JP2002161319A - Cylinder for molding machine - Google Patents

Cylinder for molding machine

Info

Publication number
JP2002161319A
JP2002161319A JP2000351138A JP2000351138A JP2002161319A JP 2002161319 A JP2002161319 A JP 2002161319A JP 2000351138 A JP2000351138 A JP 2000351138A JP 2000351138 A JP2000351138 A JP 2000351138A JP 2002161319 A JP2002161319 A JP 2002161319A
Authority
JP
Japan
Prior art keywords
granulated powder
cylinder
lining layer
molding machine
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000351138A
Other languages
Japanese (ja)
Inventor
Kenichiro Shimizu
健一郎 清水
Masanori Amano
正則 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000351138A priority Critical patent/JP2002161319A/en
Publication of JP2002161319A publication Critical patent/JP2002161319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylinder for a molding machine with a superior workability and economical efficiency as well as a superior wear resistance and corrosion resistance, by increasing volume occupation rate of hard particles in a lining layer. SOLUTION: The cylinder for the molding machine, which is provided with the lining layer containing a wear resistant and corrosion resistant alloy on the inner surface of the hollow and cylindrical base material, is characterized by that granulated grains consisting of hard particles bonded by metal are dispersed in the lining layer. The granulated grain has a higher specific gravity than that of the wear resistant and corrosion resistant alloy, and has a spherical shape with an average diameter of 30-300 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてプラスチ
ックの成形機に用られ、中空円筒形状のシリンダ母材の
内面にライニング層を形成した複合構造のシリンダに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder having a composite structure in which a lining layer is formed on the inner surface of a hollow cylindrical cylinder base material, which is mainly used for a plastic molding machine.

【0002】[0002]

【従来の技術】プラスチック製品等の成形に用いられる
成形機用シリンダは、加熱成形中の樹脂または樹脂に加
えられた添加剤による腐食を防止するために、鋼からな
る中空円筒状のシリンダ母材の内面に、耐摩耗性と耐食
性とを有する合金(以下、耐摩耗耐食性合金という)か
らなるライニング層を形成している。そして、シリンダ
母材の内面に耐摩耗耐食性合金からなるライニング層を
形成する方法としては、遠心鋳造法、熱間静水圧焼結
法、焼き嵌め法等が採用されている。
2. Description of the Related Art A cylinder for a molding machine used for molding a plastic product or the like is a hollow cylindrical cylinder base material made of steel in order to prevent corrosion caused by a resin or an additive added to the resin during hot molding. A lining layer made of an alloy having abrasion resistance and corrosion resistance (hereinafter, referred to as a wear-resistant and corrosion-resistant alloy) is formed on the inner surface of the substrate. As a method for forming a lining layer made of a wear-resistant and corrosion-resistant alloy on the inner surface of the cylinder base material, a centrifugal casting method, a hot isostatic sintering method, a shrink fitting method, or the like is adopted.

【0003】ライニング層を形成する耐摩耗耐食性合金
としては、ニッケル基合金、コバルト基合金などが用い
られている。また、これらの耐摩耗耐食性合金に硬質粒
子である炭化タングステン(WC)、炭化ニオブ(Nb
C)、炭化チタン(TiC)などを遠心鋳造法により分
散させることにより、より耐摩耗性を向上させたライニ
ング層も提案されている。
As a wear-resistant and corrosion-resistant alloy forming a lining layer, a nickel-based alloy, a cobalt-based alloy or the like is used. In addition, tungsten carbide (WC) and niobium carbide (Nb) which are hard particles are added to these wear-resistant and corrosion-resistant alloys.
A lining layer further improved in wear resistance by dispersing C), titanium carbide (TiC) or the like by a centrifugal casting method has also been proposed.

【0004】例えば特開平7−290186号公報に
は、重量%で、炭化タングステン:30〜45%、ニッ
ケル+コバルト:35〜50%、モリブデン:1%以
下、クロム:10%以下、硼素:1〜3%、珪素:1〜
3%、マンガン:2%以下、鉄:8〜25%、炭素:1
%以下を含有する遠心鋳造用炭化タングステン複合ライ
ニング材が開示されている。同公報には、炭化タングス
テンは平均粒径が6〜12μmの球状粉末からなり、ラ
イニング層中の炭化タングステンの体積率は25〜45
%である成形機用シリンダのライニング材が記載されて
いる。また、炭化タングステンの形状を粉砕型の角ばっ
たものから、球状に変えることにより、金属摩擦におい
て相手材に傷をつけることを防止することが記載されて
いる。
For example, Japanese Patent Application Laid-Open No. Hei 7-290186 discloses that, in terms of% by weight, tungsten carbide: 30 to 45%, nickel + cobalt: 35 to 50%, molybdenum: 1% or less, chromium: 10% or less, boron: 1 ~ 3%, silicon: 1 ~
3%, manganese: 2% or less, iron: 8 to 25%, carbon: 1
% Of tungsten carbide composite lining material for centrifugal casting. According to the publication, tungsten carbide is composed of spherical powder having an average particle diameter of 6 to 12 μm, and the volume ratio of tungsten carbide in the lining layer is 25 to 45.
% Of the molding machine cylinder lining material. Further, it is described that the shape of tungsten carbide is changed from a pulverized square shape to a spherical shape, thereby preventing a mating material from being damaged by metal friction.

【0005】図3は従来例であり、ニッケル基耐摩耗耐
食性合金中に、硬質粒子として角形の形状をした炭化タ
ングステンの単体粒子を30体積%分散させた組織写真
を示す。シリンダ内周面のライニング層は、遠心鋳造時
のライニング層内周面に発生する鋳造欠陥などを見越し
てある程度の加工取り代を設けて形成される。その後、
機械加工により、ライニング層の不要な内径部分を除去
して所定の内径寸法にする。
FIG. 3 is a conventional example, and shows a structure photograph in which single particles of tungsten carbide having a square shape as hard particles are dispersed in a nickel-based wear-resistant and corrosion-resistant alloy by 30% by volume. The lining layer on the inner peripheral surface of the cylinder is formed with a certain machining allowance in anticipation of casting defects or the like generated on the inner peripheral surface of the lining layer during centrifugal casting. afterwards,
Unnecessary inner diameter portions of the lining layer are removed by machining to have a predetermined inner diameter.

【0006】[0006]

【発明が解決しようとする課題】従来の耐摩耗耐食性合
金中に硬質粒子を30〜45体積%分散させた成形機用
シリンダは、耐摩耗性が良好であるが、高圧による射出
成形、高サイクル化、ガラス繊維等を添加した難成形材
の成形など成形条件が一層厳しくなる用途では、さらな
る耐摩耗性の向上が必要になってきた。そのためには、
硬質粒子の含有量を多くすればよく、一つの手段として
硬質粒子の粒径を大きくすることが考えられる。しかし
ながら、そうすると内径加工が困難となり加工に長時間
を費やし経済性が悪化する問題がある。したがって、本
発明の目的は、ライニング層に占める硬質粒子の体積率
を上げて耐摩耗性および耐食性に優れるとともに、加工
性および経済性に優れる成形機用シリンダを提供するこ
とにある。
A conventional cylinder for molding machines in which 30 to 45% by volume of hard particles are dispersed in an abrasion-resistant and corrosion-resistant alloy has good abrasion resistance. In applications where molding conditions are more stringent, such as molding of difficult-to-mold materials to which glass fibers or the like are added, further improvement in wear resistance has been required. for that purpose,
It is sufficient to increase the content of the hard particles, and as one means, it is conceivable to increase the particle size of the hard particles. However, in this case, there is a problem that the inner diameter processing becomes difficult, and a long time is required for the processing, and the economic efficiency is deteriorated. Accordingly, an object of the present invention is to provide a cylinder for a molding machine which is excellent in wear resistance and corrosion resistance by increasing the volume ratio of hard particles in a lining layer, and is excellent in workability and economy.

【0007】[0007]

【課題を解決するための手段】本発明は、中空円筒形状
のシリンダ母材の内面に耐摩耗耐食性合金を含有したラ
イニング層を形成した成形機用シリンダにおいて、前記
ライニング層に、硬質粒子を金属で結合した造粒粉が分
散していることを特徴とする。本発明において、造粒粉
が耐摩耗耐食性合金より比重が大きいことを特徴とす
る。造粒粉が平均粒径30〜300μmの球状粒子であ
ることを特徴とする。ライニング層に占める造粒粉の体
積率が50〜70%であることを特徴とする。ライニン
グ層に占める造粒粉の体積率の軸方向の差が10%以内
であることを特徴とする。造粒粉は、硬質粒子として炭
化タングステン粉末を含むことを特徴とする。造粒粉
は、炭化タングステン粉末をコバルトにより結合したも
のであることを特徴とする。耐摩耗耐食性合金は、ニッ
ケル基合金からなることを特徴とする。ライニング層
に、造粒粉を遠心鋳造法により分散させたことを特徴と
する。
SUMMARY OF THE INVENTION The present invention relates to a cylinder for a molding machine in which a lining layer containing a wear-resistant and corrosion-resistant alloy is formed on the inner surface of a hollow cylindrical cylinder base material. Characterized in that the granulated powder bound by the above is dispersed. The present invention is characterized in that the granulated powder has a higher specific gravity than the wear-resistant and corrosion-resistant alloy. The granulated powder is a spherical particle having an average particle diameter of 30 to 300 μm. The volume ratio of the granulated powder in the lining layer is 50 to 70%. The difference of the volume ratio of the granulated powder in the lining layer in the axial direction is within 10%. The granulated powder is characterized by containing tungsten carbide powder as hard particles. The granulated powder is characterized by combining tungsten carbide powder with cobalt. The wear-resistant and corrosion-resistant alloy is made of a nickel-based alloy. The granulated powder is dispersed in the lining layer by a centrifugal casting method.

【0008】[0008]

【発明の実施の形態】本発明は、硬質粒子を結合剤であ
る金属で強固に結合した造粒粉を、耐摩耗耐食性合金を
含有するライニング層中に分散させる。硬質粒子を結合
剤である金属で結合した造粒粉は、単体の硬質粒子が予
め造粒粉中に均一に分散されている。結合剤である金属
として、耐摩耗耐食性合金の溶湯に溶け出さない融点の
高い金属を用いる。また、造粒粉の比重を耐摩耗耐食性
合金の比重より大きくする。このように構成した造粒粉
を、ライニング層を形成する耐摩耗性耐食性合金溶湯に
添加して、遠心鋳造すれば、その遠心力により、本発明
の造粒粉はシリンダ母材の内周面側(ライニング層の深
部)に偏って充填される。そのため、ライニング層内周
面の加工取り代の部分には硬質粒子がほとんど存在せず
内径加工が容易にでき、加工後は造粒粉中の硬質粒子が
ライニング層中に均一にかつ密に分散した状態となる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, granulated powder in which hard particles are firmly bound with a metal as a binder is dispersed in a lining layer containing a wear-resistant and corrosion-resistant alloy. In the granulated powder in which the hard particles are bonded with a metal as a binder, simple hard particles are uniformly dispersed in the granulated powder in advance. As the metal serving as the binder, a metal having a high melting point that does not dissolve in the molten metal of the wear-resistant and corrosion-resistant alloy is used. Further, the specific gravity of the granulated powder is made larger than the specific gravity of the wear-resistant and corrosion-resistant alloy. If the granulated powder thus configured is added to the abrasion-resistant and corrosion-resistant alloy melt forming the lining layer and subjected to centrifugal casting, the centrifugal force causes the granulated powder of the present invention to become an inner peripheral surface of the cylinder base material. It is filled unevenly on the side (deep part of the lining layer). As a result, hard particles hardly exist in the machining allowance on the inner peripheral surface of the lining layer, and the inner diameter can be easily processed. After processing, the hard particles in the granulated powder are uniformly and densely dispersed in the lining layer. It will be in the state of having done.

【0009】本発明の造粒粉の形状は球状であることが
好ましい。造粒粉が球状であると、シリンダとプラスチ
ック樹脂等の成形材やスクリュ等との摩擦において相手
材を傷つけることを防止できる。また、遠心鋳造法によ
り角状の造粒粉を耐摩耗耐食性合金中に密に分散させよ
うとすると、この角状の造粒粉は架橋の状態になり易
い。ライニング層の表面部においてこの架橋が生じる
と、ライニング層の表面部に合金マトリックスのみが分
布した箇所が発生し易くなる。この架橋部の合金マトリ
ックスは硬質粒子と比較して柔らかいために樹脂との接
触により優先的に摩耗するために、ライニング層の耐摩
耗性は低下するものと考えられる。これに対して、造粒
粉を球状化すると、ライニング層に造粒粉を均一に分散
させることができるため、上記のような架橋が発生する
割合は少なくなる。
[0009] The shape of the granulated powder of the present invention is preferably spherical. When the granulated powder is spherical, it is possible to prevent the mating material from being damaged by friction between the cylinder and a molding material such as a plastic resin or a screw. Further, when the horn-like granulated powder is to be dispersed densely in the wear-resistant and corrosion-resistant alloy by the centrifugal casting method, the horn-shaped granulated powder is likely to be in a crosslinked state. If this cross-linking occurs on the surface of the lining layer, a portion where only the alloy matrix is distributed tends to occur on the surface of the lining layer. It is considered that the wear resistance of the lining layer is lowered because the alloy matrix of the crosslinked portion is softer than the hard particles and is preferentially worn by contact with the resin. On the other hand, when the granulated powder is made spherical, the granulated powder can be uniformly dispersed in the lining layer, so that the rate of occurrence of the above-mentioned crosslinking decreases.

【0010】さらに、造粒粉を球状化する効果として
は、造粒粉は角状よりも球状にした方が鋳造欠陥の発生
が少ないと考えられる。その理由は、遠心鋳造後に耐摩
耗耐食性合金が凝固する際に、シリンダ母材の境界側か
ら凝固が始まる。液体から固体へ変化するときに、収縮
が発生し、造粒粉の周りには鋳造欠陥(引け巣)が発生
するが、耐摩耗耐食性合金の内面部側はまだ液体である
ため、この液相が押し湯となってこの欠陥部を埋めるこ
とになる。しかし、造粒粉が角状であると、遠心鋳造に
より角状の造粒粉は隙間なく密集する状態になり易い。
このため、角状の造粒粉が密に密集した造粒粉の間に
は、凝固時に耐摩耗耐食性合金の溶湯が進入し難くなっ
て鋳造欠陥が発生し易くなる。これに対して、造粒粉が
球状であると、この造粒粉が耐摩耗耐食性合金に密に密
集しても、必ず造粒粉間に隙間ができるから、造粒粉の
周りへの溶湯の補充は確実に行われるために、鋳造欠陥
は発生しなくなる。また、硬質粒子が角状であると、角
部があるために、耐摩耗耐食性合金とのぬれ性を考慮す
ると、耐摩耗耐食性合金の溶湯がこの角部を超え難くな
り、鋳造欠陥がより発生し易くなると考えられる。
[0010] Further, as for the effect of making the granulated powder spheroid, it is considered that casting defects occur less when the granulated powder is made spherical than when it is square. The reason is that when the wear-resistant and corrosion-resistant alloy solidifies after centrifugal casting, solidification starts from the boundary side of the cylinder base material. When changing from a liquid to a solid, shrinkage occurs and casting defects (shrinkage cavities) occur around the granulated powder, but since the inner surface side of the wear-resistant and corrosion-resistant alloy is still liquid, this liquid phase Becomes hot water and fills this defective part. However, when the granulated powder is angular, the centrifugal casting tends to cause the angular granulated powder to be dense without gaps.
For this reason, it becomes difficult for the molten metal of the wear-resistant and corrosion-resistant alloy to enter between the granulated powders in which the horn-shaped granulated powders are densely packed, so that casting defects are likely to occur. On the other hand, if the granulated powder is spherical, even if the granulated powder is densely packed with the wear-resistant and corrosion-resistant alloy, a gap is always formed between the granulated powders. Is reliably performed, so that casting defects do not occur. In addition, when the hard particles are angular, since there is a corner, in consideration of the wettability with the wear-resistant and corrosion-resistant alloy, it becomes difficult for the molten metal of the wear-resistant and corrosion-resistant alloy to exceed the corner, and more casting defects occur. It is thought that it becomes easy to do.

【0011】また、本発明の造粒粉は平均粒径が30〜
300μmであることが好ましい。平均粒径が30μm
より小さいと、ライニング層に造粒粉を密に分散させる
ことができなくなり、平均粒径が300μmより大きく
なると、ライニング層における造粒粉と造粒粉との隙間
が大きくなり過ぎ、耐摩耗耐食性合金のマトリックスの
みが表面部に露出した面積の割合が大きくなり易く、そ
の結果、耐摩耗性・耐食性が劣化するからである。望ま
しくは、ライニング層に分散される造粒粉の平均粒径は
50〜150μmにするのがよい。
The granulated powder of the present invention has an average particle size of 30 to
Preferably it is 300 μm. Average particle size is 30μm
If it is smaller, the granulated powder cannot be densely dispersed in the lining layer. If the average particle size is larger than 300 μm, the gap between the granulated powder and the granulated powder in the lining layer becomes too large, resulting in wear resistance and corrosion resistance. This is because the ratio of the area where only the alloy matrix is exposed on the surface tends to increase, and as a result, the wear resistance and corrosion resistance deteriorate. Desirably, the average particle size of the granulated powder dispersed in the lining layer is 50 to 150 μm.

【0012】造粒粉を構成する硬質粒子としては、炭化
タングステン、炭化チタン、炭化ニオブ、炭化バナジウ
ム、モリブデンの炭化物、タングステンやモリブデンの
硼化物あるいは珪化物、これらの1種または2種以上を
混合した硬質粒子を用いることができる。そして、これ
らの硬質粒子を結合剤であるコバルト等の金属により結
合して造粒粉にする。造粒粉中の結合剤であるコバルト
等の金属の含有量は5〜10重量%にするのがよい。本
発明において、硬質粒子として炭化タングステン粉末を
含むことが望ましい。炭化タングステンの硬質粒子を用
いると、炭化タングステン粒子はニッケルとのぬれ性が
極めて良好であるため、ライニング層としてニッケル基
合金からなる耐摩耗耐食性合金を使用した場合に、遠心
鋳造法によりこのニッケル基耐摩耗耐食性合金に炭化タ
ングステンを含む造粒粉が良好に分散する。
The hard particles constituting the granulated powder include tungsten carbide, titanium carbide, niobium carbide, vanadium carbide, carbide of molybdenum, boride or silicide of tungsten or molybdenum, or a mixture of one or more of these. Hard particles can be used. Then, these hard particles are combined with a metal such as cobalt as a binder to form granulated powder. The content of a metal such as cobalt as a binder in the granulated powder is preferably 5 to 10% by weight. In the present invention, it is desirable to include tungsten carbide powder as hard particles. When tungsten carbide hard particles are used, the tungsten carbide particles have extremely good wettability with nickel. Therefore, when a wear-resistant and corrosion-resistant alloy made of a nickel-based alloy is used as the lining layer, this nickel-based alloy is centrifugally cast. Granulated powder containing tungsten carbide is well dispersed in the wear and corrosion resistant alloy.

【0013】硬質粒子を金属で結合させた造粒粉を製造
するためには、例えば硬質粒子が炭化タングステン粒子
の場合、平均粒径が1〜10μmの炭化タングステンの
粉末に、結合剤となるコバルト等の融点の高い金属の粉
末(平均粒径0.5〜10μm)、および溶媒等を添加
混合し、噴霧式造粒装置あるいはスイング式造粒装置等
を用いて所定の平均粒径を有するグリーン粉を製造す
る。続いて、このグリーン粉を焼結し、分級することに
より、炭化タングステン微粉末がコバルト等の金属によ
り強固に結合し、かつ球状化した造粒粉を製造すること
ができる。なお、造粒粉中の炭化タングステンの含有量
を94重量%、結合剤としてコバルトの含有量を6重量
%にすると、この造粒粉の比重は14.8となる。造粒
粉がニッケル基耐摩耗耐食性合金の比重約8より1.5
倍以上大きく、球状化され、かつ平均粒径が30〜30
0μmのもの使用すれば、遠心鋳造法によりこの造粒粉
を耐摩耗耐食性合金に密に、かつ均一に充填できる。
In order to produce a granulated powder in which hard particles are bonded with a metal, for example, when the hard particles are tungsten carbide particles, a tungsten carbide powder having an average particle size of 1 to 10 μm is added to a cobalt as a binder. And a high melting point metal powder (average particle size of 0.5 to 10 μm), a solvent and the like are added and mixed, and a green material having a predetermined average particle size is obtained using a spray granulator or a swing granulator. Produce flour. Subsequently, by sintering and classifying the green powder, it is possible to produce a granulated powder in which the tungsten carbide fine powder is firmly bound by a metal such as cobalt and is spherical. When the content of tungsten carbide in the granulated powder is 94% by weight and the content of cobalt as a binder is 6% by weight, the specific gravity of the granulated powder is 14.8. The granulated powder is 1.5 from the specific gravity of nickel-based abrasion and corrosion resistant alloy of about 8
More than twice as large and spherical, and the average particle size is 30 to 30
If a powder having a thickness of 0 μm is used, the granulated powder can be densely and uniformly filled in the wear-resistant and corrosion-resistant alloy by a centrifugal casting method.

【0014】本発明において、仕上げ加工後のシリンダ
製品のライニング層に占める造粒粉の体積率が50〜7
0%であることが好ましい。ライニング層に含まれる造
粒粉の体積率が50%未満では、ライニング層の耐摩耗
性が従来のシリンダと比較して大幅な向上が見られず、
70%を超えると、実際上製造が困難になる。より好ま
しくは、ライニング層に占める造粒粉の体積率は55〜
65%とするのがよい。また、製品の性能および信頼性
を確保するために、ライニング層に占める造粒粉の体積
率の軸方向の差が10%以内の均一に分散されることが
望ましい。
In the present invention, the volume ratio of the granulated powder in the lining layer of the finished cylinder product is 50 to 7%.
It is preferably 0%. If the volume ratio of the granulated powder contained in the lining layer is less than 50%, the wear resistance of the lining layer is not significantly improved as compared with the conventional cylinder,
If it exceeds 70%, production becomes practically difficult. More preferably, the volume ratio of the granulated powder in the lining layer is 55 to 55.
It is better to be 65%. In addition, in order to ensure the performance and reliability of the product, it is desirable that the difference in the volume ratio of the granulated powder in the lining layer in the axial direction is uniformly dispersed within 10%.

【0015】[0015]

【実施例】(実施例1)平均粒径が5μmの炭化タング
ステン粒子94重量%を、結合剤であるコバルト6重量
%で結合した造粒粉(WC−Coの超硬粉)を準備し
た。造粒粉は平均粒径が80μmの球状粒子であり、比
重が14.9であった。また、耐摩耗耐食性合金とし
て、ニッケル基合金(重量%でC:0.1%、Si:
1.0%、Mn:1.0%、Cr:7.5%、B:2.
9%、Co:10.0%、Ni:残部)からなる溶湯を
高周波炉で製造した。このニッケル基耐摩耗耐食性合金
の比重は8.0であった。このニッケル基耐摩耗耐食性
合金の溶湯が1200℃になったときに、この溶湯に前
記造粒粉を36体積%添加した。
EXAMPLES (Example 1) Granulated powder (ultra-hard WC-Co powder) was prepared by combining 94% by weight of tungsten carbide particles having an average particle diameter of 5 μm with 6% by weight of cobalt as a binder. The granulated powder was spherical particles having an average particle diameter of 80 μm, and the specific gravity was 14.9. Further, as a wear-resistant and corrosion-resistant alloy, a nickel-based alloy (C: 0.1% by weight, Si:
1.0%, Mn: 1.0%, Cr: 7.5%, B: 2.
9%, Co: 10.0%, Ni: balance) were produced in a high-frequency furnace. The specific gravity of this nickel-based wear-resistant corrosion-resistant alloy was 8.0. When the temperature of the molten nickel-based wear-resistant and corrosion-resistant alloy reached 1200 ° C., 36% by volume of the granulated powder was added to the molten metal.

【0016】続いて、クロムモリブデン鋼からなる中空
円筒状のシリンダ母材を横型遠心鋳造機にセットした状
態で加熱した。シリンダ母材が1200℃に加熱された
後、シリンダ母材の内面部に、上記の造粒粉を添加した
ニッケル基耐摩耗耐食性合金の溶湯を注入し、封入式遠
心鋳造法によりニッケル基耐摩耗耐食性合金に造粒粉を
密に分散させたライニング層を形成した。この遠心鋳造
法により製造したシリンダの素材の大きさは外径110
mm×内径30mm×長さ1500mmである。
Subsequently, a hollow cylindrical base material made of chromium molybdenum steel was heated while being set in a horizontal centrifugal casting machine. After the cylinder base material is heated to 1200 ° C., the molten metal of the nickel-based wear-resistant and corrosion-resistant alloy to which the above-mentioned granulated powder is added is poured into the inner surface of the cylinder base material, and the nickel-based wear-resistant alloy is encapsulated by centrifugal casting. A lining layer in which granulated powder was densely dispersed in the corrosion resistant alloy was formed. The size of the cylinder material manufactured by this centrifugal casting method is 110
mm × 30 mm inner diameter × 1500 mm length.

【0017】製造したシリンダ素材について、ニッケル
基耐摩耗耐食性合金中に造粒粉が分散していない内径部
近傍はBTA加工により除去した。続いて、ニッケル基
耐摩耗耐食性合金に造粒粉が遠心分離により充填してい
る硬質層にはホーニング加工を施して、所定の厚さの造
粒粉が密に充填しているライニング層を仕上げた。仕上
げ加工後のシリンダのライニング層の厚さは1.9m
m、ライニング層に占めるWC−Coからなる造粒粉の
体積率は61%であった。このときのライニング層の顕
微鏡写真を図1に示す。図1から明らかなように、ライ
ニング層中の造粒粉は球状化した形状が保持された状態
で、密に分散されていることが確認できた。
In the manufactured cylinder material, the vicinity of the inner diameter portion where the granulated powder was not dispersed in the nickel-based wear-resistant and corrosion-resistant alloy was removed by BTA processing. Next, the hard layer, in which the granulated powder is filled by centrifugal separation into the nickel-based wear-resistant and corrosion-resistant alloy, is subjected to honing to finish the lining layer in which the granulated powder of a predetermined thickness is densely filled. Was. The thickness of the lining layer of the finished cylinder is 1.9m
m, the volume ratio of the granulated powder composed of WC-Co in the lining layer was 61%. FIG. 1 shows a micrograph of the lining layer at this time. As is clear from FIG. 1, it was confirmed that the granulated powder in the lining layer was densely dispersed in a state where the spherical shape was maintained.

【0018】(実施例2)実施例1で製作した成形機用
シリンダのライニング層から試料(本発明例)を作成し
て、耐アブレイシブ摩耗試験による耐摩耗性の評価を行
った。耐アブレイシブ摩耗試験の条件は、SiCエメリ
ー紙:#400、回転数:350rpm、加圧力:3
N、試験時間:3分である。
Example 2 A sample (Example of the present invention) was prepared from the lining layer of the cylinder for a molding machine manufactured in Example 1, and the wear resistance was evaluated by an abrasive wear test. Conditions for the abrasive wear resistance test were as follows: SiC emery paper: # 400, rotation speed: 350 rpm, pressing force: 3
N, test time: 3 minutes.

【0019】また、本発明例の成形機用シリンダと比較
するために、比較例1及び比較例2について同様の耐摩
耗性の評価を行った。比較例1は、ニッケル基合金にニ
オブカーバイト(NbC)の焼結粒子を5体積%分散さ
せたライニング層から試料を作成した。比較例2は、ニ
ッケル基合金に30体積%の炭化タングステン粒子を分
散させたライニング層から試料を作成した。なお、比較
例2は、前述の図3に示す従来例と同じものである。
For comparison with the molding machine cylinder of the present invention, the same abrasion resistance was evaluated for Comparative Examples 1 and 2. In Comparative Example 1, a sample was prepared from a lining layer in which 5% by volume of niobium carbide (NbC) sintered particles were dispersed in a nickel-based alloy. In Comparative Example 2, a sample was prepared from a lining layer in which 30% by volume of tungsten carbide particles were dispersed in a nickel-based alloy. Comparative Example 2 is the same as the conventional example shown in FIG.

【0020】上記した耐アブレイシブ摩耗試験の結果を
図2に示す。図2から明らかなように、本発明例による
成形機用シリンダでは摩耗減量が1.3mg/cm2で
あり、比較例2では摩耗減量が8.4mg/cm2であ
り、本発明例は比較例2に比して耐摩耗性が5倍以上向
上することが判明した。
FIG. 2 shows the results of the above-described abrasive wear resistance test. As is apparent from FIG. 2, the cylinder for molding machine according to the present invention has a weight loss of 1.3 mg / cm 2, the comparative example 2 has a weight loss of 8.4 mg / cm 2, and the present invention is comparative example 2 It was found that the abrasion resistance was improved by a factor of 5 or more as compared with.

【0021】以上の説明においては、本発明の成形機用
シリンダは、プラスチック樹脂の成形に使用することに
ついて説明したが、本発明は、MIM、プラスチックス
マグネットの成形機用シリンダとしても利用することが
できる。
In the above description, the molding machine cylinder of the present invention is used for molding a plastic resin. However, the present invention is also applicable to a molding machine cylinder for MIM and plastic magnets. Can be.

【0022】[0022]

【発明の効果】以上に説明した本発明は次の効果を有し
ている。 (1)硬質粒子を分散させたライニング層を有する従来
の成形機用シリンダと比較して、耐摩耗性をさらに向上
できる。 (2)本発明は、超硬粒子を金属で結合し球状化した平
均粒径の比較的大きな造粒粉をライニング層に密に分散
させているため、ライニング層に占める造粒粉の体積率
を50〜70%と高くしても、ライニング層の内径部に
は造粒粉が分散しない硬質でない合金層を形成すること
ができるため、シリンダ内面部の内径加工が、硬質粒子
を単独で分散させた場合と比較して容易になる。
The present invention described above has the following effects. (1) Abrasion resistance can be further improved as compared with a conventional molding machine cylinder having a lining layer in which hard particles are dispersed. (2) In the present invention, since the granulated powder having a relatively large average particle diameter, which is formed by bonding superhard particles with metal and spheroidized, is densely dispersed in the lining layer, the volume ratio of the granulated powder in the lining layer is high. Even if it is as high as 50 to 70%, a non-hard alloy layer in which granulated powder is not dispersed can be formed in the inner diameter portion of the lining layer. It becomes easier as compared with the case where it is performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の成形機用シリンダのライニング層の
組織を示す顕微鏡写真(倍率100)である。
FIG. 1 is a micrograph (100 magnification) showing the structure of a lining layer of a cylinder for a molding machine of the present invention.

【図2】 本発明例および比較例となる成形機用シリン
ダの耐アブレイシブ摩耗試験の結果を示すグラフであ
る。
FIG. 2 is a graph showing the results of an abrasive wear resistance test of molding machine cylinders according to the present invention and comparative examples.

【図3】 従来の硬質粒子を分散させたライニング層の
組織を示す顕微鏡写真(倍率100)である。
FIG. 3 is a micrograph (magnification: 100) showing a structure of a lining layer in which conventional hard particles are dispersed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 29/02 C22C 29/02 C D 32/00 32/00 N ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) // C22C 29/02 C22C 29/02 CD 32/00 32/00 N

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 中空円筒形状のシリンダ母材の内面に耐
摩耗耐食性合金を含有したライニング層を形成した成形
機用シリンダにおいて、前記ライニング層に、硬質粒子
を金属で結合した造粒粉が分散していることを特徴とす
る成形機用シリンダ。
1. A molding machine cylinder in which a lining layer containing an abrasion-resistant and corrosion-resistant alloy is formed on the inner surface of a hollow cylinder-shaped cylinder base material, wherein granulated powder in which hard particles are bonded to a metal is dispersed in the lining layer. A molding machine cylinder.
【請求項2】 造粒粉が耐摩耗耐食性合金より比重が大
きいことを特徴とする請求項1に記載の成形機用シリン
ダ。
2. The molding machine cylinder according to claim 1, wherein the granulated powder has a higher specific gravity than the wear-resistant and corrosion-resistant alloy.
【請求項3】 造粒粉が平均粒径30〜300μmの球
状粒子であることを特徴とする請求項1または請求項2
に記載の成形機用シリンダ。
3. The granulated powder is a spherical particle having an average particle diameter of 30 to 300 μm.
A cylinder for a molding machine according to item 1.
【請求項4】 ライニング層に占める造粒粉の体積率が
50〜70%であることを特徴とする請求項1乃至請求
項3のいずれかに記載の成形機用シリンダ。
4. The molding machine cylinder according to claim 1, wherein the volume ratio of the granulated powder in the lining layer is 50 to 70%.
【請求項5】 ライニング層に占める造粒粉の体積率の
軸方向の差が10%以内であることを特徴とする請求項
1乃至請求項4のいずれかに記載の成形機用シリンダ。
5. The molding machine cylinder according to claim 1, wherein the difference in the volume ratio of the granulated powder occupying the lining layer in the axial direction is within 10%.
【請求項6】 造粒粉は、硬質粒子として炭化タングス
テン粉末を含むことを特徴とする請求項1乃至請求項5
のいずれかに記載の成形機用シリンダ。
6. The granulated powder contains tungsten carbide powder as hard particles.
The cylinder for a molding machine according to any one of the above.
【請求項7】 造粒粉は、炭化タングステン粉末をコバ
ルトにより結合したものであることを特徴とする請求項
1乃至請求項6のいずれかに記載の成形機用シリンダ。
7. The cylinder for a molding machine according to claim 1, wherein the granulated powder is obtained by binding tungsten carbide powder with cobalt.
【請求項8】 耐摩耗耐食性合金は、ニッケル基合金か
らなることを特徴とする請求項1乃至請求項7のいずれ
かに記載の成形機用シリンダ。
8. The molding machine cylinder according to claim 1, wherein the wear-resistant and corrosion-resistant alloy is made of a nickel-based alloy.
【請求項9】 ライニング層に、造粒粉を遠心鋳造法に
より分散させたことを特徴とする請求項1乃至請求項8
のいずれかに記載の成形機用シリンダ。
9. The method according to claim 1, wherein the granulated powder is dispersed in the lining layer by a centrifugal casting method.
The cylinder for a molding machine according to any one of the above.
JP2000351138A 2000-11-17 2000-11-17 Cylinder for molding machine Pending JP2002161319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351138A JP2002161319A (en) 2000-11-17 2000-11-17 Cylinder for molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351138A JP2002161319A (en) 2000-11-17 2000-11-17 Cylinder for molding machine

Publications (1)

Publication Number Publication Date
JP2002161319A true JP2002161319A (en) 2002-06-04

Family

ID=18824248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351138A Pending JP2002161319A (en) 2000-11-17 2000-11-17 Cylinder for molding machine

Country Status (1)

Country Link
JP (1) JP2002161319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201080A (en) * 2007-02-22 2008-09-04 Hitachi Metals Ltd Cylinder for molding machine
JP2009113457A (en) * 2007-11-09 2009-05-28 Hitachi Metals Ltd Cylinder for molding machine
CN107699760A (en) * 2017-09-20 2018-02-16 镇江市胜得机械制造有限责任公司 A kind of crawler body of high-bearing capacity
WO2019045067A1 (en) * 2017-08-31 2019-03-07 日立金属株式会社 Molding-machine cylinder and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201080A (en) * 2007-02-22 2008-09-04 Hitachi Metals Ltd Cylinder for molding machine
JP2009113457A (en) * 2007-11-09 2009-05-28 Hitachi Metals Ltd Cylinder for molding machine
WO2019045067A1 (en) * 2017-08-31 2019-03-07 日立金属株式会社 Molding-machine cylinder and method for producing same
JPWO2019045067A1 (en) * 2017-08-31 2020-11-12 日立金属株式会社 Cylinder for molding machine and its manufacturing method
EP3677402A4 (en) * 2017-08-31 2021-06-02 Hitachi Metals, Ltd. Molding-machine cylinder and method for producing same
JP7099465B2 (en) 2017-08-31 2022-07-12 日立金属株式会社 Cylinder for molding machine and its manufacturing method
US11389869B2 (en) 2017-08-31 2022-07-19 Hitachi Metals, Ltd. Cylinder for molding machine, and its production method
CN107699760A (en) * 2017-09-20 2018-02-16 镇江市胜得机械制造有限责任公司 A kind of crawler body of high-bearing capacity

Similar Documents

Publication Publication Date Title
JP5331003B2 (en) Polycrystalline diamond abrasive compact
US6844085B2 (en) Copper based sintered contact material and double-layered sintered contact member
US6238280B1 (en) Abrasive cutter containing diamond particles and a method for producing the cutter
US6663688B2 (en) Sintered material of spheroidal sintered particles and process for producing thereof
JP2014132117A (en) Hard powder having tough coat and sintered product thereof
JP2008502576A (en) Consolidation method for hard coated hard powder
JP5703272B2 (en) Abrasion resistant material
JP2000239770A (en) Production of cast alloy and complex cylinder
JP2872571B2 (en) Tungsten carbide composite lining material for centrifugal casting and tungsten carbide composite lining layer
WO1994000612A1 (en) Sintered extremely fine-grained titanium based carbonitride alloy with improved toughness and/or wear resistance
JP6044737B2 (en) Cylinder for molding machine and manufacturing method thereof
JP2002161319A (en) Cylinder for molding machine
JP2540510B2 (en) Abrasion resistant member and manufacturing method thereof
WO2011117244A1 (en) Aggregate abrasives for abrading or cutting tools production
US20170113271A1 (en) Powder mixtures containing uniform dispersions of ceramic particles in superalloy particles and related methods
JP7099465B2 (en) Cylinder for molding machine and its manufacturing method
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
JPH09150257A (en) Highly wear resistant composite material and manufacture thereof
JP2003138328A (en) Method of producing graphite-containing aluminum alloy, and sliding member
JP2014122425A (en) Method of compacting hard coated hard powder
JPS6127165A (en) Production of wear-resistant composite casting
JP5248000B2 (en) CoW-based target material and method for manufacturing the same
JPH04337046A (en) Wear resistant composite material and formation of wear resistant lining layer
JPH01294843A (en) Coating alloy having wear resistance and corrosion resistance and material for forming the same
JP2002004026A (en) Carbide-based composite powder for thermal spraying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091218