JP2004300115A - Method for recovering valuable component from waste polyester - Google Patents

Method for recovering valuable component from waste polyester Download PDF

Info

Publication number
JP2004300115A
JP2004300115A JP2003098104A JP2003098104A JP2004300115A JP 2004300115 A JP2004300115 A JP 2004300115A JP 2003098104 A JP2003098104 A JP 2003098104A JP 2003098104 A JP2003098104 A JP 2003098104A JP 2004300115 A JP2004300115 A JP 2004300115A
Authority
JP
Japan
Prior art keywords
granulator
polyester
alkylene glycol
crude
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003098104A
Other languages
Japanese (ja)
Inventor
Masakazu Miyamoto
正教 宮本
Hiroshi Horiuchi
裕志 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2003098104A priority Critical patent/JP2004300115A/en
Publication of JP2004300115A publication Critical patent/JP2004300115A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To establish a method for stably recovering a pure valuable component from waste polyesters of various forms without causing process troubles. <P>SOLUTION: Recovered monomers having high purity can be produced in high efficiency by crushing waste polyesters to give crushed products having different bulk density (apparent density), supplying the crushed product to a granulator while controlling the supplying rate to keep the operation load within a prescribed range and supplying the produced granules to a chemical recycling process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、種々の形態のポリエステル廃棄物を破砕した後、工程トラブルを起こすことなく安定して造粒物を形成し、さらに該造粒物に化学的な反応処理を加え、有効成分としての高純度のビスヒドロキシルテレフタレートあるいはテレフタル酸成分とアルキレングリコールとを回収する方法に関する。
【0002】
【従来の技術】
ポリエステル、例えばポリエチレンテレフタレートはその優れた特性により繊維、フィルム、樹脂等として広く用いられているが、これらの製造工程において発生する繊維状、フィルム状、樹脂状等のポリエステル屑の有効利用はコストの面からのみならず環境問題も含め大きな問題となっており、その処理方法としてマテリアルリサイクル、サーマルリサイクル、ケミカルリサイクルによる各種の提案が成されている。
【0003】
このうちマテリアルリサイクルではペットボトル等のポリエステル樹脂屑に関しては、自治体を中心に回収され積極的な再利用が実施されているが、繊維屑に関しては機能性付与のため種々の添加剤等が混入していることから該リサイクル方法を採ることが極めて困難である。
【0004】
また、ポリエステル廃棄物を燃料に転化するサーマルリサイクルは、ポリエステル廃棄物の燃焼熱の再利用という利点は有するが、発熱量が比較的低く多量のポリエステル廃棄物を燃焼させることに他ならないためポリエステル原料損失という問題点があり、省資源の面から好ましくない。
【0005】
これに対してケミカルリサイクルではポリエステル廃棄物を原料モノマーに再生するため、再生に伴う品質の低下が少なくクローズドループのリサイクルとして適している。該ケミカルリサイクルにおいては樹脂屑、フィルム屑を対象としたものが大部分である。
【0006】
ポリエステル繊維屑の再生利用法としては、ポリエステル屑を過剰のエチレングリコール(以下、EGと略記することがある。)により解重合した後、得られたビス−β−ヒドロキシエチルテレフタレート(以下、BHETと略記することがある。)を直接重縮合して再生ポリエステルを得る方法等が提案されている(例えば特許文献1参照。)が、この方法は解重合工程においてポリエステル屑とEGとを解重合反応系に一括投入して解重合しているため、投入したポリエステル屑が反応機内部で固化し、撹拌ができなくなる。
【0007】
そのため、解重合反応系が不均一となり解重合時間が長くなること、また使用するEGの量が多いため経済的に不利になるばかりでなく反応物にはジエチレングリコール等の不純物が副生し、その結果得られるポリエステルの物理的性質、特に軟化点を著しく低下させ、品位の低いポリエステルしか得られない等の欠点があった。このような従来の技術においてはポリエステル繊維屑を効率的に処理する技術は完成されていない。
【0008】
また、ポリエステル製造工程外の繊維を回収対象とした場合、ポリエチレン(以下、PEと略記することがある。)、ポリプロピレン(以下、PPと略記することがある、)、ナイロン(以下、Nyと略記することがある。)、綿等のポリエステルとは異繊維類の混入が避けられない場合がある。さらに材質がポリエステルであっても染料を含むものについては解重合等の一連の反応中に分解して、回収モノマーに分散し品質を著しく悪化させる。
【0009】
そこで本発明者らは先に、ポリエステル繊維廃棄物を破砕、造粒した後にテレフタル酸ジメチル(以下、DMTと略記することがある。)及びEGを分離回収する方法を提案した(特許文献2参照)。該方法は、異物成分を含むポリエステル廃棄物を破砕、造粒した後にアルキレングリコールにより解重合し、次いでメタノールでエステル交換反応することでDMTとEGとを回収するものである。しかしながら、例えば太さの異なる繊維屑等が混在すると破砕物の嵩比重(見掛け比重)が常に変化し、造粒において造粒機内で溶融が過度に進行し、モーターの過負荷停止が生じるなどの工程トラブルを生じる懸念があった。
【0010】
【特許文献1】
特開昭48−61447号公報(特許請求の範囲)
【0011】
【特許文献2】
特開2002−167341号公報(特許請求の範囲)
【0012】
【発明が解決しようとする課題】
本発明の目的は、従来技術が有していた問題点を解決し、種々の形態のポリエステル廃棄物から工程トラブルを生じることなく安定して高純度の有効成分回収する方法を確立することにある。
【0013】
【課題を解決するための手段】
本発明者らは鋭意検討を行った結果、本発明を完成するに至った。
【0014】
すなわち、本発明の目的は、
ポリエステル廃棄物を塊状のまま粉砕機に投入して該廃棄物をまず30〜150mmに粉砕した後、該粉砕物をさらに2〜30mmに粉砕し、該粉砕物を造粒機に連続的に投入し、径2〜10mm、長さ10〜60mmの円筒状固形物に固形化して嵩密度を0.20〜1.2g/cmとした後に、該固形物を空気輸送により後述の反応工程へと輸送する前処理工程と以下の(a)〜(f)の反応工程を組み合わせるにあたり、該造粒機の運転負荷が所定範囲内にあるように、該粉砕物の単位時間当たりの投入量を制御しつつ、造粒機の温度が所定範囲内にあるように造粒物の冷却を行うことを特徴とするポリエステル廃棄物から高純度の有効成分を回収する方法によって達成することができる。
(a)前記前処理工程を経て得られた粗製ポリエステルを、解重合触媒を含むアルキレングリコール中に投入してビス−β−ヒドロキシアルキルテレフタレート(BHAT)を得る解重合反応工程。
(b)前記解重合反応工程の反応中又は反応後にポリエステル以外のポリエチレン、ポリスチレン、ポリプロピレン、ポリ塩化ビニル等の異プラスチック類を除去する異物除去工程。
(c)前記解重合反応後に未溶解の成分を濾過選別する濾過選別工程。
(d)前記濾過選別工程を経て得たBHATとアルキレングリコールの混合液に蒸留・蒸発操作を施してアルキレングリコールを蒸留・蒸発させて濃縮BHATを得るBHAT濃縮工程。
(e)前記BHAT濃縮工程で得た粗製BHATと粗製アルキレングリコールの混合液中にエステル交換触媒とメタノールとを添加・投入してエステル交換を行うエステル交換反応工程。
(f)前記エステル交換反応工程で得られた粗製テレフタル酸ジメチル及び粗製メタノール及び粗製アルキレングリコールの混合物から精製テレフタル酸ジメチルおよび精製アルキレングリコールとを分離回収する精製工程。
【0015】
【発明の実施の形態】
以下、本発明の方法について詳細に説明する。
本発明の有効成分回収方法においては、ポリエステル廃棄物のハンドリングの面から該廃棄物を適当な大きさに粉砕することが必要である。該粉砕物の大きさは2〜30mmが好ましい。該粉砕径が大きいと、次の造粒工程において、固形化が不充分となる弊害が発生する。また粉砕の実施の形態としては、粉砕機を2段式とするのが粉砕処理能力を向上させる上で好ましい。即ち第1次粉砕機によって該ポリエステル繊維屑を30〜50mmに粗粉砕し、次いで第2次粉砕機で2〜30mmに粉砕する。第1次粉砕機において直接2〜30mmに該粉砕物の大きさを規定した場合、粉砕機に掛かる付加が過剰なものとなり、かえって非効率的となる。
【0016】
次いで該粉砕物を造粒機に投入して、該粉砕物を円筒状造粒物に固形化するが、以下、図面を以って説明する。
【0017】
ポリエステル廃棄物の破砕物1は破砕物ホッパ12、フィーダー13を通して造粒機本体内に連続的に供給される。フィーダー13の回転速度はインバーター15又は変速機構を有する装置(図示せず。)にて、モーター14を介して可変速駆動される。このようにして造粒機内に供給された破砕物1は、造粒機内で規定した孔径を有する回転ダイス3の内周面とローラー4の外周面との間で破砕物1が圧縮され、該圧縮によって生じる摩擦熱によって破砕物表面の一部が半溶融されつつ圧縮固形化され、カッター5により粒状に切断された後、排出側シュート16を通して下流側に送られる。ここで、回転ダイス3は多数の造粒物押し出し用貫通孔2を有する円筒状のものであって、該回転ダイス3内には、本実施態様では一対のローラー4が設けられており、ローラー4は回転ダイス3の内表面上を所定のクリアランスを持って転動できるようになっている。この回転ダイス3の内表面とローラー4との間で供給した破砕物1が圧縮され、圧縮された破砕物1が順次造粒物押し出し用貫通孔2から押し出されカッター5で所定長の造粒物6に切断される。
【0018】
上記孔径が大きいと摩擦熱が微小となるため固形化物の表面が充分に固化しない。このように固形化が不充分であると、その後の空気輸送工程において該固形物が配管との衝突で崩壊し、輸送先の貯槽においてブリッジを組みやすい構造となり、貯槽からの排出が極めて困難となる。孔径の大きさは好ましくは2〜10mm、より好ましくは4〜6mmである。長さは10〜60mmとすることが好ましい。
【0019】
また、造粒機には温度センサー7が設けられ、造粒物6の温度を正確に測定するよう設定されている。該造粒方法においてはポリエステルのガラス転移点以上、融点未満の温度において操作することが必要である。即ち、造粒方法としては該繊維屑をポリエステルの融点以上に加熱して完全に溶融させた後に冷却して固形化する方法もあるが、該造粒方法ではNy等の不純物が分解して回収モノマーの品質を悪化させてしまう。また、該造粒方法において固形物内部まで完全に固化してしまうと反応工程において溶剤と造粒固形物との接触効率の悪化に伴い反応速度が大きく低下するという弊害も発生する。本発明では、ポリエステルのガラス転移点以上、融点未満の操作温度で該繊維屑表面の一部のみを溶融させて固形化することが必要である。該造粒方法により不純物の分解、反応速度の低下を抑制しつつハンドリング性を向上させることができる。
【0020】
一方、制御装置11は、造粒機モーターの電流値または電力量を記録する記録計10からの信号が入力され、その検出値が所定値となるようにフィーダー13の回転速度をインバーター15または適当な変速機構を有する装置(図示せず。)にて可変速駆動するように制御する。また、温度センサー7の検出値はフィーダー13の制御装置11に入力され、破砕物の物性により定められた所定温度に達するまでは温度の上昇を許容し、所定温度を越えた時点でバルブ8を制御して散水ノズル9からの散水を開始し、温度センサー7の検出値に基づいてバルブ8を制御して散水を停止する。
【0021】
上記制御により、破砕物1は融解が発生し始める温度にまで到達することなく、最適な状態で造粒されるので、マシントラブルの発生を防止すると共に、不必要な停止を回避して生産効率を最大限に高めることができる。
【0022】
造粒処理を施す前の該粉砕物の嵩密度は約0.05g/cm程度であり、このままの状態で反応機に投入すると非常に嵩張ると共に、溶媒のアルキレングリコールを該粉砕物が吸湿して反応槽における撹拌が非常に困難となる。
【0023】
この反応を円滑に進める上では造粒・固形化に伴って嵩密度を増大させる必要があり、最終的な嵩密度は0.20〜1.20g/cm、好ましくは0.40〜1.20g/cmまで増大させて、ハンドリング性を向上させることが必要である。
【0024】
造粒を行った後の該造粒物は空気輸送により反応工程へと輸送される。以下、反応工程の各工程について説明する。
【0025】
工程(a)においては、前処理工程を通過したポリエステル繊維固形物を公知の解重合触媒、公知の触媒濃度で120〜210℃の温度下、過剰のアルキレングリコール中で解重合反応させる。ここで、該アルキレングリコールの温度が120℃未満であると、解重合時間が非常に長くなり効率的ではなくなる。一方、200℃を越えると該繊維屑に含まれる油剤等の熱分解が顕著になり、分解して発生した窒素化合物等が回収モノマーに分散して後の精製工程では分離困難となる。該温度は好ましくは、140〜190℃である。
【0026】
また、本発明において扱うポリエステル繊維屑が染料によって着色されている場合、反応工程において該染料が分解して低分子量化し回収モノマー中に分散して品質を著しく低下させることがある。そこで、該着色繊維屑を扱う場合には工程(a)の前に染料を抜染する工程を組み込むことが効果的である。該工程では染料を含む造粒固形物を水、アルキレングリコール、ジメチルホルムアミド、パラキシレン、2−ヘプタノン等の溶剤中に投入し、場合によっては加圧しつつ100〜190℃で加熱して染料を抽出する。抜染方法としてはバッチ式でも良いし、向流多段抽出法等の連続式抽出法を採用しても良い。染料抽出後の固形化物はアルキレングリコールにより洗浄した後に、染料を含まない繊維屑と同様に工程(a)へと輸送する。
【0027】
さらにポリエステル廃棄物にNyが混入した場合には、反応工程においてNyが分解し、回収モノマー中にε−カプロラクタム等の窒素化合物として混入して分離が困難となる。そこでNyを含む固形化物はNyを溶解・除去する工程を工程(a)の前に組み込むことが効果的である。該工程ではアルキレングリコール等の溶剤中にNyを含む固形化物を投入し、100〜190℃に加熱してNyを溶解・除去する。尚、この工程は前記の抜染工程において行っても良い。
【0028】
工程(b)ではPE、PP等のポリエステルとは異繊維を解重合反応層で浮遊分離する。該異繊維は解重合反応の溶媒であるアルキレングリコールよりも比重が小さく、液面上に浮上してくるのでこれらを異繊維の共融混合浮遊物塊として層分離させた後、該共融混合浮遊物層を解重合から抜き出し除去する。
【0029】
工程(c)では解重合反応後に、綿等の異繊維を濾過選別する。工程(c)で除去する異繊維の対象はアルキレングリコールよりも比重が大きく、工程(b)の除去方法では分離できない成分である。工程(c)を通過した時点でポリエステルはビス−β−ヒドロキシアルキルテレフタレート(以下、BHATと略記することがある。)に転化し反応液はBHATとアルキレングリコールの混合液となっている。
【0030】
工程(d)においては、工程(e)のエステル交換反応を効率的に進行させるために工程(c)を通過したBHATとアルキレングリコールの混合物から、アルキレングリコールとポリエステル繊維廃棄物との重量比率が原料仕込み比基準で0.5〜2.0倍になるまでアルキレングリコールを留去する。この際に留去したアルキレングリコールは再度工程(a)にリサイクルする。
【0031】
工程(e)においては工程(d)でアルキレングリコールを留去したBHATとアルキレングリコールの混合物を、公知のエステル交換触媒、公知の濃度の存在下でメタノールとエステル交換反応反応させ、遠心分離等の固液分離手段により固液分離する。
【0032】
工程(f)においては工程(e)で得られた粗製DMT、粗製アルキレングリコールを蒸留等の精製方法により精製し、高純度の精製DMT、精製アルキレングリコールを得る。この際に反応工程をも通り抜けた不純物は塔底に捕捉されるため、回収モノマーには不純物は含まれず高純度のものが得られる。
【0033】
【実施例】
以下、実施例により本発明の内容をさらに具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。
【0034】
[実施例1]
ポリエステル製造工程から発生した染料を含まない種々の太さが混在したポリエチレンテレフタレート繊維屑600kgについて該繊維屑全量を第1次粉砕機に投入し、粉砕機のスクリーン径を75mmに設定して1次粉砕を行い、次いで該粉砕物を第2次粉砕機に投入して粉砕機のスクリーン径を20mmに設定して2次粉砕を行った。その後、該粉砕物を造粒物押し出し用貫通孔の径4mmのダイスで、造粒物のカット長45mmとなるような条件で運転する造粒機に投入した。この時造粒機を駆動するモーターの電流値を130Aに設定し、この電流値が一定となるよう造粒機への供給コンベアの回転速度を調整し、且つ造粒物の温度が130℃となるよう注水量を調整する制御システムを採用した。運転の間造粒機にフィードされるポリエステル破砕物の嵩比重は0.02g/cm〜0.06g/cmの間で変動が確認されたが、この嵩比重の変化に追従して回転速度が変化し、トラブルを生じることなく造粒物が得られた。得られた造粒物の平均嵩密度は0.45g/cmであった。
【0035】
反応工程では該固形化物500kgを予め185℃まで加熱しておいたEG700kg、炭酸ナトリウム3kgの混合物に仕込み、常圧で4時間反応させた。
【0036】
反応終了後、BHETとEGとの混合液を蒸留塔に送液し、塔底温度140〜150℃、圧力13.3kPaの条件でEGを200kg留去した。次いでEGを留去後のBHETとEGとの混合物200kgに炭酸ナトリウム3kg、メタノール200kgを添加して、常圧、75〜80℃で1時間反応させた。
【0037】
反応終了後、該反応液を40℃まで冷却し、遠心分離により粗DMTを主成分とするケークとメタノール、粗EGを主成分とする濾液とに固液分離した。次いで粗DMTを圧力6.7kPa、塔底温度180〜200℃、粗EGを圧力13.3kPa、塔底温度140〜150℃の条件でそれぞれ蒸留により精製して、最終的にDMT、EGを収率85%で得た。回収したDMTは外観、酸価、溶融比色、硫酸灰分の検査項目において市販品のものと遜色なく、また回収したEGはジエチレングリコール濃度、水分、溶融比色の検査項目において市販品と遜色なく、いずれも高純度の回収モノマーが得られた。
【0038】
[実施例2]
市中から回収した染料を含むポリエチレンテレフタレート製ユニフォーム600kgについて該ユニフォーム全量を第1次粉砕機に投入し、粉砕機のスクリーン径を75mmに設定して1次粉砕を行い、次いで該粉砕物を第2次粉砕機に投入して粉砕機のスクリーン径を20mmに設定して2次粉砕を行った。その後、該粉砕物を、造粒物押し出し用貫通孔の径4mmのダイスで、造粒物のカット長45mm、造粒機内部温度130℃の条件で運転する造粒機に投入した。この時造粒機を駆動するモーターの電流値を130Aに設定し、この電流値が一定となるよう造粒機への供給コンベアの回転速度を調整する制御システムにおいて造粒機を運転した。運転の間造粒機にフィードされるポリエステル破砕物の嵩比重は0.03g/cm〜0.08g/cmの間で変動が確認されたが、この嵩比重の変化に追従して回転速度が変化し、トラブルを生じることなく造粒物が得られた。得られた造粒物の平均嵩密度は0.50g/cmであった。
【0039】
該造粒物500kgを予め130℃まで加熱しておいたパラキシレン4000kgを含む反応器に仕込み、常圧で30分加熱撹拌し、該造粒物に含まれる染料を抽出した。その後、プレッシャーフィルターで固液分離を行い、染料の抽出された造粒物と染料を含むパラキシレンとに固液分離した。染料が抽出された造粒物に残留したパラキシレンを乾燥させることによって造粒物から除去した後に、予め185℃まで加熱しておいたEG700kg、炭酸ナトリウム3kgを反応機に仕込み、常圧で4時間反応させた。
【0040】
反応終了後、BHETとEGとの混合液を蒸留塔に送液し、塔底温度140〜150℃、圧力13.3kPaの条件でEGを200kg留去した。次いでEGを留去後のBHETとEGの混合物200kgに炭酸ナトリウム3kg、メタノール200kgを添加して、常圧、75〜80℃で1時間反応させた。
【0041】
反応終了後該反応液を40℃まで冷却し、遠心分離により粗DMTを主成分とするケークとメタノール、粗EGを主成分とする濾液とに固液分離した。次いで粗DMTを圧力6.7kPa、塔底温度180〜200℃、粗EGを圧力13.3kPa、塔底温度140〜150℃の条件でそれぞれ蒸留により精製して、最終的にDMT、EGを収率85%で得た。回収したDMTは外観、酸価、溶融比色、硫酸灰分の検査項目において市販品のものと遜色なく、また回収したEGはジエチレングリコール濃度、水分、溶融比色の検査項目において市販品と遜色なく、いずれも高純度の回収モノマーが得られた。
【0042】
[比較例]
実施例1と同様のポリエステル繊維屑600kgについて該繊維屑全量を第1次粉砕機に投入し、粉砕機のスクリーン径を75mmに設定して1次粉砕を行い、次いで該粉砕物を第2次粉砕機に投入して粉砕機のスクリーン径を20mmに設定して2次粉砕を行った。その後、該粉砕物を造粒物押し出し用貫通孔の径4mmのダイスで、造粒物のカット長45mm、造粒機内部温度130℃の条件で運転する造粒機に投入した。この時造粒機を駆動するモーターの電流値について当初は130Aとしたが、その後は特に制御を行わなかった。運転の間造粒機にフィードされるポリエステル破砕物の嵩比重は0.02g/cm〜0.06g/cmの間で変動が確認されたが、温度の制御が原料の嵩比重の変化に追従できなくなり、運転中温度が160℃に達し、結果として造粒機内部で造粒機へ供給する破砕物がもち状に溶融してモーターが停止するトラブルが発生した。
【図面の簡単な説明】
【図1】本発明の造粒方法を実施するための装置を模式的に示した概略図である。
【符号の説明】
1 破砕物
2 造粒物押し出し用貫通孔
3 回転ダイス
4 ローラー
5 カッター
6 造粒物
7 温度センサー
8 バルブ
9 散水ノズル
10 記録計
11 制御装置
12 破砕物ホッパ
13 フィーダー
14 モーター
15 インバーター
16 排出側シュート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention, after crushing polyester waste of various forms, forms granules stably without causing process troubles, further performs a chemical reaction treatment on the granules, and as an active ingredient The present invention relates to a method for recovering high purity bishydroxyl terephthalate or terephthalic acid component and alkylene glycol.
[0002]
[Prior art]
Polyester, for example, polyethylene terephthalate, is widely used as a fiber, film, resin, etc. due to its excellent properties. It has become a major problem not only from the aspect but also environmental issues, and various proposals have been made as a method of treating it by material recycling, thermal recycling, and chemical recycling.
[0003]
In material recycling, polyester resin waste such as PET bottles is collected mainly by local governments and actively recycled, but fiber waste is mixed with various additives to impart functionality. Therefore, it is extremely difficult to adopt the recycling method.
[0004]
In addition, thermal recycling, which converts polyester waste to fuel, has the advantage of reusing the combustion heat of polyester waste, but it has a relatively low calorific value and burns a large amount of polyester waste. There is a problem of loss, which is not preferable in terms of resource saving.
[0005]
On the other hand, in chemical recycling, since polyester waste is regenerated into raw material monomers, there is little deterioration in quality due to regeneration, and it is suitable for closed-loop recycling. In the chemical recycling, resin waste and film waste are mostly used.
[0006]
As a method of recycling polyester fiber waste, after depolymerizing polyester waste with an excess of ethylene glycol (hereinafter sometimes abbreviated as EG), the obtained bis-β-hydroxyethyl terephthalate (hereinafter referred to as BHET) is used. Is abbreviated to obtain a regenerated polyester by direct polycondensation (for example, see Patent Document 1). However, this method involves a depolymerization reaction between polyester waste and EG in a depolymerization step. Since the depolymerization is performed by batch charging into the system, the charged polyester waste is solidified inside the reactor and cannot be stirred.
[0007]
Therefore, the depolymerization reaction system becomes non-uniform and the depolymerization time is prolonged.Moreover, the amount of EG used is not only economically disadvantageous, but also impurities such as diethylene glycol are produced as by-products in the reaction product. There were drawbacks in that the physical properties of the resulting polyester, particularly the softening point, were remarkably reduced, and only low-grade polyesters could be obtained. In such conventional techniques, a technique for efficiently treating polyester fiber waste has not been completed.
[0008]
When fibers outside the polyester production process are to be collected, polyethylene (hereinafter may be abbreviated as PE), polypropylene (hereinafter may be abbreviated as PP), nylon (hereinafter abbreviated as Ny). In some cases, mixing of fibers different from polyester such as cotton may be unavoidable. Further, even if the material is polyester, those containing a dye are decomposed during a series of reactions such as depolymerization, and are dispersed in the recovered monomer to significantly deteriorate the quality.
[0009]
Therefore, the present inventors have previously proposed a method of crushing and granulating polyester fiber waste and separating and recovering dimethyl terephthalate (hereinafter sometimes abbreviated as DMT) and EG (see Patent Document 2). ). In this method, DMT and EG are recovered by crushing and granulating a polyester waste containing a foreign substance component, depolymerizing with an alkylene glycol, and then performing a transesterification reaction with methanol. However, for example, when fiber wastes having different thicknesses are mixed, the bulk specific gravity (apparent specific gravity) of the crushed material constantly changes, and in the granulation, the melting proceeds excessively in the granulator, causing the motor to stop overloading. There was a concern that a process trouble might occur.
[0010]
[Patent Document 1]
JP-A-48-61447 (claims)
[0011]
[Patent Document 2]
JP-A-2002-167341 (Claims)
[0012]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the prior art and to establish a method for stably recovering a high-purity active ingredient from various forms of polyester waste without causing any process trouble. .
[0013]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have completed the present invention.
[0014]
That is, the purpose of the present invention is to
The polyester waste is put into a crusher as a lump and the waste is first crushed to 30 to 150 mm, and then the crushed product is further crushed to 2 to 30 mm, and the crushed product is continuously put into a granulator. After solidifying into a cylindrical solid having a diameter of 2 to 10 mm and a length of 10 to 60 mm to a bulk density of 0.20 to 1.2 g / cm 3 , the solid is pneumatically transported to a reaction step described below. In combining the pretreatment step of transporting and the following reaction steps (a) to (f), the input amount of the pulverized material per unit time is adjusted so that the operating load of the granulator is within a predetermined range. The method can be achieved by a method for recovering a high-purity active ingredient from polyester waste, characterized in that the granulated material is cooled while controlling the temperature of the granulator within a predetermined range.
(A) A depolymerization reaction step in which the crude polyester obtained through the pretreatment step is introduced into an alkylene glycol containing a depolymerization catalyst to obtain bis-β-hydroxyalkyl terephthalate (BHAT).
(B) A foreign matter removing step of removing foreign plastics other than polyester, such as polyethylene, polystyrene, polypropylene, and polyvinyl chloride, during or after the depolymerization reaction step.
(C) a filtration separation step of filtering and separating undissolved components after the depolymerization reaction.
(D) a BHAT concentration step of subjecting the mixture of BHAT and alkylene glycol obtained through the above-mentioned filtration and separation step to distillation and evaporation to distill and evaporate the alkylene glycol to obtain a concentrated BHAT.
(E) A transesterification reaction step in which a transesterification catalyst and methanol are added and charged into a mixture of the crude BHAT and the crude alkylene glycol obtained in the BHAT concentration step to carry out transesterification.
(F) a purification step of separating and recovering purified dimethyl terephthalate and purified alkylene glycol from a mixture of crude dimethyl terephthalate, crude methanol and crude alkylene glycol obtained in the transesterification step.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method of the present invention will be described in detail.
In the method for recovering an active ingredient of the present invention, it is necessary to pulverize the polyester waste into an appropriate size from the viewpoint of handling the waste. The size of the pulverized product is preferably 2 to 30 mm. If the crushed diameter is large, a problem that solidification is insufficient in the next granulation step occurs. As an embodiment of the pulverization, it is preferable to use a two-stage pulverizer in order to improve the pulverization processing capacity. That is, the polyester fiber waste is roughly pulverized to 30 to 50 mm by a primary pulverizer, and then pulverized to 2 to 30 mm by a secondary pulverizer. If the size of the pulverized material is specified directly at 2 to 30 mm in the primary pulverizer, the load applied to the pulverizer becomes excessive, which is rather inefficient.
[0016]
Next, the pulverized material is put into a granulator, and the pulverized material is solidified into a cylindrical granulated material, which will be described below with reference to the drawings.
[0017]
The crushed product 1 of the polyester waste is continuously supplied into the main body of the granulator through the crushed material hopper 12 and the feeder 13. The rotation speed of the feeder 13 is driven at a variable speed via a motor 14 by an inverter 15 or a device (not shown) having a speed change mechanism. The crushed material 1 thus supplied into the granulator is compressed between the inner peripheral surface of the rotary die 3 and the outer peripheral surface of the roller 4 having a pore diameter defined in the granulator, and the crushed material 1 is compressed. A part of the surface of the crushed material is solidified and compressed by the frictional heat generated by the compression while being partially melted, cut into granules by the cutter 5, and then sent downstream through the discharge chute 16. Here, the rotary die 3 is a cylindrical one having a large number of through-holes 2 for extruding granulated materials, and a pair of rollers 4 is provided in the rotary die 3 in this embodiment. Numeral 4 is adapted to roll on the inner surface of the rotary die 3 with a predetermined clearance. The crushed material 1 supplied between the inner surface of the rotary die 3 and the roller 4 is compressed, and the compressed crushed material 1 is sequentially extruded from the through-hole 2 for extruding the granulated material, and granulated to a predetermined length by the cutter 5. The object 6 is cut.
[0018]
When the pore size is large, the frictional heat becomes very small, so that the surface of the solidified product is not sufficiently solidified. Insufficient solidification in this manner causes the solids to collapse in the subsequent pneumatic transportation process due to collisions with the pipes, resulting in a structure that is easy to form a bridge in the storage tank at the destination, which makes it extremely difficult to discharge from the storage tank. Become. The size of the hole diameter is preferably 2 to 10 mm, more preferably 4 to 6 mm. The length is preferably set to 10 to 60 mm.
[0019]
The granulator is provided with a temperature sensor 7, which is set to accurately measure the temperature of the granulated material 6. In the granulation method, it is necessary to operate at a temperature equal to or higher than the glass transition point of the polyester and lower than the melting point. That is, as a granulation method, there is a method in which the fiber waste is heated to a temperature equal to or higher than the melting point of the polyester, completely melted, and then cooled and solidified. However, in the granulation method, impurities such as Ny are decomposed and collected. Deterioration of monomer quality. Further, if the solidification is completely solidified to the inside of the solid in the granulation method, there is also a problem that the reaction rate is greatly reduced due to a decrease in the contact efficiency between the solvent and the granulated solid in the reaction step. In the present invention, it is necessary that only a part of the fiber waste surface is melted and solidified at an operating temperature equal to or higher than the glass transition point of the polyester and lower than the melting point. The granulation method can improve the handleability while suppressing the decomposition of impurities and the decrease in the reaction rate.
[0020]
On the other hand, the control device 11 receives a signal from the recorder 10 that records the current value or the electric energy of the granulator motor, and adjusts the rotation speed of the feeder 13 to the inverter 15 or an appropriate value so that the detected value becomes a predetermined value. A variable speed drive is controlled by a device (not shown) having a suitable transmission mechanism. Further, the detected value of the temperature sensor 7 is input to the control device 11 of the feeder 13, and the temperature is allowed to rise until the temperature reaches a predetermined temperature determined by the physical properties of the crushed material. Controlling starts watering from the watering nozzle 9 and stops the watering by controlling the valve 8 based on the detection value of the temperature sensor 7.
[0021]
By the above control, the crushed material 1 is granulated in an optimum state without reaching the temperature at which melting starts to occur, so that machine troubles are prevented from occurring, and unnecessary stoppage is avoided, thereby reducing the production efficiency. Can be maximized.
[0022]
The bulk density of the pulverized product before the granulation treatment is about 0.05 g / cm 3. When the pulverized product is put into the reactor in this state, the pulverized product becomes very bulky and absorbs the solvent alkylene glycol. This makes it very difficult to stir the reaction tank.
[0023]
In order for this reaction to proceed smoothly, it is necessary to increase the bulk density along with granulation and solidification. The final bulk density is 0.20 to 1.20 g / cm 3 , preferably 0.40 to 1. It is necessary to increase to 20 g / cm 3 to improve the handling property.
[0024]
The granulated product after granulation is transported to the reaction step by pneumatic transport. Hereinafter, each of the reaction steps will be described.
[0025]
In the step (a), the polyester fiber solid that has passed through the pretreatment step is subjected to a depolymerization reaction in a known depolymerization catalyst, in an excess of alkylene glycol at a known catalyst concentration at a temperature of 120 to 210 ° C. Here, if the temperature of the alkylene glycol is lower than 120 ° C., the depolymerization time becomes extremely long, and the efficiency becomes inefficient. On the other hand, when the temperature exceeds 200 ° C., thermal decomposition of the oil agent and the like contained in the fiber waste becomes remarkable, and nitrogen compounds and the like generated by the decomposition are dispersed in the recovered monomer, making it difficult to separate them in the subsequent purification step. The temperature is preferably between 140 and 190C.
[0026]
Further, when the polyester fiber waste to be treated in the present invention is colored with a dye, the dye may be decomposed in the reaction step to reduce the molecular weight, and may be dispersed in the recovered monomer to significantly lower the quality. Therefore, when handling the colored fiber waste, it is effective to incorporate a step of discharging the dye before the step (a). In this step, the granulated solid containing the dye is put into a solvent such as water, alkylene glycol, dimethylformamide, para-xylene, or 2-heptanone, and optionally heated at 100 to 190 ° C. while applying pressure to extract the dye. I do. The discharge method may be a batch method or a continuous extraction method such as a countercurrent multistage extraction method. The solid after dye extraction is washed with alkylene glycol, and then transported to the step (a) in the same manner as the fiber waste not containing dye.
[0027]
Further, when Ny is mixed into the polyester waste, Ny is decomposed in the reaction step, and mixed as a nitrogen compound such as ε-caprolactam in the recovered monomer, making separation difficult. Therefore, it is effective to incorporate the step of dissolving and removing Ny in the solidified substance containing Ny before the step (a). In this step, a solidified substance containing Ny is introduced into a solvent such as an alkylene glycol and heated to 100 to 190 ° C. to dissolve and remove Ny. This step may be performed in the discharge printing step.
[0028]
In the step (b), a different fiber from polyester such as PE or PP is floated and separated in the depolymerization reaction layer. Since the specific fibers have a lower specific gravity than the alkylene glycol which is a solvent for the depolymerization reaction and float on the liquid surface, they are separated into layers as a eutectic mixed floating mass of different fibers, and then the eutectic mixing is performed. The suspended matter layer is extracted from the depolymerization and removed.
[0029]
In the step (c), after the depolymerization reaction, different fibers such as cotton are filtered and separated. The foreign fiber to be removed in the step (c) is a component having a higher specific gravity than the alkylene glycol and cannot be separated by the removal method in the step (b). At the time of passing through the step (c), the polyester is converted into bis-β-hydroxyalkyl terephthalate (hereinafter sometimes abbreviated as BHAT), and the reaction solution is a mixture of BHAT and alkylene glycol.
[0030]
In the step (d), the weight ratio of the alkylene glycol and the polyester fiber waste is determined from the mixture of the BHAT and the alkylene glycol passed through the step (c) in order to efficiently advance the transesterification reaction in the step (e). The alkylene glycol is distilled off until the raw material charge ratio becomes 0.5 to 2.0 times. The alkylene glycol distilled off at this time is recycled to the step (a) again.
[0031]
In the step (e), the mixture of BHAT and the alkylene glycol, from which the alkylene glycol has been distilled off in the step (d), is subjected to a transesterification reaction with methanol in the presence of a known ester exchange catalyst and a known concentration, followed by centrifugation. Solid-liquid separation is performed by solid-liquid separation means.
[0032]
In step (f), the crude DMT and crude alkylene glycol obtained in step (e) are purified by a purification method such as distillation to obtain high-purity purified DMT and purified alkylene glycol. At this time, the impurities that have passed through the reaction step are also captured at the bottom of the column, so that the recovered monomers contain no impurities and have high purity.
[0033]
【Example】
Hereinafter, the content of the present invention will be described more specifically with reference to examples, but the present invention is not limited by the examples.
[0034]
[Example 1]
For 600 kg of polyethylene terephthalate fiber waste mixed with various thicknesses and containing no dye generated from the polyester production process, the entire amount of the fiber waste was put into the primary pulverizer, and the screen diameter of the pulverizer was set to 75 mm to make the primary pulverizer. Pulverization was performed, and then the pulverized material was put into a secondary pulverizer, and a secondary pulverization was performed by setting the screen diameter of the pulverizer to 20 mm. Thereafter, the pulverized product was put into a granulator that was operated with a die having a diameter of 4 mm for a through-hole for extruding the granulated product under conditions that the cut length of the granulated product was 45 mm. At this time, the current value of the motor that drives the granulator is set to 130 A, the rotation speed of the supply conveyor to the granulator is adjusted so that the current value is constant, and the temperature of the granulated material is 130 ° C. A control system that adjusts the amount of water injected was adopted. Although the bulk specific gravity of the polyester crushed material to be fed to the granulator during operation varies between 0.02g / cm 3 ~0.06g / cm 3 is confirmed, the rotation following the change in the bulk density The speed was changed and a granulated product was obtained without any trouble. The average bulk density of the obtained granules was 0.45 g / cm 3 .
[0035]
In the reaction step, 500 kg of the solidified product was charged into a mixture of 700 kg of EG and 3 kg of sodium carbonate which had been heated to 185 ° C. in advance, and reacted at normal pressure for 4 hours.
[0036]
After completion of the reaction, a mixture of BHET and EG was sent to a distillation column, and 200 kg of EG was distilled off under the conditions of a bottom temperature of 140 to 150 ° C and a pressure of 13.3 kPa. Next, 3 kg of sodium carbonate and 200 kg of methanol were added to 200 kg of a mixture of BHET and EG after the EG was distilled off, and reacted at 75 to 80 ° C. for 1 hour at normal pressure.
[0037]
After completion of the reaction, the reaction solution was cooled to 40 ° C., and subjected to centrifugal separation to solid-liquid separation into a cake mainly composed of crude DMT and a filtrate mainly composed of methanol and crude EG. Next, the crude DMT was purified by distillation under the conditions of a pressure of 6.7 kPa and a bottom temperature of 180 to 200 ° C., and the crude EG was purified by distillation under the conditions of a pressure of 13.3 kPa and a bottom temperature of 140 to 150 ° C., and finally DMT and EG were collected. 85%. The recovered DMT is comparable to the commercial product in the appearance, acid value, melting color, and sulfated ash test items, and the recovered EG is comparable to the commercial product in the diethylene glycol concentration, water content, and melt colorimetric test items. In each case, a high-purity recovered monomer was obtained.
[0038]
[Example 2]
About 600 kg of polyethylene terephthalate uniform containing dye recovered from the city, the entire amount of the uniform was put into a primary pulverizer, a primary pulverizer was set by setting a screen diameter of the pulverizer to 75 mm, and then the pulverized product was subjected to primary pulverization. It was put into a secondary pulverizer, and the secondary pulverization was performed by setting the screen diameter of the pulverizer to 20 mm. Thereafter, the pulverized product was put into a granulator operated by using a die having a through-hole for extruding the granulated material having a diameter of 4 mm and a cut length of the granulated material of 45 mm and an internal temperature of the granulator of 130 ° C. At this time, the current value of the motor that drives the granulator was set to 130 A, and the granulator was operated in a control system that adjusted the rotation speed of the supply conveyor to the granulator so that the current value was constant. Although the bulk specific gravity of the polyester crushed material to be fed to the granulator during operation varies between 0.03g / cm 3 ~0.08g / cm 3 is confirmed, the rotation following the change in the bulk density The speed was changed and a granulated product was obtained without any trouble. The average bulk density of the obtained granules was 0.50 g / cm 3 .
[0039]
500 kg of the granulated product was charged into a reactor containing 4000 kg of para-xylene which had been heated to 130 ° C. in advance, and heated and stirred at normal pressure for 30 minutes to extract a dye contained in the granulated product. Thereafter, solid-liquid separation was performed with a pressure filter, and solid-liquid separation was performed on the granules from which the dye was extracted and paraxylene containing the dye. After removing the paraxylene remaining in the granules from which the dye was extracted by drying, the paragylene was removed from the granules, 700 kg of EG and 3 kg of sodium carbonate, which had been heated to 185 ° C. in advance, were charged into the reactor, and 4 kg at normal pressure. Allowed to react for hours.
[0040]
After completion of the reaction, a mixture of BHET and EG was sent to a distillation column, and 200 kg of EG was distilled off under the conditions of a bottom temperature of 140 to 150 ° C and a pressure of 13.3 kPa. Next, 3 kg of sodium carbonate and 200 kg of methanol were added to 200 kg of a mixture of BHET and EG after the EG was distilled off, and reacted at 75 to 80 ° C. for 1 hour at normal pressure.
[0041]
After completion of the reaction, the reaction solution was cooled to 40 ° C., and subjected to centrifugal separation to solid-liquid separation into a cake mainly composed of crude DMT and a filtrate mainly composed of methanol and crude EG. Next, the crude DMT was purified by distillation under the conditions of a pressure of 6.7 kPa and a bottom temperature of 180 to 200 ° C., and the crude EG was purified by distillation under the conditions of a pressure of 13.3 kPa and a bottom temperature of 140 to 150 ° C., and finally DMT and EG were collected. 85%. The recovered DMT is comparable to the commercial product in the appearance, acid value, melting color, and sulfated ash test items, and the recovered EG is comparable to the commercial product in the diethylene glycol concentration, water content, and melt colorimetric test items. In each case, a high-purity recovered monomer was obtained.
[0042]
[Comparative example]
A total of 600 kg of polyester fiber waste similar to that in Example 1 was put into the primary pulverizer, the screen diameter of the pulverizer was set to 75 mm, and the primary pulverization was performed. It was put into a pulverizer, and a secondary pulverization was performed by setting the screen diameter of the pulverizer to 20 mm. Thereafter, the pulverized product was put into a granulator operated by a die having a through-hole for extruding the granulated material having a diameter of 4 mm and a cut length of the granulated material of 45 mm and an internal temperature of the granulator of 130 ° C. At this time, the current value of the motor for driving the granulator was initially set to 130 A, but thereafter no particular control was performed. Although the bulk specific gravity of the polyester crushed material to be fed to the granulator during operation varies between 0.02g / cm 3 ~0.06g / cm 3 has been confirmed, the change control of the temperature of the bulk density of the raw material And the temperature reached 160 ° C. during operation, and as a result, a problem occurred in which the crushed material supplied to the granulator in the granulator melted into a sticky state and the motor stopped.
[Brief description of the drawings]
FIG. 1 is a schematic diagram schematically showing an apparatus for performing a granulation method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crushed material 2 Granulated material extrusion through hole 3 Rotary die 4 Roller 5 Cutter 6 Granulated material 7 Temperature sensor 8 Valve 9 Watering nozzle 10 Recorder 11 Controller 12 Crushed material hopper 13 Feeder 14 Motor 15 Inverter 16 Discharge chute

Claims (5)

ポリエステル廃棄物を塊状のまま粉砕機に投入して該廃棄物をまず30〜150mmに粉砕した後、該粉砕物をさらに2〜30mmに粉砕し、該粉砕物を造粒機に連続的に投入し、径2〜10mm、長さ10〜60mmの円筒状固形物に固形化して嵩密度を0.20〜1.2g/cmとした後に、該固形物を空気輸送により後述の反応工程へと輸送する前処理工程と以下の(a)〜(f)の反応工程を組み合わせるにあたり、
該造粒機の運転負荷が所定範囲内にあるように、該粉砕物の単位時間当たりの投入量を制御しつつ、造粒機の温度が所定範囲内にあるように造粒物の冷却を行うことを特徴とするポリエステル廃棄物から高純度の有効成分を回収する方法。
(a)前記前処理工程を経て得られた粗製ポリエステルを、解重合触媒を含むアルキレングリコール中に投入してビス−β−ヒドロキシアルキルテレフタレート(BHAT)を得る解重合反応工程。
(b)前記解重合反応工程の反応中又は反応後にポリエステル以外のポリエチレン、ポリスチレン、ポリプロピレン、ポリ塩化ビニル等の異プラスチック類を除去する異物除去工程。
(c)前記解重合反応後に未溶解の成分を濾過選別する濾過選別工程。
(d)前記濾過選別工程を経て得たBHATとアルキレングリコールの混合液に蒸留・蒸発操作を施してアルキレングリコールを蒸留・蒸発させて濃縮BHATを得るBHAT濃縮工程。
(e)前記BHAT濃縮工程で得た粗製BHATと粗製アルキレングリコールの混合液中にエステル交換触媒とメタノールとを添加・投入してエステル交換を行うエステル交換反応工程。
(f)前記エステル交換反応工程で得られた粗製テレフタル酸ジメチル及び粗製メタノール及び粗製アルキレングリコールの混合物から精製テレフタル酸ジメチルおよび精製アルキレングリコールとを分離回収する精製工程。
The polyester waste is put into a crusher as a lump and the waste is first crushed to 30 to 150 mm, then the crushed product is further crushed to 2 to 30 mm, and the crushed product is continuously put into a granulator. After solidifying into a cylindrical solid having a diameter of 2 to 10 mm and a length of 10 to 60 mm to a bulk density of 0.20 to 1.2 g / cm 3 , the solid is pneumatically transported to a reaction step described below. In combining the pretreatment step of transporting with the following reaction steps (a) to (f),
Cooling the granulated material so that the temperature of the granulator is within the predetermined range while controlling the amount of the pulverized material per unit time so that the operation load of the granulator is within the predetermined range. A method for recovering high-purity active ingredients from polyester waste.
(A) A depolymerization reaction step in which the crude polyester obtained through the pretreatment step is introduced into an alkylene glycol containing a depolymerization catalyst to obtain bis-β-hydroxyalkyl terephthalate (BHAT).
(B) A foreign matter removing step of removing foreign plastics other than polyester, such as polyethylene, polystyrene, polypropylene, and polyvinyl chloride, during or after the depolymerization reaction step.
(C) a filtration separation step of filtering and separating undissolved components after the depolymerization reaction.
(D) a BHAT concentration step of subjecting the mixture of BHAT and alkylene glycol obtained through the above-mentioned filtration and separation step to distillation and evaporation to distill and evaporate the alkylene glycol to obtain a concentrated BHAT.
(E) A transesterification reaction step in which a transesterification catalyst and methanol are added and charged into a mixture of the crude BHAT and the crude alkylene glycol obtained in the BHAT concentration step to carry out transesterification.
(F) a purification step of separating and recovering purified dimethyl terephthalate and purified alkylene glycol from a mixture of crude dimethyl terephthalate, crude methanol and crude alkylene glycol obtained in the transesterification step.
前記破砕物の造粒機への投入を供給コンベアによって行い、該破砕物の投入量の制御を供給コンベアの搬送速度によって行う、請求項1記載の有効成分回収方法。The method for recovering an active ingredient according to claim 1, wherein the supply of the crushed material to the granulator is performed by a supply conveyor, and the amount of the crushed material is controlled by a transport speed of the supply conveyor. 前記造粒機の運転負荷の検出を造粒機モーターの電流値または電力量によって行う、請求項1記載の有効成分回収方法。The method for recovering an active ingredient according to claim 1, wherein the detection of the operation load of the granulator is performed based on a current value or an electric energy of a granulator motor. 前記造粒物の温度制御のための冷却を注水によって行う、請求項1記載の有効成分回収方法。The method for recovering an active ingredient according to claim 1, wherein cooling for controlling the temperature of the granulated material is performed by pouring water. 前記ポリエステル廃棄物がポリエステル繊維屑である、請求項1記載の有効成分回収方法。The method of claim 1, wherein the polyester waste is polyester fiber waste.
JP2003098104A 2003-04-01 2003-04-01 Method for recovering valuable component from waste polyester Pending JP2004300115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098104A JP2004300115A (en) 2003-04-01 2003-04-01 Method for recovering valuable component from waste polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098104A JP2004300115A (en) 2003-04-01 2003-04-01 Method for recovering valuable component from waste polyester

Publications (1)

Publication Number Publication Date
JP2004300115A true JP2004300115A (en) 2004-10-28

Family

ID=33409721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098104A Pending JP2004300115A (en) 2003-04-01 2003-04-01 Method for recovering valuable component from waste polyester

Country Status (1)

Country Link
JP (1) JP2004300115A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018161A1 (en) * 2005-08-05 2007-02-15 Teijin Fibers Limited Method for recovery of valuable ingredient from dyed polyester fiber
JP2007045874A (en) * 2005-08-08 2007-02-22 Teijin Fibers Ltd Method for recovering effective component from dyed polyester fiber
JP2010090184A (en) * 2008-10-03 2010-04-22 Teijin Fibers Ltd Method for removing dye from dyed polyalkylene terephthalate fiber
JP2010174216A (en) * 2009-02-02 2010-08-12 Teijin Fibers Ltd Method for removing foreign material from poly(alkylene terephthalate) fiber
US7897651B2 (en) 2005-12-09 2011-03-01 Kazutoshi Ikenaga Method for depolymerizing polyester and unsaturated polyester, and method for recovering polyester monomer using the depolymerization
WO2017028987A1 (en) * 2015-08-19 2017-02-23 Krones Ag Recycling system and method for processing bulk material
JP2018158320A (en) * 2017-03-23 2018-10-11 Jfeスチール株式会社 Method for producing granules
WO2022154224A1 (en) 2021-01-14 2022-07-21 코오롱인더스트리 주식회사 Method for depolymerising polyester
WO2022154223A1 (en) 2021-01-14 2022-07-21 코오롱인더스트리 주식회사 Method for decolorizing polyester, and method for depolymerising polyester comprising same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101215130B1 (en) 2005-08-05 2012-12-24 데이진 화이바 가부시키가이샤 Method for recovery of valuable ingredient from dyed polyester fiber
JPWO2007018161A1 (en) * 2005-08-05 2009-02-19 帝人ファイバー株式会社 Method for recovering useful components from dyed polyester fiber
WO2007018161A1 (en) * 2005-08-05 2007-02-15 Teijin Fibers Limited Method for recovery of valuable ingredient from dyed polyester fiber
US7959807B2 (en) 2005-08-05 2011-06-14 Teijin Fibers Limited Method for recovering useful components from dyed polyester fiber
JP4908415B2 (en) * 2005-08-05 2012-04-04 帝人株式会社 Method for producing useful components from dyed polyester fiber
JP2007045874A (en) * 2005-08-08 2007-02-22 Teijin Fibers Ltd Method for recovering effective component from dyed polyester fiber
JP4537288B2 (en) * 2005-08-08 2010-09-01 帝人ファイバー株式会社 Method for recovering active ingredients from dyed polyester fiber
US7897651B2 (en) 2005-12-09 2011-03-01 Kazutoshi Ikenaga Method for depolymerizing polyester and unsaturated polyester, and method for recovering polyester monomer using the depolymerization
JP2010090184A (en) * 2008-10-03 2010-04-22 Teijin Fibers Ltd Method for removing dye from dyed polyalkylene terephthalate fiber
JP2010174216A (en) * 2009-02-02 2010-08-12 Teijin Fibers Ltd Method for removing foreign material from poly(alkylene terephthalate) fiber
WO2017028987A1 (en) * 2015-08-19 2017-02-23 Krones Ag Recycling system and method for processing bulk material
JP2018158320A (en) * 2017-03-23 2018-10-11 Jfeスチール株式会社 Method for producing granules
WO2022154224A1 (en) 2021-01-14 2022-07-21 코오롱인더스트리 주식회사 Method for depolymerising polyester
WO2022154223A1 (en) 2021-01-14 2022-07-21 코오롱인더스트리 주식회사 Method for decolorizing polyester, and method for depolymerising polyester comprising same
KR20220102883A (en) 2021-01-14 2022-07-21 코오롱인더스트리 주식회사 Method for decolorizing polyester, and method for depolymerising polyester comprising the same
KR20220102882A (en) 2021-01-14 2022-07-21 코오롱인더스트리 주식회사 Method for depolymerising polyester

Similar Documents

Publication Publication Date Title
EP1153070B1 (en) A glycolysis process for recycling of post-consumer pet
US5298530A (en) Process of recovering components from scrap polyester
RU2151154C1 (en) Method of producing polyethyleneterephthalate material, polyethyleneterephthalate material and plastic band based on polyethyleneterephthalate material
RU2263658C2 (en) Method for chemical reutilization of depleted polyethylene terephthalate
JP2000169623A (en) Chemical recycle of polyethylene terephthalate waste
WO2002042253A1 (en) Dimethyl terephthalate composition and process for producing the same
CN102746270B (en) Method for preparing refined level lactide from recovered polylactic acid
JP2004300115A (en) Method for recovering valuable component from waste polyester
WO1993023465A1 (en) Improved poly ethylene terephthalate decontamination
JP4212799B2 (en) Method for recovering terephthalic acid from polyester fiber waste
Datye et al. Poly (ethylene terephthalate) waste and its utilisation: A review
CN212312435U (en) Production device for recycling bottle flakes
JP4065659B2 (en) Method for recovering active ingredients from polyethylene terephthalate waste
KR20220119020A (en) Optimized process for depolymerization of polyesters comprising polyethylene terephthalate
JP4065658B2 (en) Method for recovering active ingredients from polyethylene terephthalate fiber waste
JP2001018223A (en) Production of regenerated polyester resin sheet
JP2003119316A (en) Pet plastic bottle recycling method
JP2004034437A (en) Method for repelletizing waste plastics and its system
JP4108267B2 (en) Active ingredient recovery method from polyethylene terephthalate film waste
KR20220119054A (en) Improved process for depolymerization of polyesters comprising polyethylene terephthalate
JP2002167469A (en) Recycling system for waste polyester and its method
JPH07205146A (en) Continuously regenerating method for resin with coating film
JP2000044724A (en) Solvent for plastics and collection of plastics
US20230151181A1 (en) Process for depolymerizing polyethylene terephthalate (pet) by glycolysis with ethylene glycol, and plant for carrying out the same
JP4065657B2 (en) Method for recovering active ingredients from polyethylene terephthalate resin waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020