JP2002167608A - Coated cemented carbided member and its production method - Google Patents

Coated cemented carbided member and its production method

Info

Publication number
JP2002167608A
JP2002167608A JP2000362017A JP2000362017A JP2002167608A JP 2002167608 A JP2002167608 A JP 2002167608A JP 2000362017 A JP2000362017 A JP 2000362017A JP 2000362017 A JP2000362017 A JP 2000362017A JP 2002167608 A JP2002167608 A JP 2002167608A
Authority
JP
Japan
Prior art keywords
cemented carbide
base material
atoms
coated cemented
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000362017A
Other languages
Japanese (ja)
Other versions
JP4034931B2 (en
Inventor
Takeshi Fukano
剛 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000362017A priority Critical patent/JP4034931B2/en
Publication of JP2002167608A publication Critical patent/JP2002167608A/en
Application granted granted Critical
Publication of JP4034931B2 publication Critical patent/JP4034931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the chipping resistance of the coated cemented carbide member without deteriorating its wear resistance as that of a cutting tool. SOLUTION: The coated cemented carbide member is obtained by forming a single coating layer or plural coating layers of one or more kinds selected from the compound of the group 4a, 5a and 6a metals in the Periodic Table, and Al2O3 on the surface of a cemented carbide base material using one or more kinds of iron group metals as a bonding phase and a compound containing the group 4a, 5a and 6a metals in the Periodic Table such as Zr, Ta, Ti and Nb as a hard phase. In the member, the atoms of Zr, Ta, Ti and Nb are reduced in the surface region of the base material compared with those in the inside region. Further, the reduction ratio of the Ta, Ti and Nb atoms is smaller than that of the Zr atoms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被覆超硬合金部材お
よびその製造方法に関し、特に切削工具などに使用され
る強靭かつ耐摩耗性に優れた被覆超硬合金部材およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cemented carbide member and a method for producing the same, and more particularly to a coated cemented carbide member having excellent toughness and wear resistance used for cutting tools and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】超硬合金の表面に炭化チタンなどの被覆
層を蒸着した被覆超硬合金は、母材の靭性と表面の耐摩
耗性を兼備えるため、鋼や鋳物などの切削用工具として
多く用いられている。
2. Description of the Related Art Coated cemented carbide obtained by depositing a coating layer such as titanium carbide on the surface of cemented carbide has both the toughness of the base material and the wear resistance of the surface. Many are used.

【0003】近年、切削工具における切削効率の高効率
化が進んでいる。切削効率は、切削速度(V)と送り量
(f)との積によって決定される。切削速度(V)を上
昇させると、工具寿命が急速に低下する。そのため、送
り量(f)を大きくすることによって切削効率の向上が
図られてきた。送り量(f)を大きくすることによって
切削効率を向上させるためには、切削工具の母材とし
て、高い切削応力に対応できる強靭な材料を用いること
が要求される。
In recent years, the cutting efficiency of cutting tools has been increasing. The cutting efficiency is determined by the product of the cutting speed (V) and the feed amount (f). When the cutting speed (V) is increased, the tool life is rapidly reduced. Therefore, cutting efficiency has been improved by increasing the feed amount (f). In order to improve the cutting efficiency by increasing the feed amount (f), it is required to use a tough material that can cope with high cutting stress as a base material of the cutting tool.

【0004】切削工具において、耐摩耗性と耐欠損性と
いう相反する特性を両立させて切削特性を向上させるた
めに、従来からいくつかの提案がなされている。その例
として、超硬合金の最表面に鉄族金属の量が部材内部に
比べて多い層(結合相富化層)を有するもの、超硬合金
の最表面にWCと結合相金属のみからなる層(脱β層)
を有するものをそれぞれ母材とすることにより、耐摩耗
性と耐欠損性の向上を図ることが提案されてきた。ま
た、それらを補うための技術として、刃先の稜線部分の
表面にも脱β層を形成することや(特開平6−7356
0号:従来は刃先の稜線部分には脱β層は形成されなか
った)、結合相富化層より表面に結合相減少層を設ける
こと(特許2762745号)等が提案されてきた。
[0004] In cutting tools, several proposals have been made in the past to improve the cutting characteristics by making the contradictory characteristics of wear resistance and fracture resistance compatible. For example, a cemented carbide has a layer (boundary phase-enriched layer) in which the amount of iron group metal is larger than that of the inside of the member on the outermost surface, and the outermost surface of the cemented carbide consists only of WC and the binder phase metal. Layer (removal β layer)
It has been proposed to improve wear resistance and fracture resistance by using each of the base materials having the following. Further, as a technique for supplementing them, a β-removed layer is also formed on the surface of the ridge line portion of the cutting edge (JP-A-6-7356).
No. 0: Conventionally, no β-removed layer was formed on the ridgeline of the cutting edge), and a binder phase-reducing layer was provided on the surface rather than the binder phase-enriched layer (Japanese Patent No. 2762745).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、切削条
件が厳しくなるなか、耐摩耗性と靭性を有する工具を提
供するには、表面に脱β層を設けるだけでは対応できな
くなってきた。すなわち、脱β層中には、Ti、Ta、
あるいはNb化合物などの硬質相成分が内部に対して減
少している層が存在するが、それら硬質相成分の減少は
超硬合金の耐熱性を低下させる欠点がある。
However, as cutting conditions have become severe, it has become impossible to provide a tool having wear resistance and toughness merely by providing a β-removed layer on the surface. That is, Ti, Ta,
Alternatively, there are layers in which a hard phase component such as an Nb compound is reduced with respect to the inside, but such a reduction in the hard phase component has a disadvantage of lowering the heat resistance of the cemented carbide.

【0006】また、超硬合金の強度を向上させる方法と
して、母材中の結合相成分の量を多くする方法がある。
ところが、母材中の結合相成分の量が増加すると靭性は
向上するものの、高い切削速度の条件下においては刃先
温度が高くなるため、刃先に塑性変形が生じるという問
題があった。
As a method of improving the strength of a cemented carbide, there is a method of increasing the amount of a binder component in a base material.
However, although the toughness is improved when the amount of the binder phase component in the base material is increased, the cutting edge temperature is increased under the condition of a high cutting speed, so that there is a problem that the cutting edge is plastically deformed.

【0007】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、耐摩耗性を劣化
させることなく、耐欠損性を向上させた被覆超硬合金部
材とその製造方法を提供することにある。また、本発明
の他の目的は、高能率の切削加工においても、耐摩耗性
と靭性との両方を兼備えた被覆超硬合金部材とその製造
方法を提供することにある。
[0007] The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a coated cemented carbide member having improved fracture resistance without deteriorating wear resistance, and a member thereof. It is to provide a manufacturing method. Another object of the present invention is to provide a coated cemented carbide member having both wear resistance and toughness even in high-efficiency cutting, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る被覆超硬合金部材では、1種以上の
鉄族金属を結合相とし、Zr、Ta、TiおよびNbな
どの周期律表4a、5a、6a族金属を含む化合物を硬
質相とする超硬合金母材の表面に、周期律表4a、5
a、6a族金属の化合物またはAl23から選ばれた1
種以上の単層または複層から成る被覆層を形成した被覆
超硬合金部材において、前記Zr、Ta、TiおよびN
b原子が前記母材の内部領域よりも表面領域において減
少しているとともに、前記Ta、TiおよびNb原子の
減少割合が前記Zr原子の減少割合よりも小さいことを
特徴とする。
In order to achieve the above object, in the coated cemented carbide member according to the present invention, one or more iron group metals are used as a binder phase, and Zr, Ta, Ti and Nb are used. Periodic Tables 4a, 5a, and 4a, 5a, and 6a are provided on the surface of a cemented carbide base material having a hard phase as a hard phase.
a selected from the group consisting of a group 6a metal compound and Al 2 O 3
A coated cemented carbide member having a coating layer composed of at least one kind of single or multiple layers, wherein the Zr, Ta, Ti and N
The b atoms are reduced in the surface region from the inner region of the base material, and the reduction ratio of the Ta, Ti and Nb atoms is smaller than the reduction ratio of the Zr atoms.

【0009】上記被覆超硬合金部材では、前記表面領域
の厚さが5〜200μmであることが望ましい。
In the coated cemented carbide member, the thickness of the surface region is desirably 5 to 200 μm.

【0010】また、上記被覆超硬合金部材では、前記結
合相が前記母材の内部領域よりも表面領域において減少
していることが望ましい。
[0010] In the coated cemented carbide member, it is preferable that the binder phase is reduced in a surface region rather than in an inner region of the base material.

【0011】また、請求項4に係る被覆超硬合金部材の
製造方法では、1種以上の鉄族金属とZr、Ta、Ti
およびNbなどの周期律表4a、5a、6a族金属を含
む化合物とを調合して焼成して超硬合金母材を形成した
後に、この母材の表面に周期律表4a、5a、6a族金
属の化合物またはAl23から選ばれた1種以上の単層
または複層から成る被覆層を形成する被覆超硬合金部材
の製造方法において、前記調合物を焼成する際に135
0℃以下における昇温速度を5℃/分以下にする工程を
有することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a coated cemented carbide member, wherein one or more iron group metals and Zr, Ta, Ti
And a compound containing a group 4a, 5a or 6a metal such as Nb and the like in the periodic table and sintering to form a cemented carbide base material. In the method for producing a coated cemented carbide member for forming a coating layer composed of one or more single or multiple layers selected from a metal compound or Al 2 O 3 , 135
The method is characterized in that the method includes a step of setting a heating rate at 0 ° C. or less to 5 ° C./min or less.

【0012】[0012]

【発明の実施の形態】以下、各請求項に係る被覆超硬合
金部材とその製造方法を説明する。本発明の被覆超硬合
金部材は、主として1種以上の鉄族金属から成る結合相
と周期律表4a、5a、6a族金属の化合物から成る硬
質相とで構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A coated cemented carbide member according to each claim and a method for manufacturing the same will be described below. The coated cemented carbide member of the present invention is mainly composed of a binder phase composed of one or more iron group metals and a hard phase composed of a compound of the periodic table 4a, 5a, or 6a metal.

【0013】結合相を構成する鉄族金属にはCo、N
i、Feなどがあり、硬質相成分の溶解度などとの関係
からCo、Niがよく使用される。その添加量は2〜2
0wt%が適当である。
The iron group metals constituting the binder phase include Co, N
There are i, Fe and the like, and Co and Ni are often used in relation to the solubility of the hard phase component. The addition amount is 2 to 2
0 wt% is appropriate.

【0014】硬質相を構成する周期律表4a、5a、6
a族金属の化合物には、W、Ta、Ti、Nb、Zrの
うちの1種以上からなる炭化物、窒化物、炭窒化物、酸
化物、炭酸化物、窒酸化物、炭酸窒化物などがあり、耐
摩耗性と靭性を向上させるには、WCを主成分とするこ
とが好ましい。また、V、Cr、Moのうちの1種以上
からなる炭化物、窒化物、炭窒化物、酸化物、炭酸化
物、窒酸化物、炭酸窒化物などを用いてもよい。
The periodic table 4a, 5a, 6 constituting the hard phase
Group a metal compounds include carbides, nitrides, carbonitrides, oxides, carbonates, oxynitrides, and carbonitrides of one or more of W, Ta, Ti, Nb, and Zr. In order to improve the wear resistance and toughness, WC is preferably used as a main component. Further, carbide, nitride, carbonitride, oxide, carbonate, nitride oxide, carbonitride, or the like made of at least one of V, Cr, and Mo may be used.

【0015】この硬質相には一種以上のZr化合物を含
む。このZr化合物には、例えばZrC、ZrCN、Z
rO、(Zr、W)C、(Zr、Ti、W)C、(Z
r、Ti、Ta、W)C、あるいは(Zr、Ti、T
a、Nb、W)CなどようにZrを含む炭化物、窒化
物、炭窒化物、酸化物、炭酸化物、窒酸化物、炭酸窒化
物より選ばれた1種以上がある。Zr化合物は0.2〜
10wt%添加することが望ましい。この添加量が0.
2wt%未満になるとZr添加による切削性能の向上の
効果が無くなり、10wt%を超えると焼結不良等の問
題が起こり、合金自体の強度が低下してしまう。
[0015] The hard phase contains one or more Zr compounds. The Zr compound includes, for example, ZrC, ZrCN, Zr
rO, (Zr, W) C, (Zr, Ti, W) C, (Z
r, Ti, Ta, W) C or (Zr, Ti, T)
a, Nb, W) There is at least one selected from carbides, nitrides, carbonitrides, oxides, carbonates, nitrides, and carbonitrides containing Zr, such as C. 0.2-Zr compound
It is desirable to add 10 wt%. When the amount added is 0.
If it is less than 2 wt%, the effect of improving the cutting performance by adding Zr is lost, and if it exceeds 10 wt%, problems such as poor sintering occur and the strength of the alloy itself is reduced.

【0016】この超硬合金母材の表面には、周期律表4
a、5a、6a族金属の化合物から成る硬質相が内部に
対して減少している表面領域が形成される。内部に対し
て減少する硬質相元素には、Zr、Ta、Ti、Nb、
V、Cr等がある。
The surface of the cemented carbide base material has a periodic table 4
A surface region is formed in which the hard phase composed of the compound of the group a, 5a or 6a metal is reduced with respect to the inside. Hard phase elements that decrease with respect to the interior include Zr, Ta, Ti, Nb,
V, Cr and the like.

【0017】この表面領域の厚みは5〜200μmが望
ましい。この表面領域の厚みが5μm以下であると、表
面付近までβ層が残ることとなり、そのβ層が破壊源と
なって強度が低下する。また、200μmより大きいと
きは、表面付近においてβ層が無いことにより、刃先の
耐熱性が低下する。この表面領域の厚みは、後述する焼
成条件によって変化する。
The thickness of this surface region is preferably 5 to 200 μm. If the thickness of this surface region is 5 μm or less, the β layer remains near the surface, and the β layer becomes a source of destruction, resulting in a decrease in strength. On the other hand, when it is larger than 200 μm, the absence of the β layer near the surface lowers the heat resistance of the cutting edge. The thickness of this surface region changes depending on the firing conditions described later.

【0018】本発明では、Zr、Ta、TiおよびNb
原子が母材の内部領域よりも表面領域において減少して
いるとともに、Ta、TiおよびNb原子の減少割合が
Zr原子の減少割合よりも小さいことを特徴とする。こ
こで内部領域とは母材表面より脱β層の影響が無い十分
内部のことであり、一例として脱β層の厚みが80〜1
00μmのときは約1000〜2000μm程度とな
る。これらの値は焼成条件(昇温速度、焼成雰囲気)、
窒化物添加量等により変化する。
In the present invention, Zr, Ta, Ti and Nb
It is characterized in that atoms are reduced in the surface region rather than the inner region of the base material, and the reduction ratio of Ta, Ti and Nb atoms is smaller than the reduction ratio of Zr atoms. Here, the internal region is a sufficiently internal region that is not affected by the β-removed layer from the surface of the base material.
When it is 00 μm, it is about 1000 to 2000 μm. These values are based on firing conditions (heating rate, firing atmosphere),
It changes depending on the amount of nitride added.

【0019】Ta、Ti、およびNb化合物はZr化合
物に比べて母材の耐熱性を向上させることができる利点
がある。しかしそれらがβ層の形で母材の表面に存在す
ると破壊源となって強度が低下する問題がでてくる。そ
こで、それら化合物を脱β層内に固溶させて、脱β層を
強化させ、それらのなかでもより耐熱性に影響があるT
a、Ti、Nb化合物を耐熱性に影響しにくいZr化合
物より多く存在させることで、より効果が増すことがわ
かった。
The Ta, Ti, and Nb compounds have an advantage that the heat resistance of the base material can be improved as compared with the Zr compound. However, if they are present on the surface of the base material in the form of a β layer, there arises a problem that the strength becomes a source of destruction and the strength is reduced. Therefore, these compounds are dissolved in the β-removed layer to strengthen the β-removed layer.
It was found that the presence of more a, Ti, and Nb compounds than the Zr compound that hardly affected the heat resistance increased the effect.

【0020】ここで周期律表4a、5a、6a族金属の
化合物が内部に対して減少している層、その層における
Zr、Ti、Ta、Nb化合物の内部に対する減少割合
は、XMA(X線マイクロアナライシス)等により求め
ることができる。ここではより精度の高いWDS(波長
分散型X線マイクロアナライザー)分析装置((株)日
本電子製:JXA−8600M)で分析した。分析エリ
アは測定のバラツキをなくすために、表面部に平行に約
250μmの範囲をもたせて行い、深さ方向に分析を行
った。分析個所については少なくとも同一試料の4ヶ所
以上を測定し、それらの平均値を利用した。試料にはC
NMA120412の工具を平面研削盤等ですくい面側
から約2,000μmほど研削した後、その研削面を鏡
面加工してその面を分析した。分析結果を図1に示す。
すなわち、図1はWDSによる分析結果を示し、表面か
ら内部への深さ方向の原子の分布状態を示す。横軸0μ
mは母材表面部を表し、横軸は表面からの深さである。
縦軸は内部に対するカウント値の比率である。
Here, the layer in which the compound of the group 4a, 5a, or 6a metal is reduced with respect to the inside of the periodic table, and the reduction ratio of the Zr, Ti, Ta, and Nb compounds in the layer with respect to the inside is XMA (X-ray Microanalysis) or the like. Here, the analysis was performed with a WDS (wavelength dispersive X-ray microanalyzer) analyzer (JXA-8600M manufactured by JEOL Ltd.) with higher accuracy. The analysis area was set to have a range of about 250 μm in parallel with the surface in order to eliminate variation in the measurement, and the analysis was performed in the depth direction. As for the analysis points, at least four or more points of the same sample were measured, and the average value thereof was used. The sample is C
After grinding the NMA120412 tool by about 2,000 μm from the rake face side with a surface grinder or the like, the ground face was mirror-finished and analyzed. The results of the analysis are shown in FIG.
That is, FIG. 1 shows the results of analysis by WDS, and shows the distribution of atoms in the depth direction from the surface to the inside. Horizontal axis 0μ
m represents the surface of the base material, and the horizontal axis represents the depth from the surface.
The vertical axis is the ratio of the count value to the inside.

【0021】本発明の被覆超硬合金部材の好ましい実施
例においては、超硬合金母材の表面部における周期律表
4a、5a、6a族金属の化合物が内部に対して減少し
ている領域の厚さが5〜200μmになっている。これ
は5μm未満では脱β層としての効果(表面までβ層が
残ることとなり、そのβ層が破壊源となる強度の低下)
が無くなり、200μmより大きいときは、刃先の耐熱
性が低下するからである。
In a preferred embodiment of the coated cemented carbide member according to the present invention, the region of the surface of the cemented carbide base material in which the compound of the group 4a, 5a, or 6a group metal is reduced with respect to the inside. The thickness is 5 to 200 μm. If the thickness is less than 5 μm, the effect as a β layer is removed (the β layer remains up to the surface, and the β layer becomes a source of destruction and the strength is reduced).
This is because when the thickness is larger than 200 μm, the heat resistance of the cutting edge decreases.

【0022】また、従来の脱β層では、結合相富化層が
あることにより、高い切削速度においては刃先温度が高
くなる条件下において、刃先の塑性変形が生じる問題が
あった。この問題は合金中の鉄族金属の量を減少する方
法で解決することができる。ここでいう結合相富化層と
は内部に対して鉄族金属量が多い層であり、これらの分
析方法は前記XMAで求めることができる。この分析結
果を図1に示す。
Further, in the conventional β-removed layer, the presence of the binder phase-enriched layer has a problem that the cutting edge is plastically deformed under the condition that the cutting edge temperature becomes high at a high cutting speed. This problem can be solved in a way that reduces the amount of iron group metal in the alloy. The binder-phase-enriched layer referred to here is a layer having a large amount of iron group metal with respect to the inside, and these analysis methods can be obtained by the XMA. FIG. 1 shows the results of this analysis.

【0023】超硬合金母材の表面には被覆層を設ける。
被覆層は、周期律表4a、5a、6a族金属の炭化物、
窒化物、炭窒化物、酸化物、硼化物およびAl23(酸
化アルミニウム)から選ばれた1種以上の単層または複
層から成り、CVD法、PVD法、あるいはPCVD法
等の化学蒸着法や物理蒸着法で形成される。この被覆層
によって、高速切削における耐摩耗性と耐欠損性をバラ
ンス良く向上させることができる。
A coating layer is provided on the surface of the cemented carbide base material.
The coating layer is made of a carbide of a metal of Group 4a, 5a or 6a in the periodic table,
It is composed of one or more single layers or multiple layers selected from nitrides, carbonitrides, oxides, borides and Al 2 O 3 (aluminum oxide), and is formed by chemical vapor deposition such as CVD, PVD, or PCVD. It is formed by a method or a physical vapor deposition method. With this coating layer, wear resistance and chipping resistance in high-speed cutting can be improved in a well-balanced manner.

【0024】上記超硬合金母材は、1400〜1600
℃程度の温度で5〜15分程度維持することにより焼成
される。この焼成の際に、1350℃以下における昇温
速度を5℃/分以下にするとよい。Zrは高温でのCo
の溶解度がTa、Tiに比べて多いのに対し、低温での
Coの溶解度はTa、Tiに比べて少ないことから、通
常液相出現温度といわれている1350℃以下の昇温速
度を変化させる。本発明ではZr化合物を調合時に添加
して、1350℃以下における昇温速度を5℃/分以下
とすることで脱β層を作成し、その層におけるZr化合
物の内部に対する減少割合に対し、Ta、Ti、または
Nb化合物の内部に対する減少割合が少ない層を含む
層、望ましくは前記結合相成分(鉄族金属)も内部に対
して減少する層を作成することができる。その後、超硬
合金母材の表面に被覆層を形成する。
The base material of the cemented carbide is 1400 to 1600
Firing is performed by maintaining the temperature at about 5 ° C. for about 5 to 15 minutes. During this firing, the rate of temperature rise at 1350 ° C. or less may be 5 ° C./min or less. Zr is Co at high temperature
The solubility of Co at low temperatures is lower than that of Ta and Ti, whereas the solubility of Co is lower than that of Ta and Ti. . In the present invention, a Zr compound is added at the time of preparation, and a rate of temperature rise at 1350 ° C. or lower is set to 5 ° C./min or less to form a β-desorbed layer. , Ti, or Nb compound can be formed into a layer including a layer having a small reduction ratio with respect to the inside, preferably, a layer in which the binder phase component (iron group metal) also decreases with respect to the inside. Thereafter, a coating layer is formed on the surface of the cemented carbide base material.

【0025】[0025]

【実施例】以下、本発明の実施例について説明する。表
1に示す1〜5の組成(重量%)からなる原料粉をIS
O規格CNMG120408の形状を有するチップに成
形して脱脂した後、1350℃まで表1に示す昇温速度
条件にて昇温し、その後1450℃までを12.5℃/
分の昇温速度で昇温して1時間保持した後に冷却した。
こうして表1に示す試料1〜5を作製した。
Embodiments of the present invention will be described below. The raw material powder having the composition (% by weight) of 1 to 5 shown in Table 1 was subjected to IS
After shaping into a chip having the shape of O standard CNMG120408 and degreased, the temperature was raised to 1350 ° C. under the heating rate conditions shown in Table 1, and then 12.5 ° C.
The temperature was raised at a rate of 1 minute, held for 1 hour, and then cooled.
Thus, Samples 1 to 5 shown in Table 1 were produced.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示す試料1〜2(本発明品)は、Z
r原子の内部に対する減少割合に対し、Ta、Ti、N
b原子の内部に対する減少割合が少ない層が存在した。
この層厚みおよびそれらの原子の減少量の比の大小をW
DSで測定した。その結果を表1の減少量の比の大小に
示す。
Samples 1 and 2 (products of the present invention) shown in Table 1
Ta, Ti, N
There was a layer in which the reduction ratio of b atoms to the inside was small.
The magnitude of this layer thickness and the ratio of the amount of reduction of those atoms is expressed by W
Measured by DS. The results are shown in Table 1 in terms of the magnitude of the reduction ratio.

【0028】また、表1に示す試料3(本発明品)は、
Zr原子の内部に対する減少割合に対し、Ta、Ti、
Nb原子の内部に対する減少割合が少ない層が存在し、
なおかつCo減少層が存在した。この層厚みおよびそれ
らの原子の減少量の比の大小をWDSで測定した。
Sample 3 shown in Table 1 (product of the present invention)
With respect to the reduction ratio with respect to the inside of the Zr atom, Ta, Ti,
There is a layer in which the reduction ratio of Nb atoms to the inside is small,
In addition, there was a Co reduction layer. The magnitude of the ratio between the thickness of the layer and the reduction amount of the atoms was measured by WDS.

【0029】また、表1の試料4、5(従来品)では、
Zr原子の内部に対する減少割合に対し、Ta、Ti、
Nb原子の内部に対する減少割合が多くなっている。
In samples 4 and 5 (conventional products) in Table 1,
With respect to the reduction ratio with respect to the inside of the Zr atom, Ta, Ti,
The reduction ratio of Nb atoms to the inside is increasing.

【0030】これらの焼結体の切刃稜線部にホーニング
処理を行なった後、その焼結体表面に通常のCVD法で
内層にTiの窒化物および炭窒化物を計9μm、外層に
酸化アルミニウムを3μmの厚さで被覆層を形成した。
After performing a honing treatment on the ridge of the cutting edge of each of these sintered bodies, a total of 9 μm of Ti nitride and carbonitride are formed on the surface of the sintered body by the ordinary CVD method, and aluminum oxide is formed on the outer layer. To form a coating layer with a thickness of 3 μm.

【0031】これらの試料を用いて、下記の条件で切削
時の耐チッピング性テスト及び耐摩耗性テストを行っ
た。これらのテスト結果を表2に示す。 耐チッピング性テスト: 切削速度 350m/min 被削材 FC250 送り 0.5mm/rev 切込み 2.0mm 切削時間 2sec 耐摩耗性テスト: 切削速度 500m/min 被削材 FC250 送り 0.5mm/rev 切込み 2.0mm 切削時間 1.2min
Using these samples, a chipping resistance test and a wear resistance test during cutting were performed under the following conditions. Table 2 shows the test results. 1. Chipping resistance test: Cutting speed 350 m / min Work material FC250 feed 0.5 mm / rev Depth of cut 2.0 mm Cutting time 2 sec Wear resistance test: Cutting speed 500 m / min Work material FC250 feed 0.5 mm / rev Depth 2. 0mm Cutting time 1.2min

【0032】[0032]

【表2】 [Table 2]

【0033】表2の結果から、Zr原子の内部に対する
減少割合に対し、Ta、Ti、Nb原子の内部に対する
減少割合が少ない層を好ましい範囲に調製した試料(試
料No.1、2、3)は、その他の試料(試料No.
4、5)に比較して耐チッピング性がともに優れている
ことが分かる。
From the results shown in Table 2, the samples in which the ratio of the decrease of Ta, Ti, and Nb atoms to the inside was smaller than that of the inside of Zr atoms was prepared in a preferable range (samples No. 1, 2, and 3). Are the other samples (Sample No.
It can be seen that both the chipping resistances are superior to those of 4, 5).

【0034】また、表2の結果から、Coが内部に対し
て減少している層を含む試料(試料No.3)は、その
他の試料(試料No.2)に比較して耐摩耗性が優れて
いることが分かる。
Further, from the results in Table 2, it can be seen that the sample including the layer in which Co is reduced with respect to the inside (Sample No. 3) has a higher abrasion resistance than the other samples (Sample No. 2). It turns out that it is excellent.

【0035】[0035]

【発明の効果】以上のように、請求項1に係る被覆超硬
合金部材では、Zr、Ta、TiおよびNb原子が母材
の内部領域よりも表面領域において減少しているととも
に、Ta、TiおよびNb原子の減少割合がZr原子の
減少割合よりも小さいことから、超硬合金の耐熱性の低
下を最小限に抑えることができる。
As described above, in the coated cemented carbide member according to the first aspect, the atoms of Zr, Ta, Ti and Nb are reduced in the surface region from the inner region of the base material, and the Ta and Ti atoms are reduced. Since the reduction ratio of Nb atoms is smaller than the reduction ratio of Zr atoms, it is possible to minimize a decrease in heat resistance of the cemented carbide.

【0036】また、請求項2に係る被覆超硬合金では、
表面領域の厚さが5〜200μmであることから、この
表面層を脱β層として充分に作用させることができ、刃
先の耐熱性を向上させることができる。
In the coated cemented carbide according to claim 2,
Since the thickness of the surface region is 5 to 200 μm, this surface layer can sufficiently act as a β-removing layer, and the heat resistance of the cutting edge can be improved.

【0037】また、請求項3に係る被覆超硬合金では、
結合相が母材の内部領域よりも表面領域において減少し
ていることから、高い切削速度においても刃先温度が高
くなることを極力防止でき、もって刃先の塑性変形を防
止できる。
In the coated cemented carbide according to claim 3,
Since the binder phase is reduced in the surface region rather than the internal region of the base material, it is possible to prevent the cutting edge temperature from increasing as much as possible even at a high cutting speed, and thus to prevent plastic deformation of the cutting edge.

【0038】さらに、請求項4に係る被覆超硬合金の製
造方法によれば、1種以上の鉄族金属とZr、Ta、T
iおよびNbなどの周期律表4a、5a、6a族金属を
含む化合物との調合物を焼成する際に1350℃以下に
おける昇温速度を5℃/分以下にする工程を有すること
から、脱β層中の組成をTa、TiおよびNb原子の減
少割合がZr原子の減少割合よりも小さくなるようにコ
ントロールすることができ、超硬合金の耐熱性の低下を
最小限に抑えることができる。
Further, according to the method for producing a coated cemented carbide according to claim 4, one or more iron group metals and Zr, Ta, T
When baking a mixture with a compound containing a Group 4a, 5a, or 6a metal such as i and Nb in the periodic table, a step of setting the temperature rise rate at 1350 ° C. or less to 5 ° C./min or less is performed. The composition in the layer can be controlled so that the reduction rate of Ta, Ti and Nb atoms is smaller than the reduction rate of Zr atoms, and the reduction in heat resistance of the cemented carbide can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る被覆超硬合金部材の波長分散型X
線マイクロアナライザーによる分析結果を示す図であ
る。
FIG. 1 shows a wavelength dispersion type X of a coated cemented carbide member according to the present invention.
It is a figure showing the analysis result by a line microanalyzer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/05 C22C 1/05 F 29/08 29/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 1/05 C22C 1/05 F 29/08 29/08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 1種以上の鉄族金属を結合相とし、Z
r、Ta、TiおよびNbなどの周期律表4a、5a、
6a族金属を含む化合物を硬質相とする超硬合金母材の
表面に、周期律表4a、5a、6a族金属の化合物また
はAl23から選ばれた1種以上の単層または複層から
成る被覆層を形成した被覆超硬合金部材において、前記
Zr、Ta、TiおよびNb原子が前記母材の内部領域
よりも表面領域において減少しているとともに、前記T
a、TiおよびNb原子の減少割合が前記Zr原子の減
少割合よりも小さいことを特徴とする被覆超硬合金部
材。
1. The method of claim 1, wherein at least one iron group metal is used as a binder phase.
periodic tables 4a, 5a, such as r, Ta, Ti and Nb;
On the surface of a cemented carbide base material having a compound containing a group 6a metal as a hard phase, one or more single or multiple layers selected from compounds of the periodic table 4a, 5a, 6a metal or Al 2 O 3 In the coated cemented carbide member having a coating layer formed of, the Zr, Ta, Ti, and Nb atoms are reduced in the surface region from the inner region of the base material, and the Tr is reduced.
A coated cemented carbide member characterized in that the reduction rate of a, Ti and Nb atoms is smaller than the reduction rate of Zr atoms.
【請求項2】 前記表面領域の厚さが5〜200μmで
あることを特徴とする請求項1に記載の被覆超硬合金部
材。
2. The coated cemented carbide member according to claim 1, wherein the thickness of the surface region is 5 to 200 μm.
【請求項3】 前記結合相が前記母材の内部領域よりも
表面領域において減少していることを特徴とする請求項
1または請求項2に記載の被覆超硬合金部材。
3. The coated cemented carbide member according to claim 1, wherein the binder phase is reduced in a surface region of the base material than in an inner region of the base material.
【請求項4】 1種以上の鉄族金属とZr、Ta、Ti
およびNbなどの周期律表4a、5a、6a族金属を含
む化合物とを調合して焼成して超硬合金母材を形成した
後に、この母材の表面に周期律表4a、5a、6a族金
属の化合物またはAl23から選ばれた1種以上の単層
または複層から成る被覆層を形成する被覆超硬合金部材
の製造方法において、前記調合物を焼成する際に135
0℃以下における昇温速度を5℃/分以下にする工程を
有することを特徴とする被覆超硬合金部材の製造方法。
4. One or more iron group metals and Zr, Ta, Ti
And a compound containing a group 4a, 5a or 6a metal such as Nb and the like in the periodic table and sintering to form a cemented carbide base material. In the method for producing a coated cemented carbide member for forming a coating layer composed of one or more single or multiple layers selected from a metal compound or Al 2 O 3 , 135
A method for producing a coated cemented carbide member, comprising a step of setting a temperature rising rate at 0 ° C. or less to 5 ° C./min or less.
JP2000362017A 2000-11-29 2000-11-29 Coated cemented carbide member and method for producing the same Expired - Fee Related JP4034931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362017A JP4034931B2 (en) 2000-11-29 2000-11-29 Coated cemented carbide member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362017A JP4034931B2 (en) 2000-11-29 2000-11-29 Coated cemented carbide member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002167608A true JP2002167608A (en) 2002-06-11
JP4034931B2 JP4034931B2 (en) 2008-01-16

Family

ID=18833359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362017A Expired - Fee Related JP4034931B2 (en) 2000-11-29 2000-11-29 Coated cemented carbide member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4034931B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120902A (en) * 2007-11-14 2009-06-04 Sumitomo Electric Ind Ltd Laminated structure type cemented carbide, its manufacturing method, and tool made of the cemented carbide
JP2011177801A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Surface-coated wc-based cemented carbide insert
JP2012061536A (en) * 2010-09-15 2012-03-29 Mitsubishi Materials Corp Surface-coated wc-based cemented carbide insert

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313757A (en) 2001-04-17 2002-10-25 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120902A (en) * 2007-11-14 2009-06-04 Sumitomo Electric Ind Ltd Laminated structure type cemented carbide, its manufacturing method, and tool made of the cemented carbide
JP2011177801A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Surface-coated wc-based cemented carbide insert
JP2012061536A (en) * 2010-09-15 2012-03-29 Mitsubishi Materials Corp Surface-coated wc-based cemented carbide insert

Also Published As

Publication number Publication date
JP4034931B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
KR960006053B1 (en) Coated cemented carbide member and the method of manufacturing the same
JP4842962B2 (en) Sintered cemented carbide using vanadium as gradient forming element
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JPWO2011002008A1 (en) Cermet and coated cermet
JP2710934B2 (en) Cermet alloy
JP4373074B2 (en) Coated cutting tool insert made of cemented carbide and coating
KR101529726B1 (en) Coated cutting insert for milling applications
JPH02254131A (en) Nitrogen-containing cermet having excellent various characteristics, its manufacture and coated nitrogen-containing cermet
JP2002205207A (en) Cutting tool
JP4313587B2 (en) Cemented carbide and coated cemented carbide members and methods for producing them
CN109562461A (en) Resistance to deposition crushing knife and the excellent surface-coated cutting tool of peel resistance
JP2002167608A (en) Coated cemented carbided member and its production method
JPH10225804A (en) Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
KR102395885B1 (en) Hard film for cutting tools
JP4069749B2 (en) Cutting tool for roughing
JP3235259B2 (en) Coated cemented carbide member and method of manufacturing the same
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP4703123B2 (en) Method for producing surface-coated TiCN-based cermet
JP4290866B2 (en) Method for manufacturing coated cemented carbide member
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JP2004249380A (en) Surface-coated ti group cermet cutting tool and its manufacturing method
KR20190076448A (en) Cemented carbide for cutting tools
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JPH05171442A (en) Coated sintered hard alloy and its manufacture
JP3976285B2 (en) Cermet tool having a hard nitrided layer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4034931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees