品の塵が増加しているのが現状であ
る。通常これら塵は省資源化、資源のリサイクル化、環
境保護の観点から各種有価成分を回収した後、不燃性塵
と可燃性塵に分別し、埋め立てや焼却処理に付されてい
る。
2. Description of the Related Art In recent years, the amount of household dust and commercial dust has been increasing in Japan along with changes in lifestyles and rising income levels. Furthermore, the type of dust has also changed, and at present the dust of resin products is increasing due to the increase in petroleum-related products. Usually, after collecting various valuable components from the viewpoint of resource saving, resource recycling, and environmental protection, these dusts are separated into non-combustible dust and combustible dust, and are subjected to landfill and incineration.

【0003】ところで、通常一般家庭よりだされる可燃
性塵は大量に可燃性樹脂が含まれており、現在、以下の
ような問題が生じている。すなわち、塵袋の原料であ
る熱可塑性樹脂は焼却の際の発生熱量が高く焼却炉内の
温度が異常に上昇し焼却炉材の損傷が激しいこと、塩
化ビニル、塩化ビニリデン(食品包装用ラップ)等の塩
素含有樹脂を燃焼する場合には有毒なダイオキシンが大
気放出される可能性があること、焼却残灰を埋め立て
処理した場合には、該灰中に含まれる重金属イオンが埋
め立て地で雨水等に溶解し漏洩する可能性があること等
が挙げられる。
[0003] By the way, the combustible dust usually emitted from ordinary households contains a large amount of combustible resin, and the following problems are presently occurring. In other words, the thermoplastic resin, which is the raw material of the dust bag, generates a large amount of heat during incineration and the temperature inside the incinerator rises abnormally, causing severe damage to the incinerator materials. Vinyl chloride, vinylidene chloride (wrapping for food packaging) When burning chlorine-containing resin such as toxic dioxin may be released to the atmosphere, and when incineration residual ash is landfilled, heavy metal ions contained in the ash may cause rainwater, etc. May be dissolved and leaked.

【0004】このような問題点に対処すべく、焼却炉内
の温度上昇については、炉に散水して炉内の温度上昇を
抑制する方法や可燃性塵をまとめる塵袋等に炭酸カルシ
ウムを充填した樹脂を使用し、そのものの燃焼熱を低下
させる方法が採られている。一方、大気中ヘのダイオキ
シンの排出抑制に関しては、ダイオキシン発生防止及び
吸着回収の両方向から検討が進められている。前者の発
生防止策としては環境庁が定めた焼却炉運転のガイドラ
インに従った炉の運転管理や新型炉の導入等により燃焼
物を完全燃焼させてダイオキシンの前駆体発生を抑制す
るための対策が進められている。さらに後者の吸着回収
策としては集塵装置のバグフィルター部に活性炭等を投
入する方法が実施されている。また、埋め立て時の有害
物質漏洩防止対策としては、含有される有害物質を不溶
化処理した後にセメント等で固化させて埋め立て処分す
る方法が採られている。しかしながら、これらの方法は
炉構成耐火物資材の保護、ダイオキシン飛散防止のため
の設備新設・改造、焼却残灰からの重金属イオンの漏洩
防止対策等の各々の目的に応じて個別に対処せざるをえ
ず、全ての対策を行うには膨大な処理コストを必要とす
るため、廉価で、かつ複数項目に対し効果のある手法の
発現が嘱望されていた。
In order to cope with such problems, the temperature in the incinerator is increased by spraying water into the incinerator to prevent the temperature from increasing in the incinerator or by filling calcium carbonate in a dust bag for collecting combustible dust. A method of reducing the combustion heat of the resin itself by using a resin that has been used has been adopted. On the other hand, studies on the control of dioxin emission into the atmosphere are being conducted from both directions of prevention of dioxin generation and adsorption and recovery. Measures to prevent the generation of dioxin precursors include controlling the operation of incinerators in accordance with the guidelines for operation of incinerators set by the Environment Agency, and introducing new types of furnaces to completely combust combustion products and prevent the generation of dioxin precursors. Is underway. Further, as the latter adsorption and recovery measure, a method of putting activated carbon or the like into a bag filter portion of a dust collector has been implemented. As a measure for preventing leakage of harmful substances at the time of landfill, a method of insolubilizing a contained harmful substance and then solidifying it with cement or the like and disposing it in a landfill has been adopted. However, these methods have to be individually dealt with according to each purpose, such as protection of refractory materials constituting the furnace, installation and modification of equipment to prevent dioxin scattering, and measures to prevent heavy metal ion leakage from incineration residual ash. First of all, enormous processing costs are required to take all measures, and it has been desired to develop a method that is inexpensive and effective for a plurality of items.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、焼却
炉運転時に於いて、焼却炉の異常温度上昇を防ぎ、炉材
の損傷を押さえつつ、ダイオキシン等の有害排ガスの大
気中への飛散を抑制し、焼却残灰中に含有される有害物
質の埋め立て地での漏洩防止に効果を発揮する塵焼却方
法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to prevent abnormal temperature rise of an incinerator during operation of the incinerator and to prevent harmful exhaust gas such as dioxin from scattering into the atmosphere while suppressing damage to the furnace material. It is an object of the present invention to provide a dust incineration method that suppresses harmful substances contained in incineration residual ash and exerts an effect of preventing leakage of harmful substances contained in the incineration landfill.

【0006】かかる事情下に鑑み、本発明者らは上記目
的を達成すべく鋭意検討した結果、焼却炉での塵燃焼時
に、燃焼対象物である塵に単にアルミニウム化合物を共
存させるという極めて簡単な方法によって上記目的が全
て満足し得ることを見いだし、本発明を完成するに至っ
た。
In view of such circumstances, the present inventors have made intensive studies to achieve the above object, and as a result, when burning dust in an incinerator, an extremely simple method of simply allowing an aluminum compound to coexist with dust to be burned. It has been found that all the above objects can be satisfied by the method, and the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、焼
却炉内で塵を焼却するに際し、水酸化アルミニウム及び
/又はBET比表面積が30m2 /g以上の遷移アルミ
ナの存在下にて、塵を燃焼させることを特徴とする塵焼
却方法を提供するにある。
That is, the present invention relates to a method for burning dust in an incinerator in the presence of aluminum hydroxide and / or transition alumina having a BET specific surface area of 30 m 2 / g or more. The present invention provides a dust incineration method characterized by burning methane.

【0008】[0008]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の最大の特徴は、焼却炉内での塵焼却時に、
水酸化アルミニウム及び/又はBET比表面積が30m
2 /g以上の遷移アルミナを存在させることにある。該
水酸化アルミニウムは焼却炉内で塵が焼却される燃焼熱
により結晶水を放出する。この結晶水の放出は吸熱反応
であることより炉内温度は低下される。また水酸化アル
ミニウムを特定温度で焼成する場合には、結晶転移を生
じ、非常にガス吸着能力や、金属イオンの吸着能力の高
いBET比表面積の大きい遷移アルミナ(活性アルミ
ナ)に転移する。本発明は焼却炉内での塵の焼却に際
し、塵に水酸化アルミニウム及び/又はBET比表面積
が30m2 /g以上の遷移アルミナを存在せしめ、該塵
を特定温度で焼却することにより、炉構築用耐火物や目
地等の炉構築材料を傷めることなく、また、焼却時塵に
添加存在せしめた水酸化アルミニウムがBET比表面積
が高い遷移アルミナへ転移し、これが焼却時に発生する
HClやダイオキシンを吸着すると共に、残灰埋め立て
時に残灰中に含有される重金属イオンを吸着し漏洩防止
効果を有すること、BET比表面積が30m2/g以上
の遷移アルミナを存在せしめた場合に於も、同様のHC
lやダイオキシンの吸着効果、及び重金属イオンを吸着
し漏洩を防止する効果を見出したのである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The greatest feature of the present invention is that when dust is incinerated in an incinerator,
Aluminum hydroxide and / or BET specific surface area is 30m
2 / g or more of transition alumina. The aluminum hydroxide emits water of crystallization due to the heat of combustion of dust in the incinerator. Since the release of water of crystallization is an endothermic reaction, the furnace temperature is lowered. When aluminum hydroxide is calcined at a specific temperature, crystal transition occurs, and the aluminum hydroxide is transformed into transition alumina (activated alumina) having a high BET specific surface area, which has a very high gas adsorption ability and a high metal ion adsorption ability. According to the present invention, when incinerating dust in an incinerator, an aluminum hydroxide and / or a transition alumina having a BET specific surface area of 30 m 2 / g or more are present in the dust, and the dust is incinerated at a specific temperature, whereby the furnace is constructed. Aluminum hydroxide added to dust during incineration is transferred to transition alumina with a high BET specific surface area without damaging furnace construction materials such as refractory materials and joints, and adsorbs HCl and dioxin generated during incineration. At the same time, when the residual ash is landfilled, it has the effect of adsorbing heavy metal ions contained in the residual ash and has a leakage preventing effect, and when transition alumina having a BET specific surface area of 30 m 2 / g or more is present, the same HC
They have found an effect of adsorbing l and dioxin and an effect of adsorbing heavy metal ions to prevent leakage.

【0009】本発明に用いる水酸化アルミニウムの種類
は、一般的にはギブサイト、バイヤライト、ベーマイ
ト、ノルトストランダイト等の結晶水を有しているもの
であれば良い。ただしこの中でもギブサイトはバイヤー
法によるアルミナ、アルミニウムの原料として大量に生
産されているため容易に、安価で入手できることから好
適に用いられる。更には、排水処理に用いられた水酸化
アルミニウムを含む汚泥、アルミニウムサッシ等のアル
ミ表面処理に用いたアルカリ溶液よりの回収水酸化アル
ミニウム等も使用可能である。
The type of aluminum hydroxide used in the present invention may be any one having water of crystallization such as gibbsite, bayerite, boehmite, nortostrandite and the like. However, among these, gibbsite is preferably used because it is produced in large quantities as a raw material for alumina and aluminum by the Bayer method and can be easily obtained at low cost. Further, sludge containing aluminum hydroxide used for wastewater treatment, aluminum hydroxide recovered from an alkali solution used for aluminum surface treatment of an aluminum sash or the like can also be used.

【0010】また本発明の水酸化アルミニウムの炉内へ
存在させる方法については、特に制限されないが、通常
以下の方法が用いられる。例えば、予め焼却に供するご
みと水酸化アルミニウムを混合して焼却炉に添加する方
法、ゴミとは別に焼却炉内の温度をコントロールしなが
ら水酸化アルミニウムを別途直接炉内に添加する方法、
水酸化アルミニウムを樹脂中に混練してなる樹脂成形体
〔例えばスーパーマーケット等の買物用袋(レジ袋)、
或いは通常市販の塵袋または地方自治体配布の可燃塵回
収用袋等───但し、これらは別途、予め製造する必要
がある。〕を添加し、他の塵と共に燃焼させる方法など
がある。
The method for causing the aluminum hydroxide of the present invention to exist in the furnace is not particularly limited, but the following method is usually used. For example, a method of mixing waste and aluminum hydroxide to be incinerated in advance and adding them to the incinerator, a method of separately adding aluminum hydroxide directly into the furnace while controlling the temperature in the incinerator separately from the waste,
A resin molded product obtained by kneading aluminum hydroxide in a resin [for example, a shopping bag (shopping bag) for a supermarket, etc.,
Or a commercially available dust bag or a combustible dust collection bag distributed by a local government, etc. However, these must be separately manufactured in advance. And burning it together with other dust.

【0011】本発明に用いるBET比表面積が約30m
2 /g以上、好ましくは約50m2/g以上、より好ま
しくは約80m2 /g以上の遷移アルミナは通常公知の
ものであればよく、一般に活性アルミナとして市販され
ているもので、その結晶形がγ、ρ、θ、χ、δ、κ等
を主体とする一般式Al23 で表されるものである。
BET比表面積が上記範囲未満の場合には、塵の燃焼時
にこれら遷移アルミナを焼却炉内に存在させても、排ガ
スの抑制効果や吸着効果や重金属イオンの溶出防止効果
は低い。これらの炉内へ存在させる方法については制限
されないが、例えば、予め焼却に供する塵と遷移アルミ
ナを混合して焼却炉に添加する方法、ゴミとは別に焼却
炉内の温度をコントロールしながら遷移アルミナを別途
直接炉内に添加する方法、遷移アルミナを樹脂中に混練
してなる樹脂成形体〔例えばスーパーマーケット等の買
物用袋(レジ袋)、或いは通常市販の塵袋または地方自
治体配布の可燃塵回収用袋等───但し、これらは別
途、予め製造する必要がある。〕を添加し、他の塵と共
に燃焼させる方法などがある。
The BET specific surface area used in the present invention is about 30 m
The transition alumina of 2 g / g or more, preferably about 50 m 2 / g or more, more preferably about 80 m 2 / g or more may be any known one, and is generally commercially available as activated alumina. Is represented by a general formula Al 2 O 3 mainly composed of γ, ρ, θ, χ, δ, κ and the like.
When the BET specific surface area is less than the above range, even if these transition aluminas are present in the incinerator during the combustion of dust, the effect of suppressing exhaust gas, the effect of adsorbing, and the effect of preventing elution of heavy metal ions are low. Although there is no limitation on the method of allowing these substances to be present in these furnaces, for example, a method in which dust to be incinerated and transition alumina are mixed in advance and added to the incinerator, transition alumina while controlling the temperature in the incinerator separately from the dust, Separately in a furnace, a resin molded product obtained by kneading transition alumina in a resin (for example, a shopping bag (plastic bag) for a supermarket or the like, or a commercially available dust bag or combustible dust collection distributed by a local government) Bags, etc. However, these must be separately manufactured in advance. And burning it together with other dust.

【0012】塵に対する水酸化アルミニウムの量は、通
常約0.001重量%〜約40重量%、好ましくは約
0.01重量%〜約30重量%、BET比表面積が30
2 /g以上の遷移アルミナの量は、通常約0.001
重量%〜約30重量%、好ましくは約0.01重量%〜
約20重量%である。焼却時の水酸化アルミニウム及び
/又はBET比表面積が30m2 /g以上の遷移アルミ
ナの量が上記範囲より少ない場合には、温度抑制効果、
重金属イオンの吸着効果等が低く、他方存在量が上記範
囲を越える場合には、燃焼温度低減効果や塩素ガスに起
因する排ガスの抑制効果、吸着効果、更には重金属イオ
ンの吸着効果は大きくなるものの、焼却残灰が増加する
ので、上限は要望順位により決定される。
The amount of aluminum hydroxide relative to dust is usually about 0.001% to about 40% by weight, preferably about 0.01% to about 30% by weight, and a BET specific surface area of 30% by weight.
The amount of transition alumina above m 2 / g is usually about 0.001
% To about 30% by weight, preferably about 0.01% to
About 20% by weight. When the amount of aluminum hydroxide and / or the transition alumina having a BET specific surface area of 30 m 2 / g or more at the time of incineration is smaller than the above range, the temperature control effect is obtained.
When the heavy metal ion adsorption effect and the like are low and the abundance exceeds the above range, the combustion temperature reduction effect, the effect of suppressing exhaust gas due to chlorine gas, the effect of adsorption, and the effect of adsorbing heavy metal ions are increased. Since the incineration ash increases, the upper limit is determined by the order of demand.

【0013】本発明に用いられる焼却炉の種類について
は特に限定されないが、地方自治体や焼却設備を備えて
いる事業所等で一般的に使用されているストーカー式焼
却炉や流動層式焼却炉或いは回転式キルン等に適用され
る。
[0013] The type of incinerator used in the present invention is not particularly limited, but a stoker type incinerator, a fluidized bed type incinerator, or a stalker type incinerator generally used in local governments or establishments equipped with incineration facilities, etc. Applicable to rotary kilns and the like.

【0014】本発明の実施に於いて、焼却条件は、使用
する焼却炉、焼却温度、焼却時間、焼却炉に投入する塵
の量、塵の種類等により一義的ではないが、通常、焼却
炉の温度は、約500℃〜約1100℃、好ましくは約
500℃〜約1000℃、より好ましくは約600℃〜
約900℃である。焼却炉内温度が500℃より低い場
合は炉内での燃焼速度が遅くなり、塵の焼却に通常運転
時よりも時間を要し実用的ではない。また約1100℃
を越える場合は炉を傷める危険性があると共に、添加し
た水酸化アルミニウムから結晶転移した活性アルミナの
活性が低下し、また遷移アルミナを添加する場合に於い
ても約1100℃を越える場合はα−アルミナへと結晶
転位を生起し比表面積が低下する。焼却時間は、焼却後
の水酸化アルミニウムが、結晶形として通常、χ−アル
ミナ、γ−アルミナ、θ−アルミナ、η−アルミナ、δ
−アルミナ、κ−アルミナ等の遷移アルミナで、BET
比表面積が約30m2 /g以上、好ましくは約50m2
/g以上の遷移アルミナに転移していればよい。
In the practice of the present invention, the incineration conditions are not unique according to the incinerator used, the incineration temperature, the incineration time, the amount of dust put into the incinerator, the type of dust, etc. Is about 500 ° C to about 1100 ° C, preferably about 500 ° C to about 1000 ° C, more preferably about 600 ° C to
About 900 ° C. When the temperature in the incinerator is lower than 500 ° C., the burning rate in the incinerator becomes slow, and it takes a longer time to incinerate dust than during normal operation, which is not practical. About 1100 ° C
If the temperature exceeds 1100 ° C., there is a risk of damaging the furnace, and the activity of the activated alumina crystallized from the added aluminum hydroxide is reduced. Crystal dislocation occurs to alumina and the specific surface area decreases. The incineration time is such that aluminum hydroxide after incineration is usually in the form of crystals, χ-alumina, γ-alumina, θ-alumina, η-alumina, δ
-BET with transition alumina such as alumina and κ-alumina
The specific surface area of about 30 m 2 / g or more, preferably about 50 m 2
/ G or more of transition alumina.

【0015】また、本発明に於いては焼却炉に存在する
水酸化アルミニウムは塵の焼却熱により水酸化アルミニ
ウムより遷移アルミナに結晶転移し、ガスの吸収、吸
着、分解効果等を発揮する。通常、商業ベースの塵焼却
炉では連続焼却、或いは断続使用であっても、炉中に焼
却残灰が常に残存するので、上記した水酸化アルミニウ
ムより結晶転移した遷移アルミナが存在することにな
り、発生排ガス中の有害成分を除去する効果を発揮する
が、炉中より焼却残灰を完全に除去する場合等に於いて
は、必要に応じて、炉内に活性アルミナを添加し、添加
・存在せしめる水酸化アルミニウムが活性アルミナに転
移するまでの効果補換材として使用することも可能であ
る。勿論、水酸化アルミニウムに活性アルミナを混合し
て用いることも可能である。
Further, in the present invention, aluminum hydroxide present in the incinerator is crystallized from aluminum hydroxide to transition alumina by heat of incineration of dust, and exhibits effects such as gas absorption, adsorption, and decomposition. Normally, even in continuous incineration or intermittent use in a commercial dust incinerator, since incineration residual ash always remains in the furnace, there will be transition alumina crystallized from the above-described aluminum hydroxide, It has the effect of removing harmful components in the generated exhaust gas.However, when completely removing incineration ash from the furnace, add activated alumina to the furnace as necessary, It can also be used as an effect-replacement material until the aluminum hydroxide to be transferred to activated alumina. Of course, it is also possible to use a mixture of aluminum hydroxide and activated alumina.

【0016】さらに本発明では水酸化アルミニウムを、
可燃塵等を圧縮成形して製造される固形燃料中に0.0
01重量%〜40重量%、好ましくは0.01重量%〜
30重量%含有された状態、BET比表面積が30m2
/g以上の遷移アルミナにあっては0.001重量%〜
30重量%、好ましくは0.01重量%〜20重量%含
有された状態で焼却炉および燃焼炉内に存在させること
も可能である。塵等を圧縮成形して製造される固形燃料
(RDF)は、近年小型焼却炉からのダイオキシン発生
量を抑制する対策として注目を集めている方法でもあ
る。
Furthermore, in the present invention, aluminum hydroxide is
0.0% of solid fuel produced by compression molding combustible dust
01 wt% to 40 wt%, preferably 0.01 wt% to
30% by weight, BET specific surface area is 30m 2
/ G or more of transition alumina is 0.001% by weight or more.
It may be present in incinerators and combustion furnaces at a content of 30% by weight, preferably 0.01% to 20% by weight. Solid fuel (RDF) produced by compression molding of dust and the like is also a method that has recently attracted attention as a measure to suppress the amount of dioxin generated from small incinerators.

【0017】[0017]

【発明の効果】以上詳述した本発明によれば、塵焼却時
に水酸化アルミニウム及び/またはBET比表面積が3
0m2 /g以上の遷移アルミナを共存させるという非常
に簡便な方法で、焼却炉内の異常温度上昇を防ぎ、炉の
損傷を押さえつつ、塩素ガス等に起因するダイオキシン
等の有害排ガスの排出を抑制し、かつ焼却残灰中に含有
される有害物質の埋め立て地での漏洩の防止をも可能と
するもので、環境衛生面はもとよりその産業上の利用価
値は頗る大である。
According to the present invention described in detail above, the aluminum hydroxide and / or BET specific surface area during dust incineration is 3%.
A very simple method of coexisting 0 m 2 / g or more of transition alumina prevents abnormal temperature rise in the incinerator, suppresses furnace damage, and discharges harmful exhaust gas such as dioxin caused by chlorine gas etc. It can control and prevent harmful substances contained in the incineration ash from leaking at landfill sites, and its industrial utility value is extremely large as well as environmental hygiene.

【0018】[0018]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

【0019】実施例1 水酸化アルミニウム粉末(中心粒子径8μm、住友化学
工業株式会社製)30重量%を分散含有する高密度ポリ
エチレンフィルム100重量部と、水酸化アルミニウム
粉末を全く含有しない高密度ポリエチレンフイルム10
0重量部を燃焼させ、ボンベ式熱量計を用いて発生熱量
を測定した。その結果、水酸化アルミニウム粉末を含有
する高密度ポリエチレンフィルムの燃焼熱は7791c
al/g、含有しないものは11200cal/gであ
った。
Example 1 100 parts by weight of a high-density polyethylene film containing 30% by weight of aluminum hydroxide powder (center particle diameter 8 μm, manufactured by Sumitomo Chemical Co., Ltd.), and high-density polyethylene containing no aluminum hydroxide powder at all Film 10
0 parts by weight were burned, and the calorific value was measured using a cylinder calorimeter. As a result, the heat of combustion of the high-density polyethylene film containing the aluminum hydroxide powder was 7791 c
al / g, and those not containing were 11,200 cal / g.

【0020】実施例2 商業ベースでの塵の連続焼却を想定し、予め水酸化アル
ミニウム粉末(住友化学工業株式会社製 C−31)を
ポリエチレンフィルム、木材片、ダンボールと共に電気
炉中で燃焼させ、焼却残灰を得た。この焼却残灰は実質
的に活性アルミナであり、そのBET比表面積は101
2 /gであった。上記焼却残灰1.5mgと水酸化ア
ルミニウム(C−31)1.5mg、塩化ビニル粉末1
0mgをプラスチック製燃焼試験機PCT(杉山元医理
器製)に投入し、燃焼温度750℃、送気量0.5リッ
トル/分、燃焼時間10分の条件で燃焼させた。発生し
たHClガスはJIS−K7217に準拠し、20mM
炭酸ナトリウムで吸収後、硝酸銀滴定法で定量した。そ
の結果HCl検出量は4.3mgであり、水酸化アルミ
ニウムおよび活性アルミナ未添加の場合は5.1mgで
あった。
Example 2 Assuming continuous incineration of dust on a commercial basis, aluminum hydroxide powder (C-31 manufactured by Sumitomo Chemical Co., Ltd.) was previously burned in an electric furnace together with polyethylene film, wood chips and cardboard, The incineration ash was obtained. This incineration ash is substantially activated alumina and has a BET specific surface area of 101.
m 2 / g. 1.5 mg of the above incinerated residue ash, 1.5 mg of aluminum hydroxide (C-31), 1 vinyl chloride powder
0 mg was put into a plastic combustion tester PCT (manufactured by Sugiyama Genryiki) and burned under the conditions of a combustion temperature of 750 ° C., an air supply rate of 0.5 L / min, and a combustion time of 10 minutes. The generated HCl gas conforms to JIS-K7217 and is 20 mM
After absorption with sodium carbonate, it was quantified by silver nitrate titration. As a result, the detected amount of HCl was 4.3 mg, and 5.1 mg when aluminum hydroxide and activated alumina were not added.

【0021】実施例3 商業ベースでの塵の連続焼却を想定し、中心粒子径3μ
mの水酸化アルミニウム粉末(住友化学工業株式会社
製)30重量%を含有する高密度ポリエチレンフィルム
を木材片、ダンボールと共に電気炉中で燃焼させ、焼却
残灰を得た。この焼却残灰は実質的に活性アルミナであ
り、そのBET比表面積は114m2 /gであった。ガ
スクロ用ガラス製カラム(外径5mm、内径3mm、長
さ50cm)に上記焼却残灰を0.5g充填した。該ガ
ラスカラムをガスクロマトグラフにセットし200℃保
持下キャリアガス(窒素)を流し、4.8μg/mlダ
イオキシン/n−ヘキサン溶液0.2mlを50μlの
注射器で4回に分け2分間で注入した。使用したダイオ
キシン/n−ヘキサン溶液は1,3,6,8,−テトラ
クロロジベンゾジオキシン、1,2,4,7,8,−ペ
ンタクロロジベンゾジオキシン、1,2,6,7,−テ
トラクロロジベンゾフラン、1,3,4,7,8,−ペ
ンタクロロジベンゾフランを各々1.2μg/μl含む
ものである。ダイオキシン注入後、5分間キャリアガス
を流し続け、その後ヒーター、キャリアガスを止め、装
置を急冷した。冷却後、カラム中の焼却残灰を取り出
し、該焼却残灰に含まれるダイオキシン量を分析した。
分析は厚生省生活衛生局水道環境部環境整備課により作
成された「廃棄物処理におけるダイオキシン類標準測定
分析マニュアル(平成9年2月)」に準拠した方法を用
いた。結果を表1に示す。
Example 3 Assuming continuous incineration of dust on a commercial basis, the center particle diameter was 3 μm.
A high-density polyethylene film containing 30% by weight of aluminum hydroxide powder (manufactured by Sumitomo Chemical Co., Ltd.) was burned together with wood pieces and cardboard in an electric furnace to obtain incineration residual ash. This incineration ash was substantially activated alumina and had a BET specific surface area of 114 m 2 / g. A glass column for gas chromatography (outer diameter 5 mm, inner diameter 3 mm, length 50 cm) was filled with 0.5 g of the above incinerated residue ash. The glass column was set on a gas chromatograph, a carrier gas (nitrogen) was flowed while maintaining the temperature at 200 ° C., and 0.2 ml of a 4.8 μg / ml dioxin / n-hexane solution was injected in four portions with a 50 μl syringe for 2 minutes. The dioxin / n-hexane solution used was 1,3,6,8, -tetrachlorodibenzodioxin, 1,2,4,7,8, -pentachlorodibenzodioxin, 1,2,6,7, -tetrachloro It contains 1.2 μg / μl of dibenzofuran and 1,3,4,7,8-pentachlorodibenzofuran, respectively. After injecting dioxin, the carrier gas was kept flowing for 5 minutes, then the heater and the carrier gas were stopped, and the apparatus was rapidly cooled. After cooling, the incineration ash in the column was taken out, and the amount of dioxin contained in the incineration ash was analyzed.
The analysis used a method based on the “Manual for Standard Measurement and Analysis of Dioxins in Waste Disposal (February 1997)” prepared by the Environment Improvement Section of the Water Supply Environment Department of the Ministry of Health and Welfare. Table 1 shows the results.

【0022】実施例4 実施例2に於いて使用した焼却残灰を0.5gに替え、
市販のBET比表面積が170m2 /gの活性アルミナ
を用い、実施例3と同様の方法でダイオキシンの吸着試
験を行った。その結果を表1に示す。
Example 4 The incineration ash used in Example 2 was replaced with 0.5 g.
Using a commercially available activated alumina having a BET specific surface area of 170 m 2 / g, a dioxin adsorption test was conducted in the same manner as in Example 3. Table 1 shows the results.

【0023】比較例1 実施例3に於いて用いた焼却残灰に代え、以下の手順で
調整した焼却残灰を使用し、実施例5と同様の方法でダ
イオキシンの吸着試験を行った。その結果を表1に示
す。(比較例1で用いた焼却残灰の調整────炭酸カ
ルシウム30重量%を含有する高密度ポリエチレンフィ
ルムを木材片、ダンボールと共に電気炉中で燃焼させ、
焼却残灰を得た。この焼却残灰の主成分は炭酸カルシウ
ムであり、そのBET比表面積は4m2 /gであっ
た。)
Comparative Example 1 A dioxin adsorption test was carried out in the same manner as in Example 5 except that the incineration residue ash used in Example 3 was replaced with the incineration residue ash prepared in the following procedure. Table 1 shows the results. (Adjustment of incineration residual ash used in Comparative Example 1) A high-density polyethylene film containing 30% by weight of calcium carbonate was burned together with wood pieces and cardboard in an electric furnace.
The incineration ash was obtained. The main component of this incineration residual ash was calcium carbonate, and its BET specific surface area was 4 m 2 / g. )

【0024】比較例2 実施例3に於いて用いた焼却残灰に代え、BET比表面
積1200m2 /gの活性炭を使用し、実施例3と同様
の方法でダイオキシンの吸着試験を行った。その結果を
表1に示す。
Comparative Example 2 A dioxin adsorption test was carried out in the same manner as in Example 3 except that activated carbon having a BET specific surface area of 1200 m 2 / g was used instead of the incineration residue ash used in Example 3. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例5 焼却能力40t/日の機械式バッチ炉(型式:エバラB
型塵焼却炉、荏原インフィルコ株式会社製)、ガス冷却
室、マルチサイクロンを備える焼却設備を用い一般家庭
ごみ25t、水酸化アルミニウム250kgを水酸化ア
ルミニウムがごみ中に均一に分散するように焼却炉に投
入し、約7Hrで燃焼させた。燃焼終了後、回収した飛
灰70gを底部に閉止弁をつけた内径25mmφ、長さ
600mmのガラス製カラムに詰め、閉止弁を閉めた状
態で上部から脱イオン水200mlを流し込んだ。24
時間放置後、閉止弁を開け12時間かけて底部から抽出
水を取り出し、該抽出液中の重金属イオン濃度を原子吸
光光度計で測定した。供試灰中の重金属イオン濃度は蛍
光X線分析結果から算出した。得られた灰中重金属イオ
ン濃度、抽出液中重金属イオン濃度から以下の式を用い
て各重金属イオンの抽出率を算出した。結果を表2に示
す。 抽出率(%)=〔(供試脱イオン水量×抽出液中の重金
属イオンの含有率)/(供試灰量×灰中の重金属イオン
の含有率)〕×100
Example 5 A mechanical batch furnace with an incineration capacity of 40 t / day (model: Ebara B)
Dust incinerator, manufactured by Ebara Infilco Co., Ltd.), gas cooling room, incinerator equipped with multi-cyclone, 25 tons of general household waste, 250 kg of aluminum hydroxide in the incinerator so that aluminum hydroxide is evenly dispersed in the waste It was charged and burned at about 7 hours. After the combustion was completed, 70 g of the collected fly ash was packed in a glass column having an inner diameter of 25 mm and a length of 600 mm with a shut-off valve at the bottom, and 200 ml of deionized water was poured from above with the shut-off valve closed. 24
After leaving for a period of time, the shut-off valve was opened, the extracted water was taken out from the bottom over 12 hours, and the concentration of heavy metal ions in the extract was measured with an atomic absorption spectrophotometer. The heavy metal ion concentration in the test ash was calculated from the result of the fluorescent X-ray analysis. The extraction ratio of each heavy metal ion was calculated from the obtained heavy metal ion concentration in the ash and the heavy metal ion concentration in the extract using the following formula. Table 2 shows the results. Extraction rate (%) = [(amount of test deionized water x content of heavy metal ion in extract) / (amount of test ash x content of heavy metal ion in ash)] x 100

【0027】比較例3 実施例5に於いて水酸化アルミニウムを添加しない以外
は同様の方法でごみを燃焼し、回収した飛灰を用いて実
施例5と同じ方法で重金属イオンの抽出実験を行った。
結果を表2に示す。尚、実施例5と比較例3に用いたと
同じ飛灰中のアルミナ濃度を蛍光X線測定装置で測定し
たところ、実施例5は比較例3に比較し5重量%増加し
ていた。
Comparative Example 3 Waste was burned in the same manner as in Example 5, except that aluminum hydroxide was not added, and heavy metal ions were extracted in the same manner as in Example 5 using the recovered fly ash. Was.
Table 2 shows the results. The same alumina concentration in fly ash as that used in Example 5 and Comparative Example 3 was measured by a fluorescent X-ray measuring apparatus, and it was found that Example 5 was increased by 5% by weight as compared with Comparative Example 3.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例6 実施例5の抽出実験に於いて、脱イオン水に替え、pH
4の塩酸水溶液を飛灰を詰めたカラムに流し込み、実施
例5と同様の実験および分析を行った。その結果を表3
に示す。
Example 6 In the extraction experiment of Example 5, the pH was changed to deionized water.
The hydrochloric acid aqueous solution of No. 4 was poured into a column filled with fly ash, and the same experiment and analysis as in Example 5 were performed. Table 3 shows the results.
Shown in

【0030】比較例4 比較例3の抽出実験に於いて、脱イオン水に替え、pH
4の塩酸水溶液を飛灰を詰めたカラムに流し込み、実施
例5と同様の実験および分析を行った。その結果を表3
に示す。
Comparative Example 4 In the extraction experiment of Comparative Example 3, the pH was changed to deionized water.
The hydrochloric acid aqueous solution of No. 4 was poured into a column filled with fly ash, and the same experiment and analysis as in Example 5 were performed. Table 3 shows the results.
Shown in

【0031】[0031]

【表3】 [Table 3]

フロントページの続き Fターム(参考) 3K061 AA24 AB01 AC01 BA01 BA08 3K065 AA24 AB01 AC01 BA01 BA07 BA08 CA04 4G066 AA20B BA26 CA31 CA33 CA46 DA02 DA07 Continued on the front page F term (reference) 3K061 AA24 AB01 AC01 BA01 BA08 3K065 AA24 AB01 AC01 BA01 BA07 BA08 CA04 4G066 AA20B BA26 CA31 CA33 CA46 DA02 DA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 焼却炉内で塵を焼却するに際し、水酸化
アルミニウム及び/又はBET比表面積が30m2 /g
以上の遷移アルミナの存在下にて、塵を燃焼させること
を特徴とする塵焼却方法。
1. When incinerating dust in an incinerator, aluminum hydroxide and / or BET specific surface area is 30 m 2 / g.
A dust incineration method comprising burning dust in the presence of the above transition alumina.
【請求項2】 焼却炉内で塵を焼却するに際し、焼却炉
内に水酸化アルミニウム及び/又はBET比表面積が3
0m2 /g以上の遷移アルミナを添加して、塵を燃焼さ
せることを特徴とする塵焼却方法。
2. When incinerating dust in an incinerator, aluminum hydroxide and / or a BET specific surface area of 3 in the incinerator.
A dust incineration method, comprising adding 0 m 2 / g or more of transition alumina to burn dust.
【請求項3】 塵の焼却温度(炉内雰囲気)が500〜
1100℃であることを特徴とする請求項1または2記
載の塵焼却方法。
3. The incineration temperature of the dust (furnace atmosphere) is 500 to
The dust incineration method according to claim 1, wherein the temperature is 1100 ° C. 4.
【請求項4】 焼却後の水酸化アルミニウムが遷移アル
ミナであることを特徴とする請求項1または2記載の塵
焼却方法。
4. The dust incineration method according to claim 1, wherein the aluminum hydroxide after incineration is transition alumina.
【請求項5】 焼却炉内に存在させる水酸化アルミニウ
ム及び/又はBET比表面積が30m2 /g以上の遷移
アルミナが、水酸化アルミニウム及び/又はBET比表
面積が30m2 /g以上の遷移アルミナを樹脂中に混練
してなる樹脂成形体であることを特徴とする請求項1記
載の塵焼却方法。
5. A transition aluminum hydroxide and / or a BET specific surface area is present in the incinerator is more than 30 m 2 / g alumina, aluminum hydroxide and / or a BET specific surface area of the 30 m 2 / g or more transition alumina The dust incineration method according to claim 1, wherein the method is a resin molded product kneaded in a resin.
JP2001254107A 2001-08-24 2001-08-24 Dust incineration method Pending JP2002168419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254107A JP2002168419A (en) 2001-08-24 2001-08-24 Dust incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254107A JP2002168419A (en) 2001-08-24 2001-08-24 Dust incineration method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30536597A Division JP3368530B2 (en) 1997-11-07 1997-11-07 Dust incineration method

Publications (2)

Publication Number Publication Date
JP2002168419A true JP2002168419A (en) 2002-06-14
JP2002168419A5 JP2002168419A5 (en) 2005-05-19

Family

ID=19082312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254107A Pending JP2002168419A (en) 2001-08-24 2001-08-24 Dust incineration method

Country Status (1)

Country Link
JP (1) JP2002168419A (en)

Similar Documents

Publication Publication Date Title
Wu et al. Inhibition of PCDD/F by adding sulphur compounds to the feed of a hazardous waste incinerator
KR100187307B1 (en) Process for incinerating waste
Xie et al. Emissions investigation for a novel medical waste incinerator
Kobyashi et al. The behavior of flue gas from RDF combustion in a fluidized bed
JP2003253037A (en) Method for dechlorinating chlorine-containing synthetic resin
JP2005169378A (en) Method and apparatus for volume reducing and detoxifying treatment of waste and pollutant
JP4814445B2 (en) Waste disposal method
JP3368530B2 (en) Dust incineration method
JP2002168419A (en) Dust incineration method
Hațegan et al. MONITORING OF HEAVY METALS DISTRIBUTION IN WASTE INCINERATION ASH-CASE STUDY.
KR100579427B1 (en) A method for incinerating trash
Karstensen et al. Cement manufacturing and air quality
CN106118803B (en) House refuse low temperature pyrogenation stove Nei bioxin inhibitor and preparation method and application
JP2006207909A (en) Waste and contaminant recycling device and method
JP3602316B2 (en) Thermoplastic bag
JP3108061B2 (en) Method and apparatus for treating incinerated ash
CN1644989A (en) Medical refuse circulating fluidized bed burning furnace and burning method thereof
JPH09310824A (en) Method for incinerating dust
JPH11153315A (en) Incinerating method of waste
JP2003088724A (en) Powdery inhibitor of dioxins generation and hydrogen chloride removing agent
JPH11197629A (en) Treating method for incinerated fly ash
JP3963003B2 (en) Method for treating heavy metals and dioxins in incinerated ash at low temperature
JP3419344B2 (en) Garbage incineration method
Chen et al. Emission characteristics of pollutants from co-processing aged refuse in a bench-scale simulated cement kiln
JP3377369B2 (en) Thermoplastic garbage bag and garbage incineration method using thermoplastic resin bag

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Effective date: 20060525

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A02