JP2002168375A - High temperature molten matter transfer pipe - Google Patents

High temperature molten matter transfer pipe

Info

Publication number
JP2002168375A
JP2002168375A JP2000360862A JP2000360862A JP2002168375A JP 2002168375 A JP2002168375 A JP 2002168375A JP 2000360862 A JP2000360862 A JP 2000360862A JP 2000360862 A JP2000360862 A JP 2000360862A JP 2002168375 A JP2002168375 A JP 2002168375A
Authority
JP
Japan
Prior art keywords
pipe
temperature melt
tube
transfer pipe
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000360862A
Other languages
Japanese (ja)
Other versions
JP4829403B2 (en
Inventor
Naofumi Nakahara
直文 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2000360862A priority Critical patent/JP4829403B2/en
Publication of JP2002168375A publication Critical patent/JP2002168375A/en
Application granted granted Critical
Publication of JP4829403B2 publication Critical patent/JP4829403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature molten matter transfer pipe structure capable of reducing thermal deformation and oxidation consumption in relation to a sponge titanium manufacturing process. SOLUTION: In a transfer pipe 5 for a high temperature molten matter handled in the sponge titanium manufacturing process, a protective pipe 10 is concentrically provided inside or outside the transfer pipe. The protective pipe has a separate structure from the high temperature molten matter transfer pipe. Inert gas is run in a space part between the protective pipe and the high temperature molten matter transfer pipe to prevent abnormal heat at the transfer pipe. By controlling the running quantity of the inert gas, the temperature of the transfer pipe and the protective pipe can be maintained in a specified temperature range. Examples of high temperature molten matters are metal magnesium, magnesium chloride, or the mix of metal magnesium and magnesium chloride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スポンジチタン製
造工程で取り扱う高温融体用の高温融体移送管の構造に
関するものであって、同移送管の寿命延長と同移送管内
を流れる融体の温度制御技術に関するものである。高温
融体の例は、金属マグネシウム、塩化マグネシウムまた
は金属マグネシウムと塩化マグネシウムとの混合物であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a high-temperature melt transfer tube for a high-temperature melt handled in a titanium sponge manufacturing process, and to an extension of the life of the transfer tube and a structure of a melt flowing in the transfer tube. The present invention relates to a temperature control technique. Examples of hot melts are magnesium metal, magnesium chloride or a mixture of magnesium metal and magnesium chloride.

【0002】[0002]

【従来の技術】従来、スポンジチタンは、還元容器中で
溶融マグネシウムと四塩化チタンを反応させることで生
成される(TiCl4+2Mg→Ti+2MgCl2)。
当該反応では、スポンジチタンの生成に加えて、溶融塩
化マグネシウムが副生する。副生した溶融塩化マグネシ
ウムは、生成したスポンジチタンと共に還元容器内に蓄
積していくので、液面レベルを一定に保持するよう塩化
マグネシウムは定期的に還元容器から抜き出される。
2. Description of the Related Art Conventionally, titanium sponge is produced by reacting molten magnesium and titanium tetrachloride in a reduction vessel (TiCl 4 + 2Mg → Ti + 2MgCl 2 ).
In this reaction, molten magnesium chloride is by-produced in addition to the production of titanium sponge. Since the by-produced molten magnesium chloride accumulates in the reduction vessel together with the generated titanium sponge, the magnesium chloride is periodically withdrawn from the reduction vessel so as to maintain a constant liquid level.

【0003】前記塩化マグネシウムの抜き出しは、還元
容器に塩化マグネシウム抜き出し管を接続したのち、還
元容器内をアルゴンのような不活性ガスを容器内に送入
して内部を加圧することにより行われる。系外に抜き出
された塩化マグネシウムは、排出管及び排出系統を経由
して運搬容器内に排出された後、電解工程に搬入され
て、金属マグネシウムと塩素ガスに電解される。電解さ
れた溶融塩化マグネシウムは、還元工程に戻され、四塩
化チタンの還元に供される。
[0003] The magnesium chloride is extracted by connecting a magnesium chloride extraction pipe to the reduction vessel and then feeding an inert gas such as argon into the reduction vessel to pressurize the inside. The magnesium chloride extracted out of the system is discharged into a transport container via a discharge pipe and a discharge system, and then is carried into an electrolysis step where it is electrolyzed to metallic magnesium and chlorine gas. The electrolyzed molten magnesium chloride is returned to the reduction step, and is subjected to the reduction of titanium tetrachloride.

【0004】前記したように、塩化マグネシウムは、還
元容器から溶融状態で抜き出されるので、塩化マグネシ
ウム抜き出し・排出配管系統(高温融体移送管)の温度
も、塩化マグネシウムの融点以上である750〜850
℃も高温に曝される。このため、高温融体移送管の大気
と接触する部分は酸化消耗を受ける。一方で、特に排出
管を代表とする高温融体移送管の両端は、容器、配管、
架台に固定接続されているので、熱膨張・収縮の繰り返
し応力を受けるために永久変形が残ってしまい、短期間
で寿命に至る。かくして、高温融体移送管は、酸化消耗
問題と熱応力による変形問題と遭遇している。塩化マグ
ネシウムはその強い腐食性の点でも問題がある。
As described above, since magnesium chloride is extracted in a molten state from the reduction vessel, the temperature of the magnesium chloride extraction / discharge piping system (high-temperature melt transfer pipe) is 750 to 750 ° C., which is higher than the melting point of magnesium chloride. 850
C is also exposed to high temperatures. For this reason, the portion of the high-temperature melt transfer pipe that comes into contact with the atmosphere undergoes oxidative consumption. On the other hand, both ends of the high-temperature melt transfer pipe, particularly the discharge pipe,
Since it is fixedly connected to the gantry, it is subjected to repeated stress of thermal expansion and contraction, so that permanent deformation remains, resulting in a short life. Thus, the hot melt transfer tube encounters the problem of oxidation wear and deformation due to thermal stress. Magnesium chloride also has a problem in its strong corrosiveness.

【0005】このような塩化マグネシウムのような高温
融体用移送管の変形や損耗は、工作費の上昇をもたらす
のみならず、溶融塩化マグネシウムの円滑な抜き出しを
阻害することもあるので、操業休止時間を短縮するため
に、前記移送管の損耗が少なく、また、変形しにくい移
送管が望まれている。
[0005] Deformation or wear of the transfer pipe for high-temperature melt such as magnesium chloride not only raises the working cost but also hinders the smooth extraction of the molten magnesium chloride. In order to reduce the time, there is a demand for a transfer tube that has less wear on the transfer tube and is hardly deformed.

【0006】この点を改善するために、前記の高温融体
移送管の他端を自由端とすることで加熱時の膨張・収縮
時の応力を緩和させる構造を試してみたが、依然として
酸化消耗の問題が未解決である。一端におけるジャバラ
構造の採用も有効な解決策とはならなかった。このた
め、スポンジチタン製造工程で取り扱う高温融体用熱膨
張・収縮による変形が小さく、しかも酸化消耗の少ない
高温融体移送管が望まれている。
In order to improve this point, an attempt has been made for a structure in which the other end of the high-temperature melt transfer tube is made to be a free end to relieve stress during expansion and contraction during heating. The issue is unsolved. The use of a bellows structure at one end has not been an effective solution. Therefore, there is a demand for a high-temperature melt transfer tube which has a small deformation due to thermal expansion and contraction for the high-temperature melt handled in the titanium sponge manufacturing process and has low oxidation consumption.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、特に
還元容器から溶融塩化マグネシウムの排出管におけるよ
うな、スポンジチタン製造工程で取り扱う高温融体用の
移送管において、熱変形が小さくまた酸化消耗の少な
く、それにより修理コスト低減を可能する高温融体移送
管構造を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a transfer pipe for a high-temperature melt handled in a titanium sponge production process, such as a discharge pipe for molten magnesium chloride from a reduction vessel, which has low thermal deformation and oxidation. It is an object of the present invention to provide a high-temperature melt transfer pipe structure which consumes less and thereby reduces repair costs.

【0008】[0008]

【課題を解決するための手段】上記従来技術に残された
課題について、本発明者らは鋭意検討を重ねた結果、融
体移送管の内部または外部に保護管を設けることにより
移送管の熱変形および酸化消耗を抑えることができるこ
とを見い出し、本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive studies by the present inventors on the problems left in the above-mentioned prior art, the heat transfer tube is provided by providing a protective tube inside or outside the melt transfer tube. The inventors have found that deformation and oxidative consumption can be suppressed, and have completed the present invention.

【0009】すなわち、本発明は、スポンジチタン製造
工程で取り扱う高温融体用の移送管において、該移送管
の内部または外部に同心状に保護管を設けたことを特徴
とする高温融体移送管を提供する。この構成をとること
で、所要の高温融体温度を維持しつつ高温融体移送管の
過熱を防止できる。高温融体移送管の例は、スポンジチ
タン還元容器から抜き出し管により抜き出された塩化マ
グネシウムを排出するため抜き出し管に連結された排出
管である。更に、本発明に従えば、前記保護管が高温融
体移送管とは分離・独立した構造を有していることを特
徴とする。この構成をとることで保護管の過熱に伴う熱
変形による高温融体移送管への影響が軽減される。更
に、本発明に従えば、保護管と高温融体移送管との間の
空間部に不活性ガスを流通させることを特徴とする構成
が採用される。このような構成をとることで移送管の異
常加熱を防止することができるに加えて、不活性ガスの
流通量を制御して前記保護管及び移送管の温度を所定の
温度範囲に維持することができる。また、内部保護管の
場合、その外面と移送管の内面の酸化消耗も抑制するこ
とができる。高温融体の例は、金属マグネシウム、塩化
マグネシウムまたは金属マグネシウムと塩化マグネシウ
ムとの混合物である。
That is, the present invention relates to a transfer pipe for a high-temperature melt handled in a titanium sponge manufacturing process, wherein a protective pipe is provided concentrically inside or outside the transfer pipe. I will provide a. With this configuration, overheating of the high-temperature melt transfer tube can be prevented while maintaining the required high-temperature melt temperature. An example of a hot melt transfer tube is a discharge tube connected to a withdrawal tube for discharging the magnesium chloride withdrawn from the sponge titanium reduction vessel by the withdrawal tube. Further, according to the invention, the protective tube is characterized in that it has a structure separated and independent from the high-temperature melt transfer tube. With this configuration, the influence on the high-temperature melt transfer pipe due to thermal deformation caused by overheating of the protection pipe is reduced. Further, according to the present invention, a configuration is adopted in which an inert gas is caused to flow in a space between the protective tube and the high-temperature melt transfer tube. With such a configuration, in addition to preventing abnormal heating of the transfer pipe, controlling the flow rate of the inert gas to maintain the temperatures of the protection pipe and the transfer pipe in a predetermined temperature range. Can be. Further, in the case of the inner protective tube, the oxidative consumption of the outer surface and the inner surface of the transfer tube can be suppressed. Examples of hot melts are magnesium metal, magnesium chloride or a mixture of magnesium metal and magnesium chloride.

【0010】本明細書において、「高温融体移送管」と
は、スポンジチタンの製造設備と関連して使用される、
四塩化チタンのマグネシウム還元で副生する塩化マグネ
シウム抜き出しのため還元容器の下端部に接続される抜
き出し管、該抜き出し管に接続される排出管、加熱容器
から運搬容器まで運搬のための輸送配管、コンテナ台車
等への排出導管等を包括するものである。
In the present specification, the term “high-temperature melt transfer tube” is used in connection with a titanium sponge production facility.
A withdrawal pipe connected to the lower end of the reduction vessel for withdrawing magnesium chloride by-produced by magnesium reduction of titanium tetrachloride, a discharge pipe connected to the withdrawal pipe, a transport pipe for transporting from the heating vessel to the transport vessel, Includes discharge conduits to container trolleys and the like.

【0011】[0011]

【発明の実施の形態】本願発明の内容を、四塩化チタン
のマグネシウム還元で副生する塩化マグネシウム排出管
を例にとって以下詳細に説明する。図1は、スポンジチ
タン還元容器(例えばSUS316製)とその付帯設備
の一部を示す。実際には多くの支持部材、架台、機枠等
が設けられるが、簡略のために省略してある。還元容器
の上部の詳細も、発明に関与しないので、簡略示してあ
る。スポンジチタンは、還元容器1中で溶融マグネシウ
ムと四塩化チタンを反応させることで生成される。還元
容器1中に収納された溶融マグネシウムに四塩化チタン
が滴下される。生成するスポンジチタンは、沈降すると
同時に容器内壁に付着し堆積していく。併せて、溶融塩
化マグネシウムが副生する。副生した溶融塩化マグネシ
ウムは、生成したスポンジチタンと共に還元容器内に蓄
積していくので、当該塩化マグネシウムは定期的に還元
容器から抜き出される。
BEST MODE FOR CARRYING OUT THE INVENTION The contents of the present invention will be described below in detail by taking as an example a magnesium chloride discharge pipe by-produced by magnesium reduction of titanium tetrachloride. FIG. 1 shows a titanium sponge reduction container (for example, made of SUS316) and a part of ancillary equipment thereof. Actually, many support members, mounts, machine frames, and the like are provided, but are omitted for simplicity. The details of the upper part of the reduction vessel are also simplified, as they are not relevant to the invention. Titanium sponge is generated by reacting molten magnesium and titanium tetrachloride in the reduction vessel 1. Titanium tetrachloride is dropped on the molten magnesium stored in the reduction container 1. The generated titanium sponge is deposited and deposited on the inner wall of the container at the same time as the sedimentation. At the same time, molten magnesium chloride is by-produced. Since the by-produced molten magnesium chloride accumulates in the reduction container together with the generated titanium sponge, the magnesium chloride is periodically extracted from the reduction container.

【0012】前記塩化マグネシウムの抜き出しは、還元
容器1の下端部における連結部(図示省略)に塩化マグ
ネシウム抜き出し管2を接続したのち、還元容器内を不
活性ガスで加圧することにより行われる。抜き出し管2
は還元容器に付帯されて垂直上方に伸延している。還元
容器と付帯する抜き出し管は、それらを所要の温度に維
持するために、加熱炉3内に納められている。
The magnesium chloride is extracted by connecting a magnesium chloride extraction pipe 2 to a connecting portion (not shown) at the lower end of the reduction container 1 and then pressurizing the inside of the reduction container with an inert gas. Extraction tube 2
Is attached to the reduction container and extends vertically upward. The reduction vessel and the associated extraction tube are housed in a heating furnace 3 to maintain them at a required temperature.

【0013】抜き出し管2の上端部にはジョイントパイ
プ4を介して排出管5が排出系統6まで下方に傾斜して
伸延している。排出系統6は、排出管5の先端に連結さ
れた垂直方向の導管、排ガス吸引装置等から構成され、
排出管から流送される塩化マグネシウムをコンテナ台車
のような運搬容器に送り出す。抜き出された塩化マグネ
シウムは、運搬容器内に排出された後、電解工程に搬入
されて、金属マグネシウムと塩素ガスに電解され、再使
用に供される。
A discharge pipe 5 extends obliquely downward to a discharge system 6 via a joint pipe 4 at the upper end of the extraction pipe 2. The discharge system 6 includes a vertical conduit connected to the tip of the discharge pipe 5, an exhaust gas suction device, and the like.
The magnesium chloride fed from the discharge pipe is sent out to a transport container such as a container truck. The extracted magnesium chloride is discharged into a transport container, then carried into an electrolysis process, electrolyzed to magnesium metal and chlorine gas, and reused.

【0014】本発明の一具体例に従えば、排出管5に内
部保護管が設けられる。図2は、排出管5の主要部とそ
こに同心状に収納された内部保護管10を示す。排出管
5の両端には連結用のフランジ11が取り付けられる。
内部保護管に安価な材料また外部に耐熱材料を用いるこ
とで排出管の寿命を延ばすことができる。内部保護管は
適宜交換すればよい。温度測定用のため熱電対挿入用の
口部12が設けられている。
According to one embodiment of the present invention, the discharge pipe 5 is provided with an internal protection pipe. FIG. 2 shows a main part of the discharge pipe 5 and an internal protective pipe 10 housed concentrically therein. Connection flanges 11 are attached to both ends of the discharge pipe 5.
By using an inexpensive material for the inner protection tube or a heat-resistant material for the outside, the life of the discharge tube can be extended. The internal protection tube may be replaced as appropriate. A thermocouple insertion port 12 is provided for temperature measurement.

【0015】図3に示すように、内部保護管にはその周
囲に沿って適当数、例えば3つの押さえ13が長さ方向
に沿って適宜の間隔で取り付けられる。押さえは、排出
管とは固定されず、適宜の遊隙を置いて排出管から分離
されている。内部保護管の先端は非支持状態の自由端と
する。こうして、内部保護管を排出管とは分離・独立し
た構造を有するようにすることで、熱膨張及び収縮に際
しての内部保護管の自由な変位が許容される。熱応力に
よる内部保護管のたわみを抑制でき、融体の円滑な排出
に効果的である。
As shown in FIG. 3, an appropriate number, for example, three retainers 13 are attached to the inner protective tube along its periphery at appropriate intervals along the length direction. The retainer is not fixed to the discharge pipe, but is separated from the discharge pipe with an appropriate clearance. The free end of the inner protection tube is an unsupported free end. In this way, the internal protection tube is configured to be separated and independent from the discharge tube, so that free displacement of the internal protection tube during thermal expansion and contraction is allowed. Deflection of the inner protective tube due to thermal stress can be suppressed, and it is effective for smooth discharge of the melt.

【0016】高温融体移送管(ここでは排出管)と保護
管との間の空間内部にセラミック等の断熱材等を布設す
ることを妨げるものではない。
This does not prevent the installation of a heat insulating material such as ceramic in the space between the high-temperature melt transfer pipe (here, discharge pipe) and the protection pipe.

【0017】本発明の別の具体例に従えば、高温融体移
送管(ここでは排出管)と保護管との間の空間部に冷却
用のガスが流通せしめられる。ガスの導入口が排出管の
適宜の位置に設けられる。ガスは保護管の下流で高温融
体と合流して排出系統で排気される。空間部に流通させ
るガスは、空気やアルゴンガスや窒素ガス等の不活性ガ
スが使用可能ではあるが、マグネシウムに窒素ガスが吸
収され、汚染を生じる危険があるので、アルゴンガスの
使用が好ましい。この構造は、融体排出時に800〜1
000℃程度の高温に前記移送管が曝されても、融体移
送管の酸化消耗防止に効果的である。また、同空間部に
供給する不活性ガスの流量/流速を変えることで、内部
保護管および排出管の温度上昇を抑えることができる。
この場合には、内部保護管を流れる融体の温度を上述し
た熱電対によりモニターすることで必要な温度域に制御
することができる。前記保護管を塩化マグネシウムが流
れる場合には、塩化マグネシウムの融点以上に保持して
おくことが好ましい。尚、空間部を通過した不活性ガス
は高温に加熱されており、熱交換機等に供給することで
廃熱の再利用が可能である。
According to another embodiment of the present invention, a cooling gas is passed through a space between the high-temperature melt transfer pipe (here, discharge pipe) and the protection pipe. A gas inlet is provided at an appropriate position on the discharge pipe. The gas joins the hot melt downstream of the protective tube and is exhausted in an exhaust system. An inert gas such as air, argon gas, or nitrogen gas can be used as the gas to be circulated in the space, but the use of argon gas is preferred because magnesium gas absorbs nitrogen gas and may cause contamination. This structure is 800 to 1 when the melt is discharged.
Even if the transfer tube is exposed to a high temperature of about 000 ° C., it is effective for preventing the melt transfer tube from being oxidized and consumed. Further, by changing the flow rate / flow rate of the inert gas supplied to the space, it is possible to suppress an increase in the temperature of the internal protection pipe and the discharge pipe.
In this case, the temperature of the melt flowing through the inner protective tube can be controlled to a required temperature range by monitoring the temperature with the above-described thermocouple. When magnesium chloride flows through the protective tube, it is preferable that the temperature be maintained at or above the melting point of magnesium chloride. The inert gas that has passed through the space is heated to a high temperature, and the waste gas can be reused by supplying it to a heat exchanger or the like.

【0018】本発明の別の具体例に従えば、排出管5の
外部に保護管を設けることができる。更に、排出間5と
保護管との間の空間部に不活性ガスを流すことが好まし
い。このような構成を採ることで、排出間外表面と保護
管内面の酸化消耗を防止できる。更に、同空間部に流す
ガス量を調節することで、排出管5の温度を塩化マグネ
シウムの融点以上に維持することができる。
According to another embodiment of the present invention, a protection tube can be provided outside the discharge tube 5. Further, it is preferable to flow an inert gas into a space between the discharge space 5 and the protective tube. By adopting such a configuration, it is possible to prevent oxidative consumption of the outer surface during discharge and the inner surface of the protection tube. Further, by adjusting the amount of gas flowing into the space, the temperature of the discharge pipe 5 can be maintained at a temperature equal to or higher than the melting point of magnesium chloride.

【0019】本発明においては、高温融体用の移送管に
おいて、該移送管の内部または外部に保護管を設けた二
重管構造が採用される。例えば、内部に保護管を設ける
場合、外側の移送管(直径:D)と内部の保護管(直
径:d)の関係は、幾つかの事項を考慮して決定され
る。(D/d)が大きい程、移送管に与える熱影響は小
さくなる。逆に、(D/d)が小さくなるほど、移送管
に与える熱影響は大きくなり好ましくない。保護管の直
径(d)が小さくなると、保護管内部を流れる高温融体
の所要の流量が確保できず、また流れ抵抗が増加して好
ましくない。移送管の直径(D)は設備の設計上の規制
を受ける。これらを考慮して、例えば、(D/d)は
1.0〜3.0の範囲に設定される。逆の場合も、外部
保護管及び内部移送管の酸化消耗度、設備の設計等を考
慮して直径比を適宜決定する。
In the present invention, the transfer pipe for the high-temperature melt adopts a double pipe structure in which a protection pipe is provided inside or outside the transfer pipe. For example, when a protection tube is provided inside, the relationship between the outer transfer tube (diameter: D) and the inner protection tube (diameter: d) is determined in consideration of several items. The larger (D / d), the smaller the thermal effect on the transfer tube. Conversely, as (D / d) decreases, the thermal effect on the transfer pipe increases, which is not preferable. If the diameter (d) of the protective tube is small, the required flow rate of the high-temperature melt flowing inside the protective tube cannot be secured, and the flow resistance is undesirably increased. The transfer pipe diameter (D) is subject to equipment design regulations. In consideration of these, for example, (D / d) is set in a range of 1.0 to 3.0. In the opposite case, the diameter ratio is appropriately determined in consideration of the degree of oxidative consumption of the outer protection tube and the inner transfer tube, the design of the equipment, and the like.

【0020】[0020]

【実施例】以下、本発明の具体的な実施例および比較例
を挙げ、本発明をさらに詳細に説明する。 (実施例1)図1に示すスポンジチタン還元容器の抜き
出し管の上端部にSUS316製の排出管(105.3
φ)とSS400製の内部保護管(80.7φ)から構成
された融体移送管を装着して、抜き出された750〜8
00℃の温度範囲の溶融塩化マグネシウムの排出に供さ
れた寿命が来るまでの使用回数を調査した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples of the present invention. (Example 1) A discharge pipe made of SUS316 (105.3) was provided at the upper end of the extraction pipe of the titanium sponge reduction container shown in FIG.
φ) and an internal protective tube (80.7φ) made of SS400 and attached to the melt transfer tube.
The number of uses until the end of the life provided for the discharge of the molten magnesium chloride in the temperature range of 00 ° C. was investigated.

【0021】(実施例2)実施例1で使用した融体移送
管を構成する空間部にアルゴンガスを流通せしめた状態
で溶融塩化マグネシウムの排出に供し、寿命までの使用
回数を調査した。
(Example 2) In a state in which argon gas was passed through the space constituting the melt transfer tube used in Example 1, molten magnesium chloride was discharged, and the number of times of use until its life was examined.

【0022】(比較例1)従来から用いてきたSUS3
16製の単管を使用した場合についてもその使用回数を
調べた。
(Comparative Example 1) SUS3 conventionally used
The number of times that a single tube made of 16 was used was also examined.

【0023】表1に示すように、従来から使用してきた
単管に比べて、二重管、アルゴンガス流通管のそれぞれ
の場合における寿命までの使用回数は大幅に改善され
た。
As shown in Table 1, the number of uses up to the service life of each of the double pipe and the argon gas flow pipe was greatly improved as compared with the single pipe conventionally used.

【0024】[0024]

【表1】 二重管 アルゴンガス流通管 単管 寿命までの使用回数 15 17 7[Table 1] Double tube argon gas flow tube Number of times of use until single tube life 15 17 7

【0025】[0025]

【発明の効果】以上、説明したように内部保護管を備え
る融体移送管を用いることで従来の移送管に比べて格段
の寿命延長が図られる。融体移送管の熱変形が小さくま
た酸化消耗の少なく、それにより修理コスト低減が可能
となる。
As described above, by using the melt transfer tube having the internal protective tube, the life can be remarkably extended as compared with the conventional transfer tube. The heat transfer tube is less thermally deformed and less oxidatively depleted, thereby reducing repair costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スポンジチタン還元容器とその抜き出し管及び
排出管を含め付帯設備の一部を示す概略図である。
FIG. 1 is a schematic view showing a part of ancillary equipment including a sponge titanium reduction container and a withdrawal pipe and a discharge pipe thereof.

【図2】本発明の一具体例に従い、排出管の主要部とそ
こに同心状に収納された内部保護管を示す長手方向断面
図である。
FIG. 2 is a longitudinal sectional view showing a main part of a discharge pipe and an inner protective pipe concentrically housed therein according to one embodiment of the present invention.

【図3】内部保護管の周囲に沿って設けられた押さえを
示す端面方向からの断面図である。
FIG. 3 is a cross-sectional view from the end face direction showing a press provided along the periphery of the inner protective tube.

【符号の説明】[Explanation of symbols]

1 還元容器 2 抜き出し管 3 加熱炉 4 ジョイントパイプ 5 排出管 6 排出系統 10 保護管(内部の場合) 11 フランジ 12 熱電対挿入口部 13 押さえ DESCRIPTION OF SYMBOLS 1 Reduction container 2 Extraction pipe 3 Heating furnace 4 Joint pipe 5 Discharge pipe 6 Discharge system 10 Protective tube (in the case of inside) 11 Flange 12 Thermocouple insertion opening 13 Hold down

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 スポンジチタン製造工程で取り扱う高温
融体用の移送管において、該移送管の内部または外部に
同心状に保護管を設けたことを特徴とする高温融体移送
管。
1. A high-temperature melt transfer tube which is provided in a transfer tube for a high-temperature melt handled in a titanium sponge manufacturing process, concentrically inside or outside the transfer tube.
【請求項2】 前記高温融体移送管がスポンジチタン還
元容器から抜き出された塩化マグネシウムを排出するた
めの抜き出し管に連結された排出管であることを特徴と
する請求項1記載の高温融体移送管。
2. The high-temperature melt transfer pipe according to claim 1, wherein said high-temperature melt transfer pipe is a discharge pipe connected to an extraction pipe for discharging magnesium chloride extracted from the titanium sponge reduction vessel. Body transfer tube.
【請求項3】 前記保護管が高温融体移送管とは分離・
独立した構造を有していることを特徴とする請求項1乃
至2記載の高温融体移送管。
3. The protective tube is separated from the high-temperature melt transfer tube.
3. The high-temperature melt transfer tube according to claim 1, wherein the high-temperature melt transfer tube has an independent structure.
【請求項4】 前記高温融体移送管と保護管との間の空
間部に不活性ガスを流通させることを特徴とする請求項
1乃至2記載の高温融体移送管。
4. The high-temperature melt transfer pipe according to claim 1, wherein an inert gas flows in a space between the high-temperature melt transfer pipe and the protection pipe.
【請求項5】 不活性ガスの流通量を制御して前記高温
融体移送管及び保護管の温度を所定の温度範囲に維持す
ることを特徴とする請求項4記載の高温融体移送管。
5. The high-temperature melt transfer tube according to claim 4, wherein the flow rate of the inert gas is controlled to maintain the temperatures of the high-temperature melt transfer tube and the protection tube in a predetermined temperature range.
【請求項6】 前記高温融体が金属マグネシウム、塩化
マグネシウムまたは金属マグネシウムと塩化マグネシウ
ムとの混合物であることを特徴とする請求項1記載の高
温融体移送管。
6. The high-temperature melt transfer tube according to claim 1, wherein the high-temperature melt is metallic magnesium, magnesium chloride or a mixture of metallic magnesium and magnesium chloride.
JP2000360862A 2000-11-28 2000-11-28 High temperature melt discharge pipe Expired - Lifetime JP4829403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360862A JP4829403B2 (en) 2000-11-28 2000-11-28 High temperature melt discharge pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360862A JP4829403B2 (en) 2000-11-28 2000-11-28 High temperature melt discharge pipe

Publications (2)

Publication Number Publication Date
JP2002168375A true JP2002168375A (en) 2002-06-14
JP4829403B2 JP4829403B2 (en) 2011-12-07

Family

ID=18832388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360862A Expired - Lifetime JP4829403B2 (en) 2000-11-28 2000-11-28 High temperature melt discharge pipe

Country Status (1)

Country Link
JP (1) JP4829403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854954A (en) * 2019-04-16 2019-06-07 遵义钛业股份有限公司 A kind of magnesium chloride caused during sponge titanium production automatic-discharging, waste gas collection device and production technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521250B1 (en) * 2013-12-26 2015-05-20 재단법인 포항산업과학연구원 Apparatus for mitigating corrosion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227079U (en) * 1988-08-11 1990-02-22
JPH10273714A (en) * 1997-03-28 1998-10-13 Kawasaki Steel Corp Bottom blowing tuyere

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227079U (en) * 1988-08-11 1990-02-22
JPH10273714A (en) * 1997-03-28 1998-10-13 Kawasaki Steel Corp Bottom blowing tuyere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854954A (en) * 2019-04-16 2019-06-07 遵义钛业股份有限公司 A kind of magnesium chloride caused during sponge titanium production automatic-discharging, waste gas collection device and production technology

Also Published As

Publication number Publication date
JP4829403B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CA1076180A (en) Electric furnace waste heat recovery method and apparatus
US4897116A (en) High purity Zr and Hf metals and their manufacture
US20210347668A1 (en) Glass forming apparatuses comprising modular glass fining systems
JP2010189766A (en) Method for operating electric-resistant furnace
JP2002168375A (en) High temperature molten matter transfer pipe
EP0063555A2 (en) Chlorinator furnace and method for producing tetrachloride of such metals as titanium and zirconium
KR102100875B1 (en) A solids injection lance
JPH0214292B2 (en)
JP2000171173A (en) Adhering dust thickness detector of metal refining furnace and method for removing adhering dust
JP2567140B2 (en) Bright annealing furnace
US4462824A (en) Annular tuyere
US4477279A (en) Annular tuyere and method
EP1989336B1 (en) Reactor intended for titanium production
JP5009132B2 (en) Casting material melting supply apparatus and casting material melting supply method
US2840466A (en) Method of reducing metal chlorides
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
US4258633A (en) Cooling of tuyeres in blast furnaces
CN217051659U (en) Mixed gas impurity removal device of industrial silicon refining furnace
JP2012509454A (en) Furnace and furnace cooling method
JP3569337B2 (en) Immersion tube
JP3272372B2 (en) Tank heating method and apparatus for vacuum degassing tank
JP3602218B2 (en) CFC gas inlet pipe to cement kiln
CA2162642A1 (en) Method and device for delivering hot, aggressive media
KR20230173031A (en) Metal powder production method and metal powder production apparatus
JP5236905B2 (en) Ladle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100310

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100415

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term