JP3569337B2 - Immersion tube - Google Patents

Immersion tube Download PDF

Info

Publication number
JP3569337B2
JP3569337B2 JP03469095A JP3469095A JP3569337B2 JP 3569337 B2 JP3569337 B2 JP 3569337B2 JP 03469095 A JP03469095 A JP 03469095A JP 3469095 A JP3469095 A JP 3469095A JP 3569337 B2 JP3569337 B2 JP 3569337B2
Authority
JP
Japan
Prior art keywords
gas
refractory
metal
core
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03469095A
Other languages
Japanese (ja)
Other versions
JPH08209231A (en
Inventor
英俊 寺島
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03469095A priority Critical patent/JP3569337B2/en
Publication of JPH08209231A publication Critical patent/JPH08209231A/en
Application granted granted Critical
Publication of JP3569337B2 publication Critical patent/JP3569337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、溶融金属精錬容器、特に真空脱ガス容器等で用いる浸漬管に関する。
【0002】
【従来の技術】
現在の溶融金属精錬プロセスにおいて、真空脱ガス設備は高級鋼製造に不可欠な設備となっている。RH、DHなどを代表とするこの脱ガス設備は、真空槽の下端開口部を溶鋼中に浸漬したのち槽内を真空にし、溶鋼を吸い上げて精錬する。浸漬管はこれらの設備の下端に位置し、溶鋼中に浸漬される部位である。
【0003】
浸漬管は、一般に内周がれんがあるいは不定形耐火物、外周が不定形耐火物で構成されている。これらの耐火物は芯金と呼ばれる金属製の円筒に対して、そこに設置された耐火物受け金物やスタッドによって保持されている。芯金は耐火物を安定して保持し、真空槽内に外気が侵入するのを防ぐ役割を担う大切な部分である。従って変形は極力防止しなければならない。
【0004】
芯金の素材は一般に普通鋼であり、その機械的強度は500℃以上において著しく低下する(機械工学便覧(機械材料編)改定5版 1968年日本機械学会刊)。従って、芯金の変形を防止するためには、その温度を500℃未満に保たなければならない。ところが、耐火物の損耗によるライニング厚みの減少等が原因で、芯金の温度は500℃以上に上昇する。そして、操業時の処理−非処理の工程間での温度変動、耐火物と芯金の膨張差により図4のような芯金1の変形が生じる。このため内周耐火物7が脱落したり、外周や下端の耐火物8に亀裂9、耐火物脱落10、目地開き11が生じ、これが浸漬管の寿命を律速している。
【0005】
従来、このような問題を解決するために、いくつかの芯金冷却方法が示されている。例えば特開平5−331525号公報には、芯金変形を抑制するためにミストと特殊な冷却パイプを用いる冷却方法が、特開平6−145768号公報には、特殊な構造の芯金を用いた変形抑制方法が開示されている。また特開昭61−253318号公報あるいは特開平3−34053号公報には、二重円筒鉄板からなる芯金の外管と内管の間隙にガスを流して冷却する方法が示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前述のミストを用いる方法は、ミスト中の水分が少ないとはいえ、何らかの原因で冷却パイプが破れた場合などに、水蒸気爆発等の危険を伴う可能性を多分に含んでいる。一方、特殊な構造の芯金を用いた変形抑制方法は、特殊な芯金の製作に対して、コスト面で問題があるだけでなく、芯金が特殊構造を持つために、内張り耐火物の施工が非常に難しい。また二重円筒鉄板からなる芯金は製作が困難で高価であるなどの問題がある。
本発明の目的は、溶融金属精錬容器、特に真空脱ガス容器用として、変形の少ない芯金を有し、かつ高耐用の浸漬管を安価に提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決する手段を鋭意研究した結果、以下の事を見い出した。すなわち本発明は、ガス流体により冷却される補強板を外周面に設けた芯金とすることで、芯金の変形を抑制し、それによって、浸漬管の寿命を延長するものである。
【0008】
【作用】
以下、本発明を詳細に、図1、図2を参照しながら説明する。
図1は、本発明を芯金に適用した浸漬管の縦断面図と横断面図である。その構成は、芯金1とフランジ3にガス冷却補強板2を取り付けたものである。芯金1は操業中の熱負荷と内外周に施工された耐火物5からの熱応力によって、図4に示すように下端が外側に反ってらっぱ状に開くような変形をしようとする。ガス冷却補強板2は、芯金1の反りを防止するとともに、外側に開こうとする力を高剛性のフランジ3に伝えつつ受けとめ、芯金の変形を防止する。
【0009】
ガス冷却補強板2は、芯金1に直接溶接等により固定されているので、冷却しない場合、その温度は芯金と同様に操業中は700℃〜800℃まで上昇する。しかし、普通鋼の機械的強度は500℃以上においては著しく低下するので、補強板の温度が500℃未満になるようにして強度を保つ必要ある。そこで、このガス冷却補強板2に、冷却ガス導入管4からガス流体を導入することによって冷却する。ガス冷却補強板2の素材としては、普通鋼を使用可能であるが、耐熱鋼やステンレス鋼も使用できる。
【0010】
ガス冷却補強板2の内部には、冷却ガスが補強板全体を効果的に冷却することができるように、仕切り6を設ける。あるいは仕切り6のかわりに、冷却ガス導入管4のIN側をガス冷却補強板2内部の底近くまで延長した構造としても良い。これらを芯金1およびフランジ3に溶接などの方法で固定する。構造は単純で、安価に製作できる。
【0011】
図2は、前述のガス冷却補強板2の枚数を多くし、フランジ3への負荷をより分散させたものである。
冷却に用いるガス流体としては、空気、窒素、アルゴン、ヘリウム、二酸化炭素、炭化水素ガスなどがある。コストの面では空気と窒素が好ましい。
【0012】
本発明の芯金1に耐火物5を施工する場合は、内周耐火物をれんが、外周耐火物を不定形耐火物としても、あるいは内外周共すべて不定形耐火物としても良い。不定形耐火物を施工する場合は、耐火物の脱落を防止するため、芯金1およびガス冷却補強板2表面にスタッドを付けることが望ましい。
【0013】
本発明による浸漬管を用いれば、芯金の変形が少ないため、内周耐火物の脱落あるいは大亀裂発生が起こらず、長い寿命を実現することができる。しかも安価であるため、浸漬管の原単価を低く抑えることができる。
【0014】
【実施例】
以下、本発明の実施例を、図1、図2、図3を参照しながら説明する。
【0015】
実施例1
処理能力300t/chの真空脱ガス装置の内径600mmの浸漬管の芯金に、本発明によるガス冷却補強板を設けた浸漬管を適用した。
8本のガス冷却補強板を芯金とフランジに等間隔に溶接して取付けた図1に示すような浸漬管を普通鋼で製作した。芯金の内周にはマグクロれんが、外周にはアルミナ質キャスタブルを施工した。冷却ガスとしては空気を使用し、流量は1000Nm /hrとした。
【0016】
比較のため、図3に示すような通常の構造の普通鋼製の芯金を用意し、同様に内周にマグクロれんが、外周にアルミナ質キャスタブルを施工したものも準備した。またもう一種の比較品として二重円筒鉄板の間隙に冷却ガスを流す方式の芯金も普通鋼で製作した。耐火物の施工方法は前記の二者と同じにした。また、この場合の冷却ガス流量は、本発明と同じ1000Nm /hrとした。
【0017】
これらの浸漬管を極低炭素鋼処理を中心とした操業に供した。その結果、図3のような従来構造の芯金を使用した場合に比べ、本発明のガス冷却補強板を有する浸漬管では内周耐火物の脱落あるいは大亀裂発生が激減し、従来構造で50〜60chの浸漬管寿命を、90〜110chまで延長できた。また、変形による芯金下端での直径増加は、従来構造で50〜60mmであったのに対して、本発明による浸漬管の場合は10〜15mmと、大幅に変形が少なくなった。
【0018】
一方、二重円筒鉄板式の芯金を有する浸漬管は90〜100chの寿命を呈し、本発明による浸漬管とほぼ同等の寿命となった。しかし芯金費用を含めた浸漬管の原単価は本発明によるものを1とすると、従来構造のもので1.5倍、二重円筒鉄板構造のもので1.3倍であり、本発明による浸漬管の経済的効果は大きい。
【0019】
実施例2
実施例1の図1に代わり、図2に示す本発明のガス冷却補強板を有する芯金からなる浸漬管を適用した。
まず、16枚のガス冷却補強板を芯金とフランジに等間隔に溶接して取付けた図2に示すような浸漬管を普通鋼で製作した。芯金の内周にはマグクロれんが、外周にはアルミナ質キャクタブルを施工した。冷却ガスとしては空気を使用し、流量は800Nm /hrとした。
【0020】
比較のため、実施例1と同様に、図3に示した通常の構造の普通鋼製の芯金を用意し、同様に内周にマグクロれんが、外周にアルミナ質キャスタブルを施工したものを準備した。
その結果、浸漬管寿命は90〜110chと実施例1と同様の寿命まで延長でき、かつ空気の使用量を200Nm /hr削減できた。
【0021】
実施例3
実施例2において、冷却ガスとして窒素を用いた。ガス流量は800Nm /hrとした。その結果、浸漬管寿命は100〜110chと、冷却ガスとして空気を用いた場合と同様の寿命となった。
【0022】
【発明の効果】
本発明の浸漬管は比較的安価で、しかも効果的に芯金の変形を抑制することができるので、内周耐火物の脱落や大亀裂発生等を防止できる。これにより浸漬管の寿命を延長し、溶融金属精錬容器、特に真空脱ガス容器の耐用性を大幅に向上させ、炉材コストを大幅に下げることができる。
【図面の簡単な説明】
【図1】(A):本発明のガス冷却補強板の概略を示す縦断面図である。
(B):(A)のB−B断面図である。
【図2】(A):もう一つの本発明のガス冷却補強板の概略を示す縦断面図である。
(B):(A)のA−A断面図である。
【図3】(A):従来の浸漬管の構造を示す縦断面図である。
(B):(A)のB−B断面図である。
【図4】従来の浸漬管における損傷状況の概略を示す図である。
【符号の説明】
1 芯金
2 ガス冷却補強板
3 フランジ
4 冷却ガス導入管
5 耐火物
6 仕切り
7 内周耐火物
8 外周耐火物
9 亀裂
10 耐火物脱落
11 目地開き
[0001]
[Industrial applications]
The present invention relates to a dip tube used in a molten metal refining vessel, particularly a vacuum degassing vessel or the like.
[0002]
[Prior art]
In the current molten metal refining process, vacuum degassing equipment has become an indispensable equipment for high-grade steel production. In this degassing equipment represented by RH, DH, etc., the lower end opening of a vacuum tank is immersed in molten steel, then the inside of the tank is evacuated, and the molten steel is sucked up and refined. The dip tube is located at the lower end of these facilities and is a part that is immersed in molten steel.
[0003]
The immersion tube is generally made of a brick or irregular refractory with an inner periphery and an irregular refractory with an outer periphery. These refractories are held by a refractory receiving metal fitting or a stud installed on a metal cylinder called a core metal. The metal core is an important part that stably holds the refractory and prevents external air from entering the vacuum chamber. Therefore, deformation must be prevented as much as possible.
[0004]
The material of the core metal is generally ordinary steel, and its mechanical strength is remarkably reduced at 500 ° C. or higher (Mechanical Engineering Handbook (Mechanical Materials Edition), 5th revised edition, 1968, published by The Japan Society of Mechanical Engineers). Therefore, in order to prevent deformation of the metal core, its temperature must be kept below 500 ° C. However, the core metal temperature rises to 500 ° C. or more due to a decrease in the lining thickness due to wear of the refractory. Then, the core metal 1 is deformed as shown in FIG. 4 due to the temperature fluctuation between the process and the non-process during the operation and the expansion difference between the refractory and the metal core. For this reason, the inner peripheral refractory 7 falls off, and cracks 9, refractory fall-offs 10, and joint openings 11 occur in the outer peripheral or lower end refractory 8, and this limits the life of the immersion pipe.
[0005]
Conventionally, several core metal cooling methods have been proposed to solve such a problem. For example, Japanese Unexamined Patent Publication No. Hei 5-331525 discloses a cooling method using a mist and a special cooling pipe to suppress core metal deformation, and Japanese Unexamined Patent Publication No. Hei 6-145768 uses a specially structured core metal. A deformation suppression method is disclosed. Further, Japanese Patent Application Laid-Open No. 61-253318 or Japanese Patent Application Laid-Open No. 3-34053 discloses a method of cooling by flowing a gas through a gap between an outer tube and an inner tube of a metal core made of a double cylindrical iron plate.
[0006]
[Problems to be solved by the invention]
However, the method using the above-mentioned mist has a large possibility of causing danger such as steam explosion when the cooling pipe is broken for some reason although the water content in the mist is small. On the other hand, the deformation suppression method using a specially constructed core metal has problems not only in terms of cost but also in the production of a special core metal. Construction is very difficult. Further, there is a problem that the core metal made of the double cylindrical iron plate is difficult to manufacture and is expensive.
An object of the present invention is to provide an inexpensive immersion tube having a core metal with little deformation and having a high durability for a molten metal refining container, particularly for a vacuum degassing container.
[0007]
[Means for Solving the Problems]
As a result of earnest research on means for solving the above-mentioned problems, the following has been found. That is, the present invention suppresses deformation of the metal core by using a metal core provided on the outer peripheral surface of the reinforcing plate cooled by the gas fluid, thereby extending the life of the immersion tube.
[0008]
[Action]
Hereinafter, the present invention will be described in detail with reference to FIGS.
FIG. 1 is a longitudinal sectional view and a transverse sectional view of a dip tube in which the present invention is applied to a cored bar. The structure is such that a gas-cooling reinforcing plate 2 is attached to a metal core 1 and a flange 3. Due to the thermal load during operation and the thermal stress from the refractory 5 applied to the inner and outer peripheries, the metal core 1 tends to deform such that its lower end is opened outwardly and warped as shown in FIG. The gas-cooling reinforcing plate 2 prevents the core metal 1 from warping and receives the force to open outward while transmitting it to the high-rigidity flange 3, thereby preventing the core metal from being deformed.
[0009]
Since the gas cooling reinforcing plate 2 is directly fixed to the metal core 1 by welding or the like, when not cooled, its temperature rises to 700 ° C. to 800 ° C. during operation similarly to the metal core. However, since the mechanical strength of ordinary steel is significantly reduced at 500 ° C. or higher, it is necessary to maintain the strength by setting the temperature of the reinforcing plate to less than 500 ° C. Then, the gas cooling reinforcement plate 2 is cooled by introducing a gas fluid from the cooling gas introduction pipe 4. As a material for the gas cooling reinforcing plate 2, ordinary steel can be used, but heat-resistant steel and stainless steel can also be used.
[0010]
A partition 6 is provided inside the gas cooling reinforcing plate 2 so that the cooling gas can effectively cool the entire reinforcing plate. Alternatively, instead of the partition 6, the IN side of the cooling gas introducing pipe 4 may be extended to near the bottom inside the gas cooling reinforcing plate 2. These are fixed to the metal core 1 and the flange 3 by a method such as welding. The structure is simple and inexpensive to manufacture.
[0011]
FIG. 2 shows that the number of the gas cooling reinforcing plates 2 is increased to distribute the load on the flange 3 more.
Examples of the gas fluid used for cooling include air, nitrogen, argon, helium, carbon dioxide, and hydrocarbon gas. Air and nitrogen are preferred in terms of cost.
[0012]
When the refractory 5 is applied to the core metal 1 of the present invention, the inner refractory may be brick, but the outer refractory may be irregular refractory, or both the inner and outer refractories may be irregular refractories. When constructing an irregular shaped refractory, it is desirable to attach studs to the surface of the metal core 1 and the gas cooling reinforcing plate 2 in order to prevent the refractory from falling off.
[0013]
When the dip tube according to the present invention is used, since the core metal is less deformed, the inner peripheral refractory does not drop off or large cracks occur, and a long life can be realized. Moreover, since it is inexpensive, the original unit price of the immersion tube can be kept low.
[0014]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG.
[0015]
Example 1
An immersion tube provided with a gas-cooled reinforcing plate according to the present invention was applied to a core metal of an immersion tube having an inner diameter of 600 mm of a vacuum degassing apparatus having a processing capacity of 300 t / ch.
An immersion pipe as shown in FIG. 1 in which eight gas-cooled reinforcing plates were attached to a cored bar and a flange by welding at regular intervals was manufactured from ordinary steel. Magcro brick was installed on the inner circumference of the cored bar, and alumina castable was installed on the outer circumference. Air was used as the cooling gas, and the flow rate was 1000 Nm 3 / hr.
[0016]
For comparison, a core bar made of ordinary steel having a normal structure as shown in FIG. 3 was prepared, and similarly, one having a magcro brick on the inner periphery and an alumina castable on the outer periphery was prepared. In addition, as another comparative product, a core metal with a cooling gas flowing through the gap between the double cylindrical iron plates was also made of ordinary steel. The construction method of the refractory was the same as the above two. In this case, the flow rate of the cooling gas was set to 1000 Nm 3 / hr, the same as in the present invention.
[0017]
These immersion tubes were operated mainly for processing of ultra-low carbon steel. As a result, in the dip tube having the gas-cooled reinforcing plate of the present invention, the falling of the inner refractory or the occurrence of large cracks is drastically reduced as compared with the case of using the core metal having the conventional structure as shown in FIG. The life of the immersion tube of 6060 ch can be extended to 90〜110 ch. The increase in the diameter at the lower end of the core metal due to the deformation was 50 to 60 mm in the conventional structure, whereas the dip tube according to the present invention was significantly reduced to 10 to 15 mm, which was a significant reduction.
[0018]
On the other hand, the dip tube having the core metal of the double cylindrical iron plate type has a life of 90 to 100 ch, and has almost the same life as the dip tube according to the present invention. However, assuming that the unit cost of the dip tube including the core metal cost is 1 according to the present invention, it is 1.5 times for the conventional structure and 1.3 times for the double cylindrical iron plate structure. The economic effect of the dip tube is great.
[0019]
Example 2
Instead of FIG. 1 of Example 1, a dip tube made of a metal core having a gas-cooled reinforcing plate of the present invention shown in FIG. 2 was applied.
First, an immersion tube as shown in FIG. 2 in which 16 gas-cooled reinforcing plates were attached to a cored bar and a flange by welding at regular intervals, was manufactured from ordinary steel. Magcro-brick was applied to the inner periphery of the core metal, and alumina-cable was applied to the outer periphery. Air was used as the cooling gas, and the flow rate was 800 Nm 3 / hr.
[0020]
For comparison, in the same manner as in Example 1, a core bar made of ordinary steel having a normal structure shown in FIG. 3 was prepared, and similarly, a magcro brick on the inner periphery and an alumina castable on the outer periphery were prepared. .
As a result, the life of the immersion tube was 90 to 110 ch, which was the same as that of Example 1, and the amount of air used was reduced by 200 Nm 3 / hr.
[0021]
Example 3
In Example 2, nitrogen was used as a cooling gas. The gas flow rate was 800 Nm 3 / hr. As a result, the life of the immersion tube was 100 to 110 ch, which was the same as the life when air was used as the cooling gas.
[0022]
【The invention's effect】
Since the dip tube of the present invention is relatively inexpensive and can effectively suppress the deformation of the core metal, it is possible to prevent the inner peripheral refractory from falling off or generating large cracks. As a result, the life of the immersion tube can be extended, the durability of the molten metal refining vessel, particularly the vacuum degassing vessel, can be greatly improved, and the furnace material cost can be significantly reduced.
[Brief description of the drawings]
FIG. 1A is a longitudinal sectional view schematically showing a gas-cooled reinforcing plate of the present invention.
(B): It is BB sectional drawing of (A).
FIG. 2A is a longitudinal sectional view schematically showing another gas-cooled reinforcing plate of the present invention.
(B): It is AA sectional drawing of (A).
FIG. 3A is a longitudinal sectional view showing a structure of a conventional immersion tube.
(B): It is BB sectional drawing of (A).
FIG. 4 is a view schematically showing a damage state in a conventional immersion tube.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 core metal 2 gas cooling reinforcing plate 3 flange 4 cooling gas introduction pipe 5 refractory 6 partition 7 inner peripheral refractory 8 outer peripheral refractory 9 crack 10 refractory fall off 11 joint opening

Claims (1)

ガス流体により冷却される補強板外周面に設けられた芯金を有することを特徴とする浸漬管。Dip tube, characterized in that it comprises a core metal reinforcing plate is cooled by the gas fluid is provided on the outer peripheral surface.
JP03469095A 1995-02-01 1995-02-01 Immersion tube Expired - Lifetime JP3569337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03469095A JP3569337B2 (en) 1995-02-01 1995-02-01 Immersion tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03469095A JP3569337B2 (en) 1995-02-01 1995-02-01 Immersion tube

Publications (2)

Publication Number Publication Date
JPH08209231A JPH08209231A (en) 1996-08-13
JP3569337B2 true JP3569337B2 (en) 2004-09-22

Family

ID=12421387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03469095A Expired - Lifetime JP3569337B2 (en) 1995-02-01 1995-02-01 Immersion tube

Country Status (1)

Country Link
JP (1) JP3569337B2 (en)

Also Published As

Publication number Publication date
JPH08209231A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
CA2188338C (en) Refractory lining system for high wear area of high temperature reaction vessel
WO2000046561A1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
KR20090013236A (en) Direct smelting vessel and cooler therefor
US6890479B2 (en) System and method for steel making
JP3569337B2 (en) Immersion tube
JPH02116635A (en) Refractory-covered lid of heating vessel
EP1957681B1 (en) Snorkels for vacuum degassing of steel
EP0128987B1 (en) Tuyere and method for blowing gas into molten metal
JPH08218114A (en) Immersion tube for vacuum degassing equipment and using method thereof
US4477279A (en) Annular tuyere and method
JP4921900B2 (en) Immersion tube for vacuum degassing of molten steel and vacuum degassing of molten steel using the same
JP6011808B2 (en) Annular tuyere for gas injection
JP3665378B2 (en) Setting method of dip tube cooling condition
JP4496843B2 (en) Degassing equipment dip tube
JP3633519B2 (en) Stave cooler for metallurgical furnace and its mounting method
US4387464A (en) Vessel for an electro furnace
JP7222407B2 (en) Method for suppressing temperature change in refractory, method for operating vacuum degassing facility, and method for producing molten steel
CN213172419U (en) Large blast furnace with pre-hung slag crust
JPH09227928A (en) Immersion tube
JP4829403B2 (en) High temperature melt discharge pipe
US3625500A (en) Metallurgical furnace fume exhausting
JP3442628B2 (en) Molten metal immersion member and cooling method thereof
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
JP3212135B2 (en) Refractory lining method for vacuum degassing equipment
JPH10280030A (en) Repaired side wall of rh vacuum degassing furnace and method for repairing rh vacuum degassing furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6