JP2002166893A - Liquid tank loading structure for pilotless helicopter - Google Patents

Liquid tank loading structure for pilotless helicopter

Info

Publication number
JP2002166893A
JP2002166893A JP2000367051A JP2000367051A JP2002166893A JP 2002166893 A JP2002166893 A JP 2002166893A JP 2000367051 A JP2000367051 A JP 2000367051A JP 2000367051 A JP2000367051 A JP 2000367051A JP 2002166893 A JP2002166893 A JP 2002166893A
Authority
JP
Japan
Prior art keywords
liquid
tank
tanks
liquid tank
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000367051A
Other languages
Japanese (ja)
Inventor
Hiroto Suzuki
弘人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2000367051A priority Critical patent/JP2002166893A/en
Publication of JP2002166893A publication Critical patent/JP2002166893A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid tank structure for a pilotless helicopter comprising several liquid tanks in which liquid is consumed and reduced during flying and allowing flying with keeping a stable attitude of the helicopter without disordering the attitude by decrease of the liquid during flying. SOLUTION: This liquid tank loading structure for the pilotless helicopter comprises several liquid tanks 8a, 8b, 12 containing the liquid to be consumed during flying, detecting means 9a, 9b of liquid volumes of the liquid tanks, liquid feeding pipes 11, 11a, 11b adapted to suck the liquid from the liquid tanks by pumps P1, P2 for feeding the liquid to a liquid consuming part, and a control device 10 adapted to control a sucked volume of the liquid from the liquid tanks by the liquid feeding pipes. The control device 10 controls the sucked volume of the liquid from the liquid tanks such that a position of center of gravity of the whole liquid tanks is kept constant in a plane view on the basis of detected data by the liquid volume detecting means 9a, 9b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無人ヘリコプター
の燃料タンクや薬剤タンク等の液体タンク搭載構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for mounting a liquid tank such as a fuel tank or a chemical tank of an unmanned helicopter.

【0002】[0002]

【従来の技術】無人ヘリコプターの飛行距離や飛行時間
を増加させるために、容量に限度があるメインの燃料タ
ンクに加えて補給用のサブ燃料タンクを1つ又は2つ備
えた燃料タンク構造が考えられている。また、農薬等の
薬剤散布用無人ヘリコプターにおいて、散布面積を増加
させるために、機体の左右両外側にそれぞれ薬液タンク
を搭載して薬液搭載量を増やした無人ヘリコプターが開
発されている。
2. Description of the Related Art In order to increase the flight distance and flight time of an unmanned helicopter, a fuel tank structure having one or two sub fuel tanks for replenishment in addition to a main fuel tank having a limited capacity is considered. Have been. In addition, in an unmanned helicopter for spraying chemicals such as agricultural chemicals, an unmanned helicopter has been developed in which a chemical solution tank is mounted on each of the right and left outer sides of the body to increase a spraying area, in order to increase a spray area.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うに複数の液体タンクを備えた無人ヘリコプターにおい
て、燃料は飛行中にエンジンで消費され燃料タンク内の
燃料の量は徐々に減少し、また薬剤は飛行中に散布ノズ
ルから散布されて消費され薬液タンク内の薬液量は徐々
に減少していく。このため、複数の液体タンクの搭載位
置やポンプによる各液体タンクからの液体の吸引量や吸
引順序等によっては、各液体タンク内の液体量のバラン
スが崩れ、平面視でのタンク全体の重心位置が変化す
る。重心位置の変化は機体の姿勢に影響し、旋回性等の
飛行性能を悪化させるとともに運転の制御性を悪化させ
て安定した運転操作ができなくなる。
However, in such an unmanned helicopter having a plurality of liquid tanks, fuel is consumed by the engine during flight, the amount of fuel in the fuel tank is gradually reduced, and chemicals are not used. During the flight, the chemical liquid in the chemical liquid tank that is sprayed and consumed from the spray nozzle gradually decreases. For this reason, depending on the mounting position of the plurality of liquid tanks, the amount of suction of the liquid from each liquid tank by the pump, the suction order, and the like, the balance of the amount of liquid in each liquid tank is lost, and the center of gravity of the entire tank in plan view. Changes. The change in the position of the center of gravity affects the attitude of the aircraft, deteriorating the flight performance such as turning performance and deteriorating the controllability of driving, making it impossible to perform a stable driving operation.

【0004】本発明は上記従来技術を考慮したものであ
って、飛行中に消費されて液量が徐々に減少する複数の
液体タンクを備えた無人ヘリコプターにおいて、飛行中
の液量の減少により機体の姿勢を崩すことなく安定した
姿勢を維持して飛行できる無人ヘリコプターの液体タン
ク構造の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned prior art, and is directed to an unmanned helicopter having a plurality of liquid tanks which are consumed during a flight and whose liquid amount gradually decreases. It is an object of the present invention to provide a liquid tank structure of an unmanned helicopter that can fly while maintaining a stable attitude without disturbing the attitude of the aircraft.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、飛行中に消費される液体を収容した複
数の液体タンクと、各液体タンクの液量検出手段と、各
液体タンクからポンプにより液体を吸引して液体消費部
に送る液体供給配管系と、前記液体供給配管系による各
液体タンクからの液体吸引量を制御する制御装置とを備
えた無人ヘリコプターの液体タンク搭載構造であって、
前記制御装置は、前記液量検出手段の検出データに基づ
いて、平面視での液体タンク全体の重心位置が一定に維
持されるように各液体タンクからの液体吸引量を制御す
ることを特徴とする無人ヘリコプターの液体タンク搭載
構造を提供する。
In order to achieve the above object, according to the present invention, a plurality of liquid tanks containing liquid consumed during flight, a liquid amount detecting means of each liquid tank, and a liquid tank are provided. A liquid tank mounting structure of an unmanned helicopter, comprising: a liquid supply piping system that sucks a liquid by a pump and sends the liquid to a liquid consumption unit; and a control device that controls a liquid suction amount from each liquid tank by the liquid supply piping system. hand,
The control device controls the amount of liquid suction from each liquid tank based on the detection data of the liquid amount detection means so that the position of the center of gravity of the entire liquid tank in a plan view is kept constant. To provide an unmanned helicopter with a liquid tank mounting structure.

【0006】この構成によれば、各液体タンクからポン
プにより液体を吸引して消費部(エンジンや散布ノズ
ル)に送る場合、制御装置が、各液体タンクに設けた液
面センサ等の検出データおよび各液体タンクの位置や形
状から液量および複数のタンク全体の重心位置を演算
し、重心が一定に保たれるように各液体タンクからの液
体吸引量を制御する。これにより、飛行姿勢等により液
面が傾斜している場合であっても、各液体タンクからバ
ランスよく液体が吸引され機体の姿勢を崩すことなく安
定した飛行制御を行うことができる。このとき、同一形
状の複数の液体タンクを重心に対し対称位置に配置した
場合には、重心位置を算出することなく液面レベルを揃
えることにより液量が同じになって重心も同じ位置に保
たれる。
According to this configuration, when the liquid is suctioned from each liquid tank by the pump and sent to the consuming unit (engine or spray nozzle), the control device controls the detection data of the liquid level sensor and the like provided in each liquid tank. The amount of liquid and the position of the center of gravity of the plurality of tanks are calculated from the position and shape of each liquid tank, and the amount of liquid suction from each liquid tank is controlled so that the center of gravity is kept constant. Thus, even when the liquid surface is inclined due to the flight attitude, the liquid is suctioned from each liquid tank in a well-balanced manner, and stable flight control can be performed without disturbing the attitude of the body. At this time, when a plurality of liquid tanks having the same shape are arranged at symmetrical positions with respect to the center of gravity, the liquid level becomes uniform by calculating the liquid level without calculating the center of gravity, and the center of gravity is maintained at the same position. Dripping.

【0007】好ましい構成例では、前記複数の液体タン
クの底部同士を連通管で連通し、該連通管の途中に開閉
弁を設け、機体の傾斜角を検出する傾斜センサを備え、
該傾斜センサの検出角度が所定値以上の場合に前記開閉
弁を閉じることを特徴としている。
In a preferred embodiment, a bottom of the plurality of liquid tanks communicates with each other via a communication pipe, an on-off valve is provided in the middle of the communication pipe, and an inclination sensor for detecting an inclination angle of the body is provided.
The on-off valve is closed when the detection angle of the inclination sensor is equal to or larger than a predetermined value.

【0008】この構成によれば、液体タンクの底部同士
が連通管で連結されるため液面が揃い、液量が均一化さ
れる。このとき、機体の姿勢が大きく傾斜した場合に、
連通管の開閉弁が閉じられるため、液体が一時的に1つ
のタンクに偏って流入することが防止され重量バランス
が維持される。姿勢が戻って傾斜角度が小さくなれば連
通管が開き液面が揃う。連通管の径が細いと、機体の飛
行速度や飛行姿勢によって連通管の作用が充分得られず
液面が不揃いになる場合がある。これに対処するために
単に連通管の径を太くしたのでは傾斜が大きくなったと
きに不具合を生じる。上記本発明の構成によれば、連通
管に開閉弁を設けることにより、傾斜が大きくなった場
合の不具合を伴うことなく充分に太い径の連通管を設け
ることが可能になる。
According to this configuration, the bottoms of the liquid tanks are connected to each other by the communication pipe, so that the liquid surfaces are aligned and the liquid amount is made uniform. At this time, if the attitude of the aircraft is greatly inclined,
Since the on-off valve of the communication pipe is closed, the liquid is prevented from temporarily temporarily being biased into one tank, and the weight balance is maintained. When the posture is returned and the inclination angle is reduced, the communication pipe is opened and the liquid level becomes uniform. If the diameter of the communication pipe is small, the effect of the communication pipe may not be sufficiently obtained depending on the flight speed and flight attitude of the aircraft, and the liquid level may be uneven. If the diameter of the communication pipe is simply increased to cope with this, a problem occurs when the inclination increases. According to the configuration of the present invention, by providing the open / close valve in the communication pipe, it is possible to provide a communication pipe having a sufficiently large diameter without causing a problem when the inclination becomes large.

【0009】[0009]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態について説明する。図1は本発明の実施形態に係
る無人ヘリコプターの全体図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall view of an unmanned helicopter according to an embodiment of the present invention.

【0010】無人ヘリコプター31の機体30内にエン
ジン32およびこれに連結されたトランスミッション3
3が搭載され、ロータ軸34を介してメインロータ35
を回転駆動する。機体後端部にはテールロータ39が備
わり、機体下側にはスキッド38が備わる。機体30内
に、エンジン32に燃料を供給するメインタンク36が
設けられる。この実施形態では、メインタンクに燃料を
補給するための2つのサブタンク37a,37bが前後
方向に離れた位置に配設される。各サブタンク37a,
37bからそれぞれポンプP1,P2を介してメインタ
ンク36に燃料が補給される。メインタンク36および
2つのサブタンク37a,37bの全体の重心Gはロー
タ軸34のほぼ真下にくるように各タンクが配設され
る。本発明では、メインタンクの燃料が減ってサブタン
クからメインタンクに燃料を補給する場合に、重心Gの
位置が上から見た平面視で変化しないようにいずれかの
サブタンクから補給される。このため、後述のように、
各タンク36,37a,37b内には液面センサ(不図
示)が備わり、これに基づいてCPU(不図示)がポン
プP1,P2を駆動制御して重量バランスを維持する。
[0010] An engine 32 and a transmission 3 connected to the engine 32 in an airframe 30 of an unmanned helicopter 31
3 is mounted on the main rotor 35 via a rotor shaft 34.
Is driven to rotate. A tail rotor 39 is provided at the rear end of the fuselage, and a skid 38 is provided below the fuselage. A main tank 36 that supplies fuel to the engine 32 is provided in the body 30. In this embodiment, two sub-tanks 37a and 37b for replenishing the main tank with fuel are disposed at positions separated in the front-rear direction. Each sub tank 37a,
Fuel is supplied to the main tank 36 from the pump 37, via the pumps P1 and P2, respectively. Each tank is arranged so that the center of gravity G of the whole of the main tank 36 and the two sub-tanks 37a and 37b is almost directly below the rotor shaft 34. In the present invention, when the fuel in the main tank is reduced and the fuel is supplied from the sub tank to the main tank, the fuel is supplied from one of the sub tanks so that the position of the center of gravity G does not change in a plan view when viewed from above. For this reason, as described below,
A liquid level sensor (not shown) is provided in each of the tanks 36, 37a, and 37b. Based on this, a CPU (not shown) drives and controls the pumps P1 and P2 to maintain weight balance.

【0011】すなわち、重心Gを通りローター軸と直角
の平面上に前方方向にY軸、前方方向に見て右手方向に
X軸とするとき、各タンクの燃料残量重量Wi、各タン
クの燃料残量の重心の座標を(0、yi)とする時、
y’=ΣWiyi/ΣWiで全燃料残量の重心を求め、
X軸を挟んで−y’側となるサブタンクからの燃料補給
量が多くなるように、ポンプP1あるいはポンプP2の
いずれかあるいは両方を駆動制御する。
That is, when the Y axis is forward in the plane perpendicular to the rotor axis passing through the center of gravity G, and the X axis is rightward when viewed in the forward direction, the fuel remaining weight Wi of each tank and the fuel When the coordinates of the center of gravity of the remaining amount are (0, yi),
y '= ΣWiyi / ΣWi to find the center of gravity of the remaining fuel,
Drive control is performed on either or both of the pump P1 and the pump P2 so that the amount of fuel supply from the sub tank on the −y ′ side with respect to the X axis increases.

【0012】図2は、薬液散布用の無人ヘリコプターの
正面図である。機体40の左右外側にそれぞれ薬液タン
ク42a,42bが搭載される。各薬液タンク底部には
それぞれバルブ49が備わり、チューブ47を介して薬
液ポンプ43に接続される。薬液ポンプ43の吐出側
は、チューブ48を介して左右の送給管44に接続され
る。各送給管44の端部には散布ノズル45が備わり薬
液を散布する。50は薬液ポンプ43のモータ配線であ
り、46は機体内の電源や制御装置に接続するためのカ
プラである。左右の薬液タンク42a,42bを合わせ
た重心Gはロータ軸41のほぼ真下にある。このように
2つのタンクが横方向(左右方向)に離れて配設された
場合にも、図1の前後方向に離れて配設された場合と同
様に、後述のように、重心Gの位置が平面視で変化しな
いように各バルブ49を開閉駆動して、各薬液タンクか
ら薬液がポンプ43に吸引され散布される。
FIG. 2 is a front view of an unmanned helicopter for spraying a chemical solution. Chemical solution tanks 42a and 42b are mounted on the right and left outer sides of the body 40, respectively. A valve 49 is provided at the bottom of each chemical solution tank, and is connected to the chemical solution pump 43 via a tube 47. The discharge side of the chemical liquid pump 43 is connected to the left and right feed pipes 44 via a tube 48. A spray nozzle 45 is provided at an end of each feed pipe 44 to spray a chemical solution. Reference numeral 50 denotes a motor wiring of the chemical liquid pump 43, and reference numeral 46 denotes a coupler for connecting to a power supply and a control device in the body. The center of gravity G where the left and right chemical liquid tanks 42 a and 42 b are combined is almost immediately below the rotor shaft 41. When the two tanks are separated in the horizontal direction (left-right direction) in this manner, the position of the center of gravity G will be described later, as in the case where the two tanks are separated in the front-rear direction. Each valve 49 is driven to open and close so that does not change in a plan view, and the chemical liquid is sucked from the respective chemical liquid tanks to the pump 43 and dispersed.

【0013】図3は、薬液を散布する本発明の実施形態
の構成図である。2つの薬液タンク1a,1bが機体
(不図示)に搭載される。各薬液タンクにはフロート式
の液面センサ2a,2bが備わる。各液面センサは制御
装置(CPU)3に接続される。各薬液タンク1a,1
bは、それぞれ配管5a,5bを介して共通のポンプ6
に接続される。各配管5a,5bには、CPU3により
駆動されるバルブ4a,4bが備わる。ポンプ6の吐出
側の配管5の端部に散布ノズル7が備わる。
FIG. 3 is a configuration diagram of an embodiment of the present invention for spraying a chemical solution. Two chemical liquid tanks 1a and 1b are mounted on a body (not shown). Each chemical liquid tank is provided with a float type liquid level sensor 2a, 2b. Each liquid level sensor is connected to a control device (CPU) 3. Each chemical solution tank 1a, 1
b is a common pump 6 via pipes 5a and 5b, respectively.
Connected to. Each pipe 5a, 5b is provided with a valve 4a, 4b driven by the CPU 3. A spray nozzle 7 is provided at the end of the pipe 5 on the discharge side of the pump 6.

【0014】上記構成において、CPU3は、液面セン
サ2a,2bからの検出データに基づき、薬液タンク1
a,1bの液面レベルが揃うようにバルブ4a,4bを
開閉制御または流量調整制御する。すなわち、重心Gを
通りローター軸と直角の平面上に前方方向にY軸、前方
方向に見て右手方向にX軸とするとき、各タンクの燃料
残量重量Wi、各タンクの燃料残量の重心の座標を(x
i、0)とする時、x’=ΣWixi/ΣWiで全燃料
残量の重心を求め、Y軸を挟んで−x’側となる薬液タ
ンクからの燃料補給量が多くなるように、バルブ4a、
バルブ4bのうち一方の開度を大きくし、X側となる薬
液タンクからの燃料補給量が少なくなるように、他方の
バルブの開度を絞るようにする。
In the above-described configuration, the CPU 3 operates based on the detection data from the liquid level sensors 2a and 2b.
The valves 4a and 4b are controlled to be opened and closed or flow-rate-adjusted so that the liquid levels of a and 1b are uniform. That is, assuming that the Y axis is forward in the plane perpendicular to the rotor axis and passes through the center of gravity G and the X axis is rightward when viewed in the forward direction, the remaining fuel weight Wi of each tank and the remaining fuel in each tank Let the coordinates of the center of gravity be (x
i, 0), the center of gravity of the remaining fuel amount is obtained by x ′ = ΣWixi / ΣWi, and the valve 4a is increased so that the fuel supply amount from the chemical tank on the −x ′ side with respect to the Y axis increases. ,
The opening of one of the valves 4b is increased, and the opening of the other valve is reduced so that the amount of fuel supplied from the chemical tank on the X side decreases.

【0015】これにより、配管径や配置構造および飛行
姿勢等に拘らず両薬液タンク1a,1bの重心位置を一
定に維持できる。各薬液タンクの形状が異なる場合や重
心に対する位置が対称でない場合には、CPU3は液面
データに基づきタンク内の液体重量を算出して全体の重
心位置を求め、この重心位置が所定の位置に維持される
ようにバルブ4a,4bを駆動制御する。
Thus, the position of the center of gravity of both chemical liquid tanks 1a and 1b can be kept constant irrespective of the pipe diameter, arrangement structure, flight attitude and the like. When the shape of each chemical liquid tank is different or the position with respect to the center of gravity is not symmetric, the CPU 3 calculates the liquid weight in the tank based on the liquid level data to obtain the position of the entire center of gravity. The valves 4a and 4b are driven and controlled so as to be maintained.

【0016】この図3のタンク構造は、薬液タンク1
a,1bが前後方向に離れて搭載された場合および横方
向に離れて搭載された場合いずれも適用可能である。ま
た、燃料タンクに適用することもできる。また、いずれ
か一方の配管5aまたは5bにのみバルブ4aまたは4
bを設け、一方のバルブを省略してもよい。また、バル
ブに代えて、又はバルブとともに各配管5a,5bにポ
ンプを設けポンプにより流量制御を行ってもよい。両タ
ンク1a,1bからの薬液は配管5で合流した後左右の
散布ノズル7に均量ずつ分配される。
The tank structure shown in FIG.
Both a case where a and 1b are mounted apart from each other in the front-back direction and a case where they are mounted separately from each other in the lateral direction are applicable. Further, the present invention can be applied to a fuel tank. In addition, only one of the pipes 5a or 5b has the valve 4a or 4b.
b may be provided and one of the valves may be omitted. Further, a pump may be provided in each of the pipes 5a and 5b instead of or together with the valve, and the flow rate may be controlled by the pump. After the chemicals from both tanks 1a and 1b join at the pipe 5, they are distributed equally to the left and right spray nozzles 7 respectively.

【0017】図4は、燃料タンクに対し本発明を適用し
た実施形態の構成図である。エンジンに燃料を供給する
メインタンク12に、配管11a,11bおよびこれら
が合流する配管11を介して2つのサブタンク8a,8
bが接続される。各配管11a,11bにCPU10に
より駆動制御されるポンプP1,P2が設けられる。各
サブタンク8a,8bには液面センサ9a,9bが備わ
る。
FIG. 4 is a configuration diagram of an embodiment in which the present invention is applied to a fuel tank. Two sub-tanks 8a, 8 are connected to a main tank 12, which supplies fuel to the engine, via pipes 11a, 11b and a pipe 11 where they join.
b is connected. Pumps P1 and P2 that are driven and controlled by the CPU 10 are provided in the respective pipes 11a and 11b. Each sub tank 8a, 8b is provided with a liquid level sensor 9a, 9b.

【0018】このような燃料タンク構造において、前述
の図3の例と同様に、液面レベルの検出データに基づい
て、CPU10がポンプP1,P2を駆動制御してサブ
タンク8a,8bの全体の重心位置を一定に維持する。
なお、この例についても、薬液タンクに適用可能であ
り、また、ポンプを共通化したりポンプに代えてバルブ
により流量制御することもできる。
In such a fuel tank structure, the CPU 10 controls the driving of the pumps P1 and P2 based on the liquid level detection data in the same manner as in the example of FIG. Keep the position constant.
Note that this example is also applicable to a chemical liquid tank, and a common pump may be used, or the flow rate may be controlled by a valve instead of the pump.

【0019】図5は、本発明のさらに別の実施形態の構
成図である。この例は、燃料タンク構造を示し、機体1
3の左右外側にメインタンク15およびサブタンク16
が備わる。メインタンク15は、配管19を介して機体
内のエンジン14に接続される。サブタンク16は、配
管18を介してメインタンク15に接続される。各配管
18,19にはそれぞれポンプP4,P3が設けられ
る。メインタンク15およびサブタンク16には、それ
ぞれ前述の例と同様に液面センサ17が備わりCPU2
1に接続される。これらの構成により、前述の図3、図
4の例と同様にCPU21が両タンクの重心Gの位置を
ロータ軸24のほぼ真下に維持するように、ポンプP
3,P4を液面レベルデータに基づいて駆動制御する。
FIG. 5 is a configuration diagram of still another embodiment of the present invention. This example shows a fuel tank structure,
Main tank 15 and sub tank 16
Is provided. The main tank 15 is connected to the engine 14 in the body via a pipe 19. The sub tank 16 is connected to the main tank 15 via a pipe 18. Pumps P4 and P3 are provided in the respective pipes 18 and 19, respectively. Each of the main tank 15 and the sub tank 16 is provided with a liquid level sensor 17 similarly to the above-described example.
Connected to 1. With such a configuration, the pump P is controlled so that the CPU 21 maintains the position of the center of gravity G of both tanks almost immediately below the rotor shaft 24 as in the above-described examples of FIGS.
3 and P4 are driven and controlled based on the liquid level data.

【0020】この図5の実施形態においてはさらに、機
体の傾斜センサ20を備えるとともに、メインタンク1
5およびサブタンク16の底部同士を連通管22で連通
させている。傾斜センサ20はCPU21に接続され
る。連通管22にはCPU21に駆動制御される連通バ
ルブ(開閉弁)23が設けられる。
The embodiment shown in FIG. 5 further includes a body inclination sensor 20 and a main tank 1.
5 and the bottom of the sub tank 16 are communicated with each other by a communication pipe 22. The tilt sensor 20 is connected to the CPU 21. The communication pipe 22 is provided with a communication valve (open / close valve) 23 that is driven and controlled by the CPU 21.

【0021】図6は、上記図5の連通管の動作ルーチン
のフローチャートである。傾斜センサ20により機体1
3の傾斜角が検出され、その検出データがCPU21に
入力される(ステップS1)。CPU21は、この傾斜
角を所定の角度αと比較する(ステップS2)。傾斜角
がα以下であれば連通バルブ23を開いてメインタンク
15とサブタンク16を連通させる(ステップS3)。
傾斜角がαより大きければ連通バルブ23を閉じる(ス
テップS4)。これにより、機体傾斜角が小さい通常飛
行時に、ポンプP3,P4の駆動制御による液量調整に
加えて、連通管の作用で両タンクの液面がさらに確実に
揃えられるとともに、機体の傾斜角がある程度以上大き
くなったときに、一方のタンクに燃料が一時的に流入し
て重量バランスを崩すことが防止される。
FIG. 6 is a flowchart of an operation routine of the communication pipe shown in FIG. Airframe 1 by tilt sensor 20
3 is detected, and the detection data is input to the CPU 21 (step S1). The CPU 21 compares the tilt angle with a predetermined angle α (step S2). If the inclination angle is not more than α, the communication valve 23 is opened to connect the main tank 15 and the sub tank 16 (step S3).
If the inclination angle is larger than α, the communication valve 23 is closed (step S4). Thus, during a normal flight with a small body inclination angle, in addition to the liquid amount adjustment by drive control of the pumps P3 and P4, the liquid level of both tanks is more reliably aligned by the action of the communication pipe, and the body inclination angle is reduced. When it becomes larger than a certain level, it is possible to prevent the fuel from temporarily flowing into one of the tanks, thereby preventing the weight balance from being lost.

【0022】[0022]

【発明の効果】以上説明したように、本発明では、複数
の液体タンクのおのおのからポンプにより液体を吸引し
て消費部(エンジンや散布ノズル)に送る場合、制御装
置(CPU)が、各液体タンクに設けた液面センサ等の
検出データおよび各液体タンクの位置や形状から液量お
よび複数のタンク全体の重心位置を演算し、重心が一定
に保たれるように各液体タンクからの液体吸引量を制御
する。これにより、飛行姿勢等により液面が傾斜してい
る場合であっても、各液体タンクからバランスよく液体
が吸引され機体の姿勢を崩すことなく安定した飛行制御
を行うことができる。
As described above, according to the present invention, when a liquid is suctioned from each of a plurality of liquid tanks by a pump and sent to a consuming unit (an engine or a spray nozzle), the control unit (CPU) controls each liquid. The amount of liquid and the position of the center of gravity of the plurality of tanks are calculated from the detection data of the liquid level sensor provided in the tank and the position and shape of each liquid tank, and the liquid is suctioned from each liquid tank so that the center of gravity is kept constant. Control the amount. Thus, even when the liquid surface is inclined due to the flight attitude, the liquid is suctioned from each liquid tank in a well-balanced manner, and stable flight control can be performed without disturbing the attitude of the body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明が適用される無人ヘリコプターの全体
図。
FIG. 1 is an overall view of an unmanned helicopter to which the present invention is applied.

【図2】 本発明が適用される薬液散布用無人ヘリコプ
ターの正面図。
FIG. 2 is a front view of an unmanned helicopter for spraying a chemical to which the present invention is applied.

【図3】 本発明の実施形態の構成図。FIG. 3 is a configuration diagram of an embodiment of the present invention.

【図4】 本発明の別の実施形態の構成図。FIG. 4 is a configuration diagram of another embodiment of the present invention.

【図5】 本発明のさらに別の実施形態の構成図。FIG. 5 is a configuration diagram of still another embodiment of the present invention.

【図6】 図5の実施形態の動作を示すフローチャー
ト。
FIG. 6 is a flowchart showing the operation of the embodiment of FIG. 5;

【符号の説明】[Explanation of symbols]

1a,1b:薬液タンク、2a,2b:液面センサ、
3:CPU、4a,4b:バルブ、5,5a,5b:配
管、6:ポンプ、7:散布ノズル、8a,8b:サブタ
ンク、9a,9b:液面センサ、10:CPU、11,
11a,11b:配管、12:メインタンク、13:機
体、14:エンジン、15:メインタンク、16:サブ
タンク、17:液面センサ、18:配管、19:配管、
20:傾斜センサ、21:CPU、22:連通管、2
3:連通バルブ、24:ロータ軸、30:機体、31:
無人ヘリコプター、32:エンジン、33:トランスミ
ッション、34:ロータ軸、35:メインロータ、3
6:メインタンク、37a,37b:サブタンク、3
8:スキッド、39:テールロータ、40:機体、4
1:ロータ軸、42a,42b:薬液タンク、43:薬
液ポンプ、44:送給管、45:散布ノズル、46:カ
プラ、47:チューブ、48:チューブ、49:バル
ブ、50:モータ配線。
1a, 1b: chemical liquid tank, 2a, 2b: liquid level sensor,
3: CPU, 4a, 4b: valve, 5, 5a, 5b: piping, 6: pump, 7: spray nozzle, 8a, 8b: sub tank, 9a, 9b: liquid level sensor, 10: CPU, 11,
11a, 11b: piping, 12: main tank, 13: body, 14: engine, 15: main tank, 16: sub tank, 17: liquid level sensor, 18: piping, 19: piping,
20: tilt sensor, 21: CPU, 22: communication pipe, 2
3: communication valve, 24: rotor shaft, 30: body, 31:
Unmanned helicopter, 32: engine, 33: transmission, 34: rotor shaft, 35: main rotor, 3
6: Main tank, 37a, 37b: Sub tank, 3
8: skid, 39: tail rotor, 40: fuselage, 4
1: rotor shaft, 42a, 42b: chemical liquid tank, 43: chemical liquid pump, 44: feed pipe, 45: spray nozzle, 46: coupler, 47: tube, 48: tube, 49: valve, 50: motor wiring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】飛行中に消費される液体を収容した複数の
液体タンクと、 各液体タンクの液量検出手段と、 各液体タンクからポンプにより液体を吸引して液体消費
部に送る液体供給配管系と、 前記液体供給配管系による各液体タンクからの液体吸引
量を制御する制御装置とを備えた無人ヘリコプターの液
体タンク搭載構造であって、 前記制御装置は、前記液量検出手段の検出データに基づ
いて、平面視での液体タンク全体の重心位置が一定に維
持されるように各液体タンクからの液体吸引量を制御す
ることを特徴とする無人ヘリコプターの液体タンク搭載
構造。
1. A plurality of liquid tanks containing liquid consumed during flight, liquid amount detecting means of each liquid tank, and a liquid supply pipe for sucking liquid from each liquid tank by a pump and sending the liquid to a liquid consuming unit. A liquid tank mounting structure of an unmanned helicopter, comprising: a control unit that controls a liquid suction amount from each liquid tank by the liquid supply piping system, wherein the control device detects detection data of the liquid amount detection unit. A liquid tank mounting structure for an unmanned helicopter, characterized in that the liquid suction amount from each liquid tank is controlled so that the position of the center of gravity of the entire liquid tank in a plan view is kept constant based on the.
【請求項2】前記複数の液体タンクの底部同士を連通管
で連通し、該連通管の途中に開閉弁を設け、機体の傾斜
角を検出する傾斜センサを備え、該傾斜センサの検出角
度が所定値以上の場合に前記開閉弁を閉じることを特徴
とする請求項1に記載の無人ヘリコプターの液体タンク
搭載構造。
2. The apparatus according to claim 2, further comprising a communication pipe connecting the bottoms of the plurality of liquid tanks with a communication pipe, an on-off valve provided in the middle of the communication pipe, and a tilt sensor for detecting a tilt angle of the body. The liquid tank mounting structure for an unmanned helicopter according to claim 1, wherein the on-off valve is closed when the value is equal to or more than a predetermined value.
JP2000367051A 2000-12-01 2000-12-01 Liquid tank loading structure for pilotless helicopter Pending JP2002166893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367051A JP2002166893A (en) 2000-12-01 2000-12-01 Liquid tank loading structure for pilotless helicopter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367051A JP2002166893A (en) 2000-12-01 2000-12-01 Liquid tank loading structure for pilotless helicopter

Publications (1)

Publication Number Publication Date
JP2002166893A true JP2002166893A (en) 2002-06-11

Family

ID=18837556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367051A Pending JP2002166893A (en) 2000-12-01 2000-12-01 Liquid tank loading structure for pilotless helicopter

Country Status (1)

Country Link
JP (1) JP2002166893A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248378A (en) * 2005-03-10 2006-09-21 Yamaha Motor Co Ltd Antenna arrangement structure of unmanned helicopter
JP2006264567A (en) * 2005-03-25 2006-10-05 Yamaha Motor Co Ltd Helicopter
JP2006264526A (en) * 2005-03-24 2006-10-05 Yamaha Motor Co Ltd Heavy article disposing structure for pilotless helicopter
JP2006264573A (en) * 2005-03-25 2006-10-05 Yamaha Motor Co Ltd Unmanned helicopter
JP2006264566A (en) * 2005-03-25 2006-10-05 Yamaha Motor Co Ltd Camera device for unattended helicopter
JP2006282039A (en) * 2005-04-01 2006-10-19 Yamaha Motor Co Ltd Image transmission device for pilotless helicopter
JP4589394B2 (en) * 2005-08-04 2010-12-01 ヤマハ発動機株式会社 Unmanned helicopter
CN104554724A (en) * 2014-11-14 2015-04-29 山东农业大学 Low-cost and high-load specialized plant-protection unmanned aerial vehicle and driving method
CN106114822A (en) * 2016-08-03 2016-11-16 安阳全丰航空植保科技股份有限公司 The dynamic many rotors agricultural plant protection helicopter flight attitude regulator control system of oil
JP2019078579A (en) * 2017-10-23 2019-05-23 三菱航空機株式会社 Liquid amount calculating device and mobile body center of gravity changing device
JP2022503758A (en) * 2018-10-19 2022-01-12 アンドゥリル・インダストリーズ・インコーポレーテッド Impact-resistant autonomous helicopter platform
JP7320895B1 (en) 2023-02-28 2023-08-04 株式会社Flight PILOT Flying mobile body and liquid ejection system equipped with the flying mobile body

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514142B2 (en) * 2005-03-10 2010-07-28 ヤマハ発動機株式会社 Antenna arrangement structure of unmanned helicopter
JP2006248378A (en) * 2005-03-10 2006-09-21 Yamaha Motor Co Ltd Antenna arrangement structure of unmanned helicopter
JP2006264526A (en) * 2005-03-24 2006-10-05 Yamaha Motor Co Ltd Heavy article disposing structure for pilotless helicopter
JP4532318B2 (en) * 2005-03-25 2010-08-25 ヤマハ発動機株式会社 Unmanned helicopter
JP2006264566A (en) * 2005-03-25 2006-10-05 Yamaha Motor Co Ltd Camera device for unattended helicopter
JP2006264573A (en) * 2005-03-25 2006-10-05 Yamaha Motor Co Ltd Unmanned helicopter
JP2006264567A (en) * 2005-03-25 2006-10-05 Yamaha Motor Co Ltd Helicopter
JP2006282039A (en) * 2005-04-01 2006-10-19 Yamaha Motor Co Ltd Image transmission device for pilotless helicopter
JP4499600B2 (en) * 2005-04-01 2010-07-07 ヤマハ発動機株式会社 Unmanned helicopter image transmission device
JP4589394B2 (en) * 2005-08-04 2010-12-01 ヤマハ発動機株式会社 Unmanned helicopter
CN104554724A (en) * 2014-11-14 2015-04-29 山东农业大学 Low-cost and high-load specialized plant-protection unmanned aerial vehicle and driving method
CN106114822A (en) * 2016-08-03 2016-11-16 安阳全丰航空植保科技股份有限公司 The dynamic many rotors agricultural plant protection helicopter flight attitude regulator control system of oil
JP2019078579A (en) * 2017-10-23 2019-05-23 三菱航空機株式会社 Liquid amount calculating device and mobile body center of gravity changing device
JP7129159B2 (en) 2017-10-23 2022-09-01 三菱航空機株式会社 Liquid volume calculation device and moving body center of gravity change device
JP2022503758A (en) * 2018-10-19 2022-01-12 アンドゥリル・インダストリーズ・インコーポレーテッド Impact-resistant autonomous helicopter platform
US11443640B2 (en) 2018-10-19 2022-09-13 Anduril Industries, Inc. Ruggedized autonomous helicopter platform
JP7185026B2 (en) 2018-10-19 2022-12-06 アンドゥリル・インダストリーズ・インコーポレーテッド Shock-resistant autonomous helicopter platform
US11721222B2 (en) 2018-10-19 2023-08-08 Anduril Industries, Inc. Ruggedized autonomous helicopter platform
JP7320895B1 (en) 2023-02-28 2023-08-04 株式会社Flight PILOT Flying mobile body and liquid ejection system equipped with the flying mobile body

Similar Documents

Publication Publication Date Title
JP2002166893A (en) Liquid tank loading structure for pilotless helicopter
WO2010053045A1 (en) Fuel tank
JPH05124445A (en) Fuel feeding device for vehicle
US20050252539A1 (en) Vehicular washer nozzle
JP3820579B2 (en) Fuel supply device
KR20140102584A (en) Unmanned aerial vehicle with multiple rotor
US20220339947A1 (en) Inkjet printing system having dynamically controlled meniscus pressure
JP2006001484A (en) Chemical spraying device for unmanned helicopter
JP2012176679A (en) Unmanned helicopter
JP2006001485A (en) Monitoring system for unmanned helicopter
JP2002096930A (en) Powder fixed quantity supply device
US4055303A (en) Agrichemical spraying system
JP6192211B2 (en) Ship with a hollow hull
US8753157B2 (en) Water jet propulsion boat
WO2020113445A1 (en) Agricultural unmanned aerial vehicle
JPH10113589A (en) Aerial application device
WO2021040005A1 (en) Circulation device
JP2001287552A (en) Fuel tank of working vehicle
JP7320895B1 (en) Flying mobile body and liquid ejection system equipped with the flying mobile body
KR101981626B1 (en) Driving direction control apparatus for underwater vehicle
JPH11138068A (en) Chemical solution spreading device borne by wireless controlled helicopter
JP4364863B2 (en) Piping structure for tank truck
WO2023190167A1 (en) Coating device and coating method
JP3062914U (en) Gasoline tank structure of high-wing monoplane
JP3938814B2 (en) Radio control helicopter control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929