JP2002167341A - Method of recovering effective components from polyester fiber wastes - Google Patents

Method of recovering effective components from polyester fiber wastes

Info

Publication number
JP2002167341A
JP2002167341A JP2000362784A JP2000362784A JP2002167341A JP 2002167341 A JP2002167341 A JP 2002167341A JP 2000362784 A JP2000362784 A JP 2000362784A JP 2000362784 A JP2000362784 A JP 2000362784A JP 2002167341 A JP2002167341 A JP 2002167341A
Authority
JP
Japan
Prior art keywords
polyester
reaction
crude
alkylene glycol
bhet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000362784A
Other languages
Japanese (ja)
Other versions
JP2002167341A5 (en
JP4065658B2 (en
Inventor
Masakazu Miyamoto
正教 宮本
Minoru Nakajima
実 中島
Kazuhiro Sato
和広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000362784A priority Critical patent/JP4065658B2/en
Priority to TW90128842A priority patent/TW528773B/en
Priority to EP01997193.6A priority patent/EP1344765B1/en
Priority to US10/432,822 priority patent/US7078440B2/en
Priority to MXPA03004661A priority patent/MXPA03004661A/en
Priority to AU2408202A priority patent/AU2408202A/en
Priority to PCT/JP2001/010241 priority patent/WO2002042253A1/en
Priority to KR1020037006969A priority patent/KR100746678B1/en
Priority to CNB018212786A priority patent/CN1234676C/en
Priority to AU2002224082A priority patent/AU2002224082B2/en
Publication of JP2002167341A publication Critical patent/JP2002167341A/en
Priority to HK04104846A priority patent/HK1061840A1/en
Publication of JP2002167341A5 publication Critical patent/JP2002167341A5/ja
Application granted granted Critical
Publication of JP4065658B2 publication Critical patent/JP4065658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To establish an efficient and economical method capable of obtaining a recovered monomer with high purity by improving handleability of fiber wastes in a method of recovering effective components from impurity-containing polyester fiber wastes. SOLUTION: The simple and economical method of obtaining the recovered monomer with high purity comprises adding a reaction process provided with a process to remove impurities by a physical and chemical method, after a pretreatment process of removing fiber wastes judged other than polyester fibers by examination using a judging device and then improving handleability by applying pulverization and granulation to fiber wastes which pass several tests.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不純物を含むポリ
エステル繊維屑に判別装置による判別、粉砕、造粒等の
前処理を施した後に化学的な反応処理を加え、有効成分
としての高純度のビスヒドロキシルテレフタレートある
いはテレフタル酸成分とアルキレングリコールとを簡便
かつ効率よく回収する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a polyester fiber waste containing impurities, which is subjected to a pretreatment such as discrimination by a discriminator, pulverization, granulation and the like, and then subjected to a chemical reaction treatment to obtain high-purity as an active ingredient. The present invention relates to a method for simply and efficiently recovering a bishydroxyl terephthalate or terephthalic acid component and an alkylene glycol.

【0002】[0002]

【従来の技術】ポリエステル、例えばポリエチレンテレ
フタレートはその優れた特性により繊維、フィルム、樹
脂等として広く用いられているが、これらの製造工程に
おいて発生する繊維状、フィルム状、樹脂状等のポリエ
ステル屑の有効利用はコストの面からのみならず環境問
題も含め大きな問題となっており、その処理方法として
マテリアルリサイクル、サーマルリサイクル、ケミカル
リサイクルによる各種の提案が成されている。
2. Description of the Related Art Polyester, for example, polyethylene terephthalate, has been widely used as a fiber, film, resin, etc. due to its excellent properties. Effective utilization has become a major problem not only in terms of cost but also in terms of environmental issues, and various proposals have been made as a method of treating it through material recycling, thermal recycling, and chemical recycling.

【0003】このうちマテリアルリサイクルではペット
ボトル等のポリエステル樹脂屑に関しては、自治体を中
心に回収され積極的な再利用が実施されているが、繊維
屑に関しては該リサイクル方法を採ることが極めて困難
でありその実施例は皆無である。
[0003] Among them, in the material recycling, polyester resin scraps such as PET bottles are collected mainly by local governments and actively recycled, but it is extremely difficult to adopt the recycling method for fiber scraps. There is no such embodiment.

【0004】また、ポリエステル廃棄物を燃料に転化す
るサーマルリサイクルは、ポリエステル廃棄物の燃焼熱
の再利用という利点は有するが、発熱量が比較的低く多
量のポリエステル廃棄物を燃焼させることに他ならない
ためポリエステル原料損失という問題点があり、省資源
の面から好ましくない。
[0004] Thermal recycling for converting polyester waste into fuel has the advantage of reusing the combustion heat of the polyester waste, but it has nothing but the relatively low calorific value of burning a large amount of polyester waste. Therefore, there is a problem that the polyester raw material is lost, which is not preferable in terms of resource saving.

【0005】これに対してケミカルリサイクルではポリ
エステル廃棄物を原料モノマーに再生するため、再生に
伴う品質の低下が少なくクローズドループのリサイクル
として適している。該ケミカルリサイクルにおいては樹
脂屑、フィルム屑を対象としたものが大部分である。ポ
リエステル繊維屑の再生利用法としては、例えば特開昭
48−61447号公報にはポリエステル屑を過剰のエ
チレングリコール(以下、EGと略記することがある)
により解重合した後、得られたビス−β−ヒドロキシテ
レフタレート(以下、BHETと略記することがある)
を直接重縮合して再生ポリエステルを得る方法等が提案
されているが、この方法は解重合工程においてポリエス
テル屑とEGを解重合反応系に一括投入して解重合して
いるため、投入したポリエステル屑が反応機内部で固化
し、攪拌ができなくなる。
On the other hand, in the chemical recycling, since the polyester waste is regenerated into a raw material monomer, there is little deterioration in quality due to the regeneration, and the method is suitable for closed loop recycling. Most of the chemical recycling targets resin waste and film waste. As a method of recycling polyester fiber waste, for example, Japanese Patent Application Laid-Open No. 48-61447 discloses that polyester waste is converted into excess ethylene glycol (hereinafter sometimes abbreviated as EG).
Bis-β-hydroxy terephthalate (hereinafter sometimes abbreviated as BHET)
Has been proposed to obtain a regenerated polyester by direct polycondensation of polyester. However, in this method, in the depolymerization step, polyester waste and EG are put into the depolymerization reaction system at a time and depolymerized, so that the added polyester is used. Debris solidifies inside the reactor and cannot be stirred.

【0006】そのため、解重合系が不均一となり解重合
時間が長くなること、また使用するEGの量が多いため
経済的に不利になるばかりでなく反応物にはジエチレン
グリコール等の不純物が副生し、その結果得られるポリ
エステルの物理的性質、特に軟化点を著しく低下させ、
品位の低いポリエステルしか得られない等の欠点があっ
た。このような従来の技術においてはポリエステル繊維
屑を効率的に処理する技術は完成されていない。
[0006] Therefore, the depolymerization system becomes non-uniform and the depolymerization time is prolonged. In addition, the amount of EG used is not only economically disadvantageous but also impurities such as diethylene glycol are produced as by-products in the reaction product. Significantly reduces the physical properties of the resulting polyester, especially the softening point,
There were drawbacks such as that only low quality polyester could be obtained. In such conventional techniques, a technique for efficiently treating polyester fiber waste has not been completed.

【0007】また、ポリエステル製造工程外の繊維を回
収対象とした場合、ポリエチレン、ポリプロピレン、ナ
イロン、綿等のポリエステルとは異繊維類の混入が避け
られない場合がある。さらに材質がポリエステルであっ
ても染料を含むものについては解重合等の一連の反応中
に分解して、回収モノマーに分散し品質を著しく悪化さ
せる。これら不純物混入時の回収モノマーの品質にまで
言及した例はこれまで皆無である。
[0007] When fibers outside the polyester production process are to be collected, it is sometimes impossible to avoid mixing fibers different from polyester such as polyethylene, polypropylene, nylon and cotton. Further, even if the material is a polyester, those containing a dye are decomposed during a series of reactions such as depolymerization and dispersed in the recovered monomer to significantly deteriorate the quality. There have been no examples that mention the quality of the recovered monomer when these impurities are mixed.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有していた問題点を解決し、前処理工程におい
て、後の反応工程でのハンドリング性を向上させ、反応
工程では不純物を除去する設備を備えることで不純物を
含む繊維屑から高純度の回収モノマーを得ることができ
る効率的かつ経済的な有効成分回収方法を確立すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art, to improve the handling properties in the subsequent reaction step in the pretreatment step, and to remove impurities in the reaction step. An object of the present invention is to establish an efficient and economical method for recovering an active ingredient, which can provide a high-purity recovered monomer from fiber waste containing impurities by providing a facility for removing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋭意検討を
行った結果、前処理工程においては、適当な判別装置に
より有効成分のポリエステル以外の繊維を排除した後
に、反応を効率よく進行させるために判別試験を通過し
た繊維屑を適当な大きさに粉砕、次いで造粒・固形化
し、前処理工程の後に不純物が分解しない反応条件を備
えた反応工程を組み込むことで、高純度の回収モノマー
を効率よく得る有効成分の回収方法を見出し、本発明を
完成するに至った。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that in the pretreatment step, the fibers other than the polyester as the active ingredient are eliminated by an appropriate discriminator, and then the reaction proceeds efficiently. For this purpose, the fiber waste that has passed the discrimination test is pulverized to an appropriate size, then granulated and solidified. The present inventors have found a method for recovering an active ingredient that efficiently obtains the present invention, and have completed the present invention.

【0010】すなわち、本発明の目的は、ポリエステル
繊維廃棄物を判別装置により分析してポリエステルとは
異なる繊維と判別された場合には該繊維廃棄物を排除し
て次工程へ輸送せず、ポリエステルと判別されたものに
ついては該繊維廃棄物を塊状のまま粉砕機に投入して該
繊維廃棄物をまず30〜150mmに粉砕した後、該粉
砕物をさらに2〜50mmに粉砕し、該粉砕物を造粒機
により径2〜20mm、長さ2〜60mmの円筒状固形
物に固形化して嵩密度を0.10〜1.0g/cm3
した後に、該固形物を空気輸送により後述の反応工程へ
と輸送する前処理工程と以下の(a)〜(f)の反応工
程とを組み合わせることによりポリエステル繊維廃棄物
から高純度の有効成分を回収する方法により達成するこ
とができる。 (a)前記前処理工程を経て得られた粗製ポリエステル
を解重合触媒を含むアルキレングリコール中に投入して
ビス−β−ヒドロキシテレフタレート(BHET)を得る
解重合反応工程; (b)前記解重合反応工程の反応中又は反応後にポリエ
ステル以外のポリエチレン、ポリスチレン、ポリプロピ
レン、ポリ塩化ビニル等の異プラスチック類を除去する
異物除去工程; (c)前記解重合反応後に未溶解の成分を濾過選別する
濾過選別工程; (d)前記濾過選別工程を経て得たBHETとアルキレ
ングリコールの混合液に蒸留・蒸発操作を施してアルキ
レングリコールを蒸留・蒸発させて濃縮BHETを得る
BHET濃縮工程; (e)前記BHET濃縮工程で得た粗製BHETと粗製
アルキレングリコールの混合液中にエステル交換触媒と
メタノールとを添加・投入してエステル交換を行うエス
テル交換反応工程; (f)前記エステル交換反応工程で得られた粗製テレフ
タル酸ジメチル及び粗製メタノール及び粗製アルキレン
グリコールの混合物から精製テレフタル酸ジメチルおよ
び精製アルキレングリコールとを分離回収する精製工
程;
That is, an object of the present invention is to analyze a polyester fiber waste by a discriminator and determine that the fiber is a fiber different from the polyester. If the fibrous waste is pulverized to 30 to 150 mm, the fibrous waste is first pulverized to 30 to 150 mm, and then the pulverized material is further pulverized to 2 to 50 mm. Is solidified into a cylindrical solid having a diameter of 2 to 20 mm and a length of 2 to 60 mm by a granulator to a bulk density of 0.10 to 1.0 g / cm 3, and then the solid is pneumatically transported to form a solid as described below. By combining the pretreatment step of transporting to the reaction step and the following reaction steps (a) to (f), it can be achieved by a method of recovering a high-purity active ingredient from polyester fiber waste. (A) a depolymerization reaction step in which the crude polyester obtained through the pretreatment step is introduced into an alkylene glycol containing a depolymerization catalyst to obtain bis-β-hydroxyterephthalate (BHET); (b) the depolymerization reaction A foreign matter removing step of removing different plastics such as polyethylene, polystyrene, polypropylene, polyvinyl chloride and the like other than polyester during or after the reaction of the step; (c) a filtration separation step of filtering and separating undissolved components after the depolymerization reaction (D) a BHET concentration step of subjecting a mixture of BHET and alkylene glycol obtained through the filtration and sorting step to distillation and evaporation to distill and evaporate the alkylene glycol to obtain concentrated BHET; (e) the BHET concentration step In the mixture of crude BHET and crude alkylene glycol obtained in (F) purified dimethyl terephthalate and purified alkylene glycol from a mixture of crude dimethyl terephthalate and crude methanol and crude alkylene glycol obtained in the transesterification reaction step; A purification step for separating and recovering glycol;

【0011】[0011]

【発明の実施の形態】本発明の有効成分回収方法におい
てはポリエステルと異種の繊維、例えばナイロン、ポリ
エチレン、ポリプロピレン、綿等は有効成分と成り得な
いため、これらが多量に混入した繊維屑は受入れの段階
で排除する。即ち、近赤外分光計等の判別装置により該
繊維屑を分析し、これがポリエステルと異なる吸収パタ
ーンを示す場合においては、次工程へ輸送せずその段階
で排除する。次工程へと輸送するのは、この近赤外分析
による検査を通過した繊維屑のみを対象とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for recovering active ingredients of the present invention, fibers different from polyester, for example, nylon, polyethylene, polypropylene, cotton, etc. cannot be active ingredients. Eliminate at the stage. That is, the fiber waste is analyzed by a discriminating device such as a near-infrared spectrometer, and if the fiber waste shows an absorption pattern different from that of polyester, the fiber waste is not transported to the next step and is eliminated at that stage. Only fiber waste that has passed the inspection by the near-infrared analysis is transported to the next step.

【0012】近赤外分析による検査を通過した繊維屑
は、前処理工程後の反応工程におけるハンドリング性の
面、或いは前処理工程後の空気輸送性の面から造粒・固
形化することが望ましい。しかし連続した構造を有する
糸屑などを直接造粒機に投入することは極めて困難であ
り、まず該繊維屑を適当な大きさに粉砕することが必要
である。該粉砕物の大きさは2〜50mmが好ましい。
該粉砕径が大きいと、次の造粒工程において、固形化が
不充分となる弊害が発生する。また粉砕の実施の形態と
しては、粉砕機を2段式とするのが粉砕処理能力を向上
させる上で好ましい。即ち第1次粉砕機によって該ポリ
エステル繊維屑を30〜150mmに粗粉砕し、次いで
第2次粉砕機で2〜50mmに粉砕する。第1次粉砕機
において直接2〜50mmに該粉砕物の大きさを規定し
た場合、粉砕機にかかる負荷が過剰なものとなり、反っ
て非効率的となる。
The fiber waste that has passed the inspection by the near-infrared analysis is desirably granulated and solidified in terms of handling properties in the reaction step after the pretreatment step or pneumatic transport properties after the pretreatment step. . However, it is extremely difficult to directly feed yarn waste having a continuous structure into a granulator, and it is necessary to first pulverize the fiber waste into an appropriate size. The size of the pulverized product is preferably 2 to 50 mm.
If the crushed diameter is large, a problem that solidification becomes insufficient in the next granulation step occurs. As an embodiment of the pulverization, it is preferable to use a two-stage pulverizer in order to improve the pulverization processing capacity. That is, the polyester fiber waste is roughly pulverized to 30 to 150 mm by a primary pulverizer, and then pulverized to 2 to 50 mm by a secondary pulverizer. If the size of the pulverized material is directly specified to be 2 to 50 mm in the primary pulverizer, the load applied to the pulverizer becomes excessive, which is inefficient.

【0013】次いで該粉砕物を造粒機に投入して、該粉
砕物を円筒状固形物に固形化する。径の大きさは好まし
くは2〜20mm、より好ましくは4〜6mmである。
長さは2〜60mmとすることが好ましい。造粒方法は
大きさを規定した孔に該粉砕物を押し込み、その際に生
じるポリエステル表面の摩擦熱によって表面の一部を溶
融してこれをバインダーとして固形化する方式である
が、径が大きいと摩擦熱が微小となる影響で固形化物の
表面が充分に固化しない。
Next, the pulverized material is put into a granulator, and the pulverized material is solidified into a cylindrical solid. The size of the diameter is preferably 2 to 20 mm, more preferably 4 to 6 mm.
The length is preferably 2 to 60 mm. The granulation method is a method in which the pulverized material is pushed into a hole having a defined size, and a part of the surface is melted by frictional heat of the polyester surface generated at that time and solidified as a binder, but the diameter is large. As a result, the surface of the solidified product is not sufficiently solidified due to the influence of a small frictional heat.

【0014】このように固形化が不充分であると、その
後の空気輸送工程において該固形物が配管との衝突で崩
壊し、輸送先の貯槽においてブリッジを組みやすい構造
となり、貯槽からの排出が極めて困難となる。また、該
造粒方法においてはポリエステルのガラス転移点以上、
融点以下の温度において操作することが必要である。即
ち、造粒方法としては該繊維屑をポリエステルの融点以
上に加熱して完全に溶融させた後に冷却して固形化する
方法もあるが、該造粒方法ではナイロン等の不純物が分
解して回収モノマーの品質を悪化させてしまう。
If the solidification is insufficient as described above, in the subsequent pneumatic transportation process, the solids collapse due to the collision with the pipes, so that a bridge is easily formed in the storage tank at the destination, and the discharge from the storage tank is reduced. Extremely difficult. Further, in the granulation method, the glass transition point of the polyester or more,
It is necessary to operate at temperatures below the melting point. That is, as a granulation method, there is also a method in which the fiber waste is heated to a temperature equal to or higher than the melting point of the polyester, completely melted, and then cooled and solidified. In the granulation method, impurities such as nylon are decomposed and collected. Deterioration of monomer quality.

【0015】また、該造粒方法において固形物内部まで
完全に固化してしまうと反応工程において溶剤と造粒固
形物の接触効率の悪化に伴い反応速度が大きく低下する
という弊害も発生する。そこで本発明では、ポリエステ
ルのガラス転移点以上、融点以下の操作温度で該繊維屑
表面の一部のみを溶融させて固形化する造粒方法を採用
した。該造粒方法により不純物の分解、反応速度の低下
を抑制しつつハンドリング性を向上させることが可能と
なった。
Further, if the solidification is completely solidified in the inside of the solid in the granulation method, there is also a problem that the reaction rate is greatly reduced due to the deterioration of the contact efficiency between the solvent and the solid in the reaction step. Therefore, in the present invention, a granulation method in which only a part of the surface of the fiber waste is melted and solidified at an operating temperature equal to or higher than the glass transition point of the polyester and equal to or lower than the melting point is adopted. This granulation method has made it possible to improve the handling properties while suppressing the decomposition of impurities and the reduction of the reaction rate.

【0016】さらに造粒・固形化を施さない場合には該
粉砕物の嵩密度は約0.10g/cm3であり、この場
合後の反応工程で反応機に投入する際に非常に嵩張ると
共に、溶媒のアルキレングリコールを該粉砕物が吸湿し
て反応槽における攪拌が非常に困難となる。反応を円滑
に進める上では造粒・固形化に伴い嵩比重が増大するが
最終的な嵩密度は0.10〜1.0g/cm3、好まし
くは0.40g/cm3以上まで増大させて、ハンドリ
ング性を向上させることが必要である。以上の観点から
粉砕後の造粒・固形化は本発明において非常に重要な役
割を占める。
When granulation and solidification are not performed, the bulk density of the pulverized product is about 0.10 g / cm 3. In this case, when the pulverized product is put into a reactor in a subsequent reaction step, it becomes very bulky. In addition, the pulverized material absorbs the solvent alkylene glycol, which makes it very difficult to stir in the reaction tank. Bulk specific gravity with the granulating or solids are in terms of smoothly advancing increases but the final bulk density reaction 0.10~1.0g / cm 3, and preferably is increased to 0.40 g / cm 3 or more It is necessary to improve handling. From the above viewpoints, granulation and solidification after grinding play a very important role in the present invention.

【0017】造粒・固形化を行った後の該固形物は空気
輸送により反応工程へと輸送される。また、一連の前処
理工程は該ポリエステル屑を粉砕機へと投入することも
含めて省人化が図れ、自動で行うことが可能である。以
下、反応工程の各工程について説明する。
After the granulation and solidification, the solid is transported to the reaction step by air transport. In addition, a series of pretreatment steps can be performed automatically, including saving the manpower including feeding the polyester waste into a crusher. Hereinafter, each of the reaction steps will be described.

【0018】工程(a)においては、前処理工程を通過
したポリエステル繊維固形物を公知の解重合触媒、公知
の触媒濃度で120〜210℃の温度下、過剰のアルキ
レングリコール中で解重合反応させる。ここで、該アル
キレングリコールの温度が120℃未満であると、解重
合時間が非常に長くなり効率的ではなくなる。一方、2
00℃を越えると該繊維屑に含まれる油剤等の熱分解が
顕著になり、分解して発生した窒素化合物等が回収モノ
マーに分散して後の精製工程では分離困難となる。該温
度は好ましくは、140〜190℃である。既存のケミ
カルリサイクル技術では高温での操作を必要とするた
め、油剤の混入への対応が困難であった。
In the step (a), the polyester fiber solid which has passed through the pretreatment step is subjected to a depolymerization reaction in a known depolymerization catalyst, in an excess of alkylene glycol at a known catalyst concentration of 120 to 210 ° C. . Here, when the temperature of the alkylene glycol is lower than 120 ° C., the depolymerization time becomes extremely long, and the efficiency becomes inefficient. Meanwhile, 2
When the temperature exceeds 00 ° C., thermal decomposition of the oil agent and the like contained in the fiber waste becomes remarkable, and nitrogen compounds and the like generated by the decomposition are dispersed in the recovered monomer, making it difficult to separate in the subsequent purification step. The temperature is preferably between 140 and 190C. Existing chemical recycling technology requires operation at high temperatures, making it difficult to cope with mixing of oils.

【0019】また、本発明において扱うポリエステル繊
維屑が染料によって着色されている場合、反応工程にお
いて該染料が分解して低分子量化し回収モノマー中に分
散して品質を著しく低下させることがある。そこで、該
着色繊維屑を扱う場合には工程(a)の前に染料を抜染
する工程を組み込むことが効果的である。該工程では染
料を含む造粒固形物を水、アルキレングリコール、ジメ
チルホルムアミド、パラキシレン、2−ヘプタノン等の
溶剤中に投入し、場合によっては加圧しつつ100〜1
90℃で加熱して染料を抽出する。抜染方法としてはバ
ッチ式でも良いし、向流多段抽出法等の連続式抽出法を
採用しても良い。染料抽出後の固形化物はアルキレング
リコールにより洗浄した後に、染料を含まない繊維屑と
同様に工程(b)へと輸送する。
When the polyester fiber waste used in the present invention is colored by a dye, the dye may be decomposed in the reaction step to reduce the molecular weight, and may be dispersed in the recovered monomer to significantly lower the quality. Therefore, when handling the colored fiber waste, it is effective to incorporate a step of discharging the dye before the step (a). In this step, the granulated solid containing the dye is put into a solvent such as water, alkylene glycol, dimethylformamide, para-xylene, or 2-heptanone.
Heat at 90 ° C. to extract the dye. The discharging method may be a batch method or a continuous extraction method such as a countercurrent multistage extraction method. The solid after dye extraction is washed with alkylene glycol, and then transported to the step (b) in the same manner as fiber waste without dye.

【0020】さらに受入れの段階で排除され得なかった
ナイロンが混入した場合には、反応工程においてナイロ
ンが分解し、回収モノマー中にε−カプロラクタム等の
窒素化合物として混入して分離が困難となる。そこでナ
イロンを含む固形化物はナイロンを溶解・除去する工程
を工程(a)の前に組み込むことが効果的である。該工
程ではアルキレングリコール等の溶剤中にナイロンを含
む固形化物を投入し、100〜190に加熱してナイロ
ンを溶解・除去する。尚、この工程は前記の抜染工程に
おいて行っても良い。
Further, when nylon which cannot be eliminated at the stage of receiving is mixed, the nylon is decomposed in the reaction step and mixed as a nitrogen compound such as ε-caprolactam into the recovered monomer, which makes separation difficult. Therefore, it is effective to incorporate a step of dissolving and removing the nylon before the step (a) in the solidified material containing nylon. In this step, a solid containing nylon is put into a solvent such as alkylene glycol, and heated to 100 to 190 to dissolve and remove nylon. This step may be performed in the discharge printing step.

【0021】工程(b)では前処理工程の判別試験で排
除することができなかったポリエチレン、ポリプロピレ
ン等のポリエステルとは異繊維を解重合反応層で浮遊分
離する。該異繊維は解重合反応の溶媒であるアルキレン
グリコールよりも比重が小さく、液面上に浮上してくる
のでこれらを異繊維の共融混合浮遊物塊として層分離さ
せた後、該共融混合浮遊物層を解重合から抜出し除去す
る。
In the step (b), different fibers from the polyester such as polyethylene and polypropylene, which could not be excluded in the discrimination test in the pretreatment step, are floated and separated in the depolymerization reaction layer. Since the specific fibers have a lower specific gravity than the alkylene glycol which is a solvent for the depolymerization reaction and float on the liquid surface, they are separated into layers as a eutectic mixed floating mass of different fibers, and then the eutectic mixing is performed. The suspended matter layer is removed from the depolymerization and removed.

【0022】工程(c)では解重合反応後に、前処理工
程の判別試験で排除することができなかった綿等の異繊
維を濾過選別する。工程(c)で除去する異繊維の対象
はアルキレングリコールよりも比重が大きく、工程
(b)の除去方法では分離できない成分である。工程
(c)を通過した時点でポリエステルはビス−β−ヒド
ロキシテレフタレート(以下、BHETと略記すること
がある)に転化し、反応液はBHETとアルキレングリ
コールの混合液となっている。
In the step (c), after the depolymerization reaction, different fibers such as cotton which cannot be excluded in the discrimination test in the pretreatment step are filtered and sorted. The object of the foreign fiber to be removed in the step (c) is a component having a higher specific gravity than the alkylene glycol and cannot be separated by the removal method in the step (b). At the time of passing through the step (c), the polyester is converted into bis-β-hydroxy terephthalate (hereinafter sometimes abbreviated as BHET), and the reaction solution is a mixture of BHET and alkylene glycol.

【0023】工程(d)においては、工程(e)のエス
テル交換反応を効率的に進行させるために工程(c)を
通過したBHETとアルキレングリコールの混合物か
ら、アルキレングリコールとポリエステル繊維廃棄物と
の重量比率が原料仕込比基準で0.5〜2.0倍になる
までアルキレングリコールを留去する。この際に留去し
たアルキレングリコールは再度工程(a)にリサイクル
する。
In step (d), the mixture of BHET and alkylene glycol passed through step (c) is converted from the mixture of alkylene glycol and polyester fiber waste to allow the transesterification reaction in step (e) to proceed efficiently. The alkylene glycol is distilled off until the weight ratio becomes 0.5 to 2.0 times based on the raw material charge ratio. The alkylene glycol distilled off at this time is recycled to the step (a) again.

【0024】工程(e)においては工程(d)でアルキ
レングリコールを留去したBHETとアルキレングリコ
ールの混合物を、公知のエステル交換触媒、公知の濃度
の存在下でメタノールとエステル交換反応反応させ、遠
心分離等の固液分離手段により固液分離する。
In step (e), the mixture of BHET and alkylene glycol from which alkylene glycol has been distilled off in step (d) is subjected to a transesterification reaction with methanol in the presence of a known ester exchange catalyst and a known concentration, followed by centrifugation. Solid-liquid separation is performed by solid-liquid separation means such as separation.

【0025】工程(f)においては工程(e)で得られ
た粗製テレフタル酸ジメチル、粗製アルキレングリコー
ルを蒸留等の精製方法により精製し、高純度の精製テレ
フタル酸ジメチル、精製アルキレングリコールを得る。
この際に反応工程をも通り抜けた不純物は塔底に捕捉さ
れるため、回収モノマーには不純物は含まれず高純度の
ものが得られる。
In step (f), the crude dimethyl terephthalate and crude alkylene glycol obtained in step (e) are purified by a purification method such as distillation to obtain high-purity purified dimethyl terephthalate and purified alkylene glycol.
At this time, the impurities that have passed through the reaction step are captured at the bottom of the column, and thus the recovered monomers contain no impurities and have high purity.

【0026】[0026]

【実施例】以下、実施例により本発明の内容を更に具体
的に説明するが、本発明はこれにより何ら限定を受ける
ものではない。尚、近赤外分析計にはオプト技研社製の
分光光度計(商品名;プラスキャン)を使用した。
EXAMPLES Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Incidentally, a spectrophotometer (trade name; Plascan) manufactured by Opto Giken was used as the near-infrared analyzer.

【0027】[実施例1]ポリエステル製造工程から発
生した染料を含まないポリエステル繊維屑100kgに
ついて近赤外分析計により吸収スペクトルを測定したと
ころポリエステル樹脂と吸収パターンが一致した。該繊
維屑全量を第1次粉砕機に投入し、粉砕機のスクリーン
径を75mmに設定して1次粉砕を行い、次いで該粉砕
物を第2次粉砕機に投入して粉砕機のスクリーン径を2
0mmに設定して2次粉砕を行った。その後、該粉砕物
を径4mm、長さ45mm、造粒機内部温度170℃の
条件で運転する造粒機に投入し、固形化した後に空気輸
送により反応工程へと輸送した。尚、反応工程へと輸送
された該固形化物の嵩密度は0.40g/cm3であっ
た。
Example 1 An absorption spectrum of 100 kg of polyester fiber waste containing no dye generated from the polyester production process was measured by a near-infrared spectrometer, and the absorption pattern was consistent with that of the polyester resin. The whole amount of the fiber waste is put into a primary pulverizer, and the primary pulverization is performed by setting the screen diameter of the pulverizer to 75 mm. 2
The secondary pulverization was performed at a setting of 0 mm. Thereafter, the pulverized product was put into a granulator operated under the conditions of a diameter of 4 mm, a length of 45 mm, and an internal temperature of the granulator of 170 ° C., solidified, and then transported to the reaction step by air transport. Incidentally, the bulk density of the solid product transported to the reaction step was 0.40 g / cm 3 .

【0028】反応工程では該固形化物100kgを予め
185℃まで加熱しておいたエチレングリコール(以
下、EGと略記することがある)400kg、炭酸ナト
リウム3kgの混合物に仕込み、常圧で4h反応させ
た。
In the reaction step, 100 kg of the solidified product was charged into a mixture of 400 kg of ethylene glycol (hereinafter abbreviated as EG) and 3 kg of sodium carbonate which had been heated to 185 ° C. in advance, and reacted at normal pressure for 4 hours. .

【0029】反応終了後、BHETとEGの混合液を蒸
留塔に送液し、塔底温度140〜150℃、圧力13.
3kPaの条件でEGを300kg留去した。次いでE
Gを留去後のBHETとEGの混合物200kgに炭酸
ナトリウム3kg、メタノール200kgを添加して、
常圧、75〜80℃で1h反応させた。
After completion of the reaction, the mixture of BHET and EG is sent to the distillation column, and the temperature at the bottom of the column is 140 to 150 ° C., and the pressure is 13.
300 kg of EG was distilled off under the condition of 3 kPa. Then E
3 kg of sodium carbonate and 200 kg of methanol were added to 200 kg of a mixture of BHET and EG after G was distilled off,
The reaction was carried out at normal pressure at 75 to 80 ° C. for 1 hour.

【0030】反応終了後該反応液を40℃まで冷却し、
遠心分離により粗テレフタル酸ジメチルを主成分とする
ケークとメタノール、粗EGを主成分とする濾液とに固
液分離した。次いで粗テレフタル酸ジメチルを圧力6.
7kPa、塔底温度180〜200℃、粗EGを圧力1
3.3kPa、塔底温度140〜150℃の条件でそれ
ぞれ蒸留により精製して、最終的にテレフタル酸ジメチ
ル、エチレングリコールを収率85%で得た。回収した
テレフタル酸ジメチルは外観、酸価、溶融比色、硫酸灰
分の検査項目において市販品のものと遜色なく、また回
収したエチレングリコールはジエチレングリコール濃
度、水分、溶融比色の検査項目において市販品と遜色な
く、いずれも高純度の回収モノマーが得られた。
After completion of the reaction, the reaction solution is cooled to 40 ° C.
By centrifugation, solid-liquid separation was carried out into a cake mainly composed of crude dimethyl terephthalate and a filtrate mainly composed of methanol and crude EG. The crude dimethyl terephthalate is then pressured to 6.
7 kPa, tower bottom temperature 180-200 ° C, crude EG at pressure 1
Purification was performed by distillation under the conditions of 3.3 kPa and a tower bottom temperature of 140 to 150 ° C., and finally dimethyl terephthalate and ethylene glycol were obtained at a yield of 85%. The recovered dimethyl terephthalate is comparable to commercially available products in terms of appearance, acid value, melting color, and sulfated ash, and the recovered ethylene glycol is comparable to commercially available products in diethylene glycol concentration, water content, and melting color. In all cases, recovered monomers of high purity were obtained.

【0031】[比較例1]実施例1において、第1次粉
砕機のスクリーン径を75mmに設定して1次粉砕を行
い、2次粉砕を行わずに造粒機にかけたところ、固形化
が不充分で、次工程の空気輸送後の貯槽においてブリッ
ジを組んで排出されず、ラインが停止する異常が発生し
た。
[Comparative Example 1] In Example 1, primary grinding was performed with the screen diameter of the primary grinding machine set to 75 mm, and the mixture was subjected to a granulator without performing secondary grinding. Insufficiently, the storage tank after pneumatic transportation in the next process was not discharged in a bridge, and the line stopped.

【0032】[0032]

【発明の効果】前処理工程において、後の反応工程での
ハンドリング性を向上させ、反応工程では不純物を除去
する設備を備えることで不純物を含む繊維屑から高純度
の回収モノマーを得ることができる効率的かつ経済的な
有効成分回収方法を確立することが可能となる。
As described above, in the pretreatment step, the handleability in the subsequent reaction step is improved, and in the reaction step, equipment for removing impurities is provided, so that a high-purity recovered monomer can be obtained from fiber waste containing impurities. It is possible to establish an efficient and economical method for recovering active ingredients.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 69/82 C07C 69/82 A C08J 11/22 C08J 11/22 // B29K 67:00 B29K 67:00 C08L 67:00 C08L 67:00 (72)発明者 佐藤 和広 愛媛県松山市北吉田町77番地 帝人株式会 社松山事業所内 Fターム(参考) 4F301 AA25 AD02 BD01 BF08 BF12 BF27 CA05 CA13 CA33 CA41 CA72 4H006 AA02 AC41 AC48 AC91 FE11 FG24 KA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 69/82 C07C 69/82 A C08J 11/22 C08J 11/22 // B29K 67:00 B29K 67:00 C08L 67:00 C08L 67:00 (72) Inventor Kazuhiro Sato 77 Kitayoshida-cho, Matsuyama-shi, Ehime Pref. AC41 AC48 AC91 FE11 FG24 KA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリエステル繊維廃棄物を判別装置によ
り分析してポリエステルとは異なる繊維と判別された場
合には該繊維廃棄物を排除して次工程へ輸送せず、ポリ
エステルと判別されたものについては該繊維廃棄物を塊
状のまま粉砕機に投入して該繊維廃棄物をまず30〜1
50mmに粉砕した後、該粉砕物をさらに2〜50mm
に粉砕し、該粉砕物を造粒機により径2〜20mm、長
さ2〜60mmの円筒状固形物に固形化して嵩密度を
0.10〜1.0g/cm3とした後に、該固形物を空
気輸送により後述の反応工程へと輸送する前処理工程と
以下の(a)〜(f)の反応工程とを組み合わせること
によりポリエステル繊維廃棄物から高純度の有効成分を
回収する方法。 (a)前記前処理工程を経て得られた粗製ポリエステル
を解重合触媒を含むアルキレングリコール中に投入して
ビス−β−ヒドロキシテレフタレート(BHET)を得る
解重合反応工程; (b)前記解重合反応工程の反応中又は反応後にポリエ
ステル以外のポリエチレン、ポリスチレン、ポリプロピ
レン、ポリ塩化ビニル等の異プラスチック類を除去する
異物除去工程; (c)前記解重合反応後に未溶解の成分を濾過選別する
濾過選別工程; (d)前記濾過選別工程を経て得たBHETとアルキレ
ングリコールの混合液に蒸留・蒸発操作を施してアルキ
レングリコールを蒸留・蒸発させて濃縮BHETを得る
BHET濃縮工程; (e)前記BHET濃縮工程で得た粗製BHETと粗製
アルキレングリコールの混合液中にエステル交換触媒と
メタノールとを添加・投入してエステル交換を行うエス
テル交換反応工程; (f)前記エステル交換反応工程で得られた粗製テレフ
タル酸ジメチル及び粗製メタノール及び粗製アルキレン
グリコールの混合物から精製テレフタル酸ジメチルおよ
び精製アルキレングリコールとを分離回収する精製工
程;
1. When a polyester fiber waste is analyzed by a discriminator and discriminated as a fiber different from polyester, the fiber waste is excluded and is not transported to the next step. Puts the fiber waste in a lump into a pulverizer and first removes the fiber waste from 30 to 1
After pulverizing to 50 mm, the pulverized product is further 2 to 50 mm
After the pulverized material is solidified into a cylindrical solid having a diameter of 2 to 20 mm and a length of 2 to 60 mm by a granulator to a bulk density of 0.10 to 1.0 g / cm 3 , A method for recovering a high-purity active ingredient from polyester fiber waste by combining a pretreatment step of transporting a substance to a reaction step described below by pneumatic transportation and the following reaction steps (a) to (f). (A) a depolymerization reaction step in which the crude polyester obtained through the pretreatment step is introduced into an alkylene glycol containing a depolymerization catalyst to obtain bis-β-hydroxyterephthalate (BHET); (b) the depolymerization reaction A foreign matter removing step of removing different plastics such as polyethylene, polystyrene, polypropylene, polyvinyl chloride and the like other than polyester during or after the reaction of the step; (c) a filtration separation step of filtering and separating undissolved components after the depolymerization reaction (D) a BHET concentration step of subjecting a mixture of BHET and alkylene glycol obtained through the filtration and sorting step to distillation and evaporation to distill and evaporate the alkylene glycol to obtain concentrated BHET; (e) the BHET concentration step In a mixture of the crude BHET and the crude alkylene glycol obtained in (F) purified dimethyl terephthalate and purified alkylene glycol from a mixture of crude dimethyl terephthalate and crude methanol and crude alkylene glycol obtained in the transesterification reaction step; A purification step of separating and recovering glycol;
【請求項2】 ポリエステルがポリエチレンテレフタレ
ートである請求項1記載の有効成分回収方法。
2. The method according to claim 1, wherein the polyester is polyethylene terephthalate.
【請求項3】 前記判別装置に近赤外分析計を使用する
請求項1記載の有効成分回収方法。
3. The method according to claim 1, wherein a near-infrared spectrometer is used for the discriminating device.
【請求項4】 前記前処理工程における造粒方法におい
て、ポリエステルのガラス転移点以上、融点以下の温度
範囲で操作し、ポリエステルの一部を溶融させる造粒方
法を用いる請求項1記載の有効成分回収方法。
4. The active ingredient according to claim 1, wherein in the granulation method in the pretreatment step, a granulation method in which a part of the polyester is melted by operating in a temperature range from the glass transition point to the melting point of the polyester. Collection method.
【請求項5】 前記前処理工程において自動搬送装置を
採用して省人化することを特徴とする請求項1記載の有
効成分回収方法。
5. The method of claim 1, wherein the pretreatment step employs an automatic transfer device to save labor.
【請求項6】 前記前処理工程で得られた粗製ポリエス
テル固形物に染料が含有されている場合、該固形物を1
00〜190℃において溶剤中に投入し、染料を抽出す
る抜染工程を経て反応工程に進む請求項1記載の有効成
分回収方法。
6. When a dye is contained in the crude polyester solid obtained in the pretreatment step, the solid
2. The method for recovering an active ingredient according to claim 1, wherein the method is carried out at a temperature of 00 to 190 [deg.] C. into a solvent and the process proceeds to a reaction process via a discharge process for extracting a dye.
【請求項7】 前記前処理工程で得られた粗製ポリエス
テル固形物にナイロンが含有されている場合、該固形物
を100〜190℃において溶剤中に投入してナイロン
を溶解させて除去した後に反応工程に進む請求項1記載
の有効成分回収方法。
7. If the crude polyester solid obtained in the pretreatment step contains nylon, the solid is put into a solvent at 100 to 190 ° C. to dissolve and remove the nylon, and then react. The method for recovering an active ingredient according to claim 1, wherein the method proceeds to a step.
JP2000362784A 2000-11-27 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste Expired - Lifetime JP4065658B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000362784A JP4065658B2 (en) 2000-11-29 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste
TW90128842A TW528773B (en) 2000-11-27 2001-11-21 Dimethyl terephthalate composition and process for producing the same
AU2002224082A AU2002224082B2 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
MXPA03004661A MXPA03004661A (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same.
AU2408202A AU2408202A (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
PCT/JP2001/010241 WO2002042253A1 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
EP01997193.6A EP1344765B1 (en) 2000-11-27 2001-11-22 Process for producing a dimethyl terephthalate composition
CNB018212786A CN1234676C (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and its producing method
US10/432,822 US7078440B2 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
KR1020037006969A KR100746678B1 (en) 2000-11-27 2001-11-22 Dimethyl terephthalate composition and process for producing the same
HK04104846A HK1061840A1 (en) 2000-11-27 2004-07-06 Dimethyl terephthalate composition and process forproducing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362784A JP4065658B2 (en) 2000-11-29 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste

Publications (3)

Publication Number Publication Date
JP2002167341A true JP2002167341A (en) 2002-06-11
JP2002167341A5 JP2002167341A5 (en) 2004-11-04
JP4065658B2 JP4065658B2 (en) 2008-03-26

Family

ID=18833998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362784A Expired - Lifetime JP4065658B2 (en) 2000-11-27 2000-11-29 Method for recovering active ingredients from polyethylene terephthalate fiber waste

Country Status (1)

Country Link
JP (1) JP4065658B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045874A (en) * 2005-08-08 2007-02-22 Teijin Fibers Ltd Method for recovering effective component from dyed polyester fiber
JP2010090184A (en) * 2008-10-03 2010-04-22 Teijin Fibers Ltd Method for removing dye from dyed polyalkylene terephthalate fiber
JP2010174216A (en) * 2009-02-02 2010-08-12 Teijin Fibers Ltd Method for removing foreign material from poly(alkylene terephthalate) fiber
JP5186479B2 (en) * 2007-02-23 2013-04-17 帝人株式会社 Method for separating and removing dissimilar materials from polyester fiber waste
CN115181358A (en) * 2022-06-30 2022-10-14 重庆长安汽车股份有限公司 Waste polyester-cotton fabric modified and reinforced polypropylene composite material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786733B2 (en) 2002-10-15 2004-09-07 Overseas Diamonds Inc. Computer-implemented method of and system for teaching an untrained observer to evaluate a gemstone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045874A (en) * 2005-08-08 2007-02-22 Teijin Fibers Ltd Method for recovering effective component from dyed polyester fiber
JP4537288B2 (en) * 2005-08-08 2010-09-01 帝人ファイバー株式会社 Method for recovering active ingredients from dyed polyester fiber
JP5186479B2 (en) * 2007-02-23 2013-04-17 帝人株式会社 Method for separating and removing dissimilar materials from polyester fiber waste
JP2010090184A (en) * 2008-10-03 2010-04-22 Teijin Fibers Ltd Method for removing dye from dyed polyalkylene terephthalate fiber
JP2010174216A (en) * 2009-02-02 2010-08-12 Teijin Fibers Ltd Method for removing foreign material from poly(alkylene terephthalate) fiber
CN115181358A (en) * 2022-06-30 2022-10-14 重庆长安汽车股份有限公司 Waste polyester-cotton fabric modified and reinforced polypropylene composite material and preparation method thereof
CN115181358B (en) * 2022-06-30 2023-05-16 重庆长安汽车股份有限公司 Waste polyester cotton fabric modified reinforced polypropylene composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4065658B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
TWI389941B (en) Self-dyed polyester fiber for recycling useful ingredients
US6706843B1 (en) Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste
JP4537288B2 (en) Method for recovering active ingredients from dyed polyester fiber
AU777435B2 (en) Process for preparing food contact grade polyethylene terephthalate resin from waste pet containers
JP3510885B2 (en) Method for regenerating polyethylene terephthalate from used PET resources
JP2000053802A (en) Process for recycling pet bottle
JP4212799B2 (en) Method for recovering terephthalic acid from polyester fiber waste
JP4065659B2 (en) Method for recovering active ingredients from polyethylene terephthalate waste
JP4065658B2 (en) Method for recovering active ingredients from polyethylene terephthalate fiber waste
US5504121A (en) Polyethylene terephthalate decontamination
CN115803377A (en) Method for producing bis- (2-hydroxyethyl) terephthalate and method for producing recycled polyethylene terephthalate
JP2004300115A (en) Method for recovering valuable component from waste polyester
JP4108267B2 (en) Active ingredient recovery method from polyethylene terephthalate film waste
JP2009173554A (en) Method for recovering dimethyl terephthalate having improved hue from pet bottle waste
US5602187A (en) Polyethylene terephthalate decontamination
JP2001160243A (en) Method for treating waste optical recording medium
JP4065657B2 (en) Method for recovering active ingredients from polyethylene terephthalate resin waste
JP2001192492A (en) Method for producing refined thermoplastic polyester
JP2009120766A (en) Method for recovering dimethyl terephthalate and ethylene glycol
US20230416183A1 (en) A process for recycling of polyethylene terephthalate (pet) waste
JP2002020535A (en) Method for treating halogen-containing plastic and treating apparatus using the same
JP2004284022A (en) Method for crushing polyester waste
JP2003128600A (en) Method for producing terephthalic acid from waste bottle
JP2012116912A (en) Method for producing polyester monomer from polyester
CZ2005173A3 (en) Reprocessing method of waste polyethyleneterephthalate by thermal decomposition thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4065658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term