JP2009113457A - Cylinder for molding machine - Google Patents

Cylinder for molding machine Download PDF

Info

Publication number
JP2009113457A
JP2009113457A JP2007292417A JP2007292417A JP2009113457A JP 2009113457 A JP2009113457 A JP 2009113457A JP 2007292417 A JP2007292417 A JP 2007292417A JP 2007292417 A JP2007292417 A JP 2007292417A JP 2009113457 A JP2009113457 A JP 2009113457A
Authority
JP
Japan
Prior art keywords
cylinder
intermediate layer
melting point
molding machine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007292417A
Other languages
Japanese (ja)
Other versions
JP5177632B2 (en
Inventor
Masatsugu Uchida
真継 内田
Masashi Terayama
正志 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007292417A priority Critical patent/JP5177632B2/en
Publication of JP2009113457A publication Critical patent/JP2009113457A/en
Application granted granted Critical
Publication of JP5177632B2 publication Critical patent/JP5177632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that when a cylinder is manufactured by using a centrifugal casting method, an external cylinder made of a steel is partly melted by a molten lining layer alloy and causes iron being a main component of the external cylinder made of the steel to melt into the lining layer alloy and to decrease the corrosion resistance. <P>SOLUTION: The cylinder for a molding machine is such a cylinder for the molding machine that forms the lining layer consisting of an abrasion-resistant and anticorrosive alloy containing nickel as the main component on the inner face side of a hollow cylindrical external cylinder made of the steel. An intermediate layer is formed between the lining layer and the external cylinder made of the steel, and the intermediate layer contains high melting point particles in a base matrix comprising nickel as the main component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主として樹脂の成形機に用いられ、中空円筒形状の鋼製外筒の内面側にライニング層を形成した複合構造のシリンダに関するものである。   The present invention relates to a cylinder having a composite structure that is mainly used in a resin molding machine and has a lining layer formed on the inner surface side of a hollow cylindrical steel outer cylinder.

プラスチック製品等の成形に用いられる樹脂成形機用シリンダは、加熱成形中の樹脂または樹脂に加えられた添加剤による腐食および摩耗を抑制するために、主に鋼からなる中空円筒状の鋼製外筒の内面側に、耐摩耗性と耐食性を有する合金(以下、耐摩耗耐食性合金と称す)からなるライニング層を形成している。鋼製外筒の内面側に耐摩耗耐食性合金からなるライニング層を形成する方法としては、遠心鋳造法、熱間静水圧焼結法、焼き嵌め法等が採用されている。   Resin molding machine cylinders used for molding plastic products etc. are hollow cylindrical steel outer parts made mainly of steel in order to suppress corrosion and wear due to resin or additives added to resin during thermoforming. A lining layer made of an alloy having wear resistance and corrosion resistance (hereinafter referred to as wear-resistant corrosion-resistant alloy) is formed on the inner surface side of the cylinder. As a method for forming a lining layer made of a wear-resistant and corrosion-resistant alloy on the inner surface side of a steel outer cylinder, a centrifugal casting method, a hot isostatic pressing method, a shrink fitting method, or the like is employed.

ライニング層を形成する耐摩耗耐食性合金としては、ニッケル基合金、コバルト基合金などが用いられている。   Nickel-based alloys, cobalt-based alloys, and the like are used as wear-resistant and corrosion-resistant alloys that form the lining layer.

特許文献1には、重量比で、Cr5〜10%、B2.5〜4%、Si2.5%〜10%、Co5%〜40%、残部実質的にNiよりなるプラスチック成形機用シリンダー内面の遠心被覆用耐摩耗、耐食性合金が開示されている。実施例には、前記成分の合金を板状に鋳造した鋳造物を破砕し、外径130mm、内径70mm、長さ1000mmのSCM製シリンダー内に片肉厚さ4mmの被着を行なうに必要な量を入れ、シリンダー両端にふたをし、約1200℃に保持された炉中に入れ、被着合金材を溶かしたのち、炉から取り出し直ちに遠心機に組み込み、シリンダーに1540rpmの回転を与えて製造した複合シリンダーが記載されている。   In Patent Document 1, by weight ratio, Cr 5-10%, B2.5-4%, Si 2.5% -10%, Co 5% -40%, the balance of the inner surface of the cylinder for plastic molding machine substantially made of Ni A wear-resistant, corrosion-resistant alloy for centrifugal coating is disclosed. In the embodiment, a cast product obtained by casting the alloy of the above components into a plate shape is crushed, and it is necessary to deposit a single wall thickness of 4 mm in an SCM cylinder having an outer diameter of 130 mm, an inner diameter of 70 mm, and a length of 1000 mm. Put the amount, cover both ends of the cylinder, put it in a furnace maintained at about 1200 ° C, melt the deposited alloy material, take it out from the furnace, immediately put it in the centrifuge, and give the cylinder a rotation of 1540 rpm A composite cylinder is described.

特許文献2には、鋼製シリンダの内周面にメッキ層を形成させた後、同メッキ層の内周面に耐摩耗耐食性合金を遠心被覆法により被覆したプラスチック成形用複合シリンダの製造法が開示されている。特許文献2の目的は、予め鋼製シリンダの内面にニッケル、クローム等をメッキした後、通常の遠心被覆法により、耐摩耗耐食性合金を同メッキの内周面に被着させ、被覆合金中へのFeの混入の防止を図る目的であることが述べられている。   Patent Document 2 discloses a method for producing a composite cylinder for plastic molding in which a plated layer is formed on the inner peripheral surface of a steel cylinder and then the inner peripheral surface of the plated layer is coated with a wear-resistant and corrosion-resistant alloy by a centrifugal coating method. It is disclosed. The purpose of Patent Document 2 is to pre-plat nickel, chrome, etc. on the inner surface of a steel cylinder, and then apply a wear-resistant and corrosion-resistant alloy to the inner peripheral surface of the same plating by a conventional centrifugal coating method. It is stated that the purpose is to prevent the mixing of Fe.

特開昭55−89452号公報JP 55-89452 A 特開昭59−83753号公報JP 59-83753 A

樹脂成形機で樹脂を加熱した際、樹脂の種類によって塩素ガスや硫酸ガスなどの様々な腐食性のガスが発生する。従って、これらの樹脂を成形する樹脂成形機に装着されるシリンダには高い耐食性が要求される。特に、フッ素樹脂を成形する際には、極めて腐食性の高いフッ素ガスが発生する為、シリンダには特に耐食性に優れることが要求される。加えて、シリンダは、成形される樹脂自体やその樹脂に含まれるガラス繊維などの添加物により摩耗するため、耐摩耗性が要求される。腐食や摩耗により、シリンダ内径が径大化すると正常な樹脂成形が困難となる。   When the resin is heated with a resin molding machine, various corrosive gases such as chlorine gas and sulfuric acid gas are generated depending on the type of resin. Accordingly, high corrosion resistance is required for a cylinder mounted on a resin molding machine for molding these resins. In particular, when molding a fluororesin, a highly corrosive fluorine gas is generated. Therefore, the cylinder is particularly required to have excellent corrosion resistance. In addition, since the cylinder is worn by additives such as the resin itself to be molded and glass fibers contained in the resin, wear resistance is required. If the inner diameter of the cylinder increases due to corrosion or wear, normal resin molding becomes difficult.

特許文献1は、遠心鋳造法を用いてシリンダを製造する場合、ニッケル基合金を鋼製外筒内に封入し、約1200℃の高温で加熱溶融させるため、溶融したニッケル基合金により鋼製外筒の一部が溶かされて鋼製外筒の主成分である鉄がニッケル基合金中に溶け込んで、ニッケル基合金の耐食性および耐摩耗性を低下させる問題が発生する。   In Patent Document 1, when a cylinder is manufactured using a centrifugal casting method, a nickel base alloy is enclosed in a steel outer cylinder and heated and melted at a high temperature of about 1200 ° C. A part of the cylinder is melted, and iron, which is the main component of the steel outer cylinder, dissolves in the nickel-base alloy, causing a problem of reducing the corrosion resistance and wear resistance of the nickel-base alloy.

特許文献2は、被覆合金中への溶け込み防止を図ったものであるが、メッキ層は軟質であり、樹脂成形中の圧力により変形しやすく、被着合金層に割れを生じやすい。   Japanese Patent Application Laid-Open No. 2004-260688 attempts to prevent melting into the coating alloy, but the plating layer is soft, easily deformed by the pressure during resin molding, and easily cracks in the deposited alloy layer.

したがって、本発明は前記問題を解決するものであり、本発明の成形機用シリンダは、耐食性および耐摩耗性に優れるシリンダを提供すること目的とする。   Therefore, this invention solves the said problem, and the cylinder for molding machines of this invention aims at providing the cylinder which is excellent in corrosion resistance and abrasion resistance.

前記目的に鑑み、耐摩耗性および耐食性に優れるライニング層を得るのに鋭意研究した結果、本発明者らは下記の知見を得て本発明に想到した。   In view of the above-mentioned object, as a result of earnest research to obtain a lining layer having excellent wear resistance and corrosion resistance, the present inventors have obtained the following knowledge and arrived at the present invention.

1.ライニング層中に不可避的に混入する鉄を減少させることで、例えばフッ素のような極めて腐食性の高いガスを発生させる樹脂を成形する場合においても、十分な耐食性を発揮できる。   1. By reducing iron inevitably mixed in the lining layer, sufficient corrosion resistance can be exhibited even when molding a resin that generates a highly corrosive gas such as fluorine.

2.ライニング層への鋼製外筒からの鉄の混入を防止するための中間層を設けることで、ライニング層形成時に不可避的に混入する鉄を低減させ得る。   2. By providing an intermediate layer for preventing iron from being mixed into the lining layer from the steel outer cylinder, iron inevitably mixed during the formation of the lining layer can be reduced.

3.中間層としては、樹脂成形中の圧力による変形を受けにくい強固なものとすることでライニング層の割れを抑制できる。   3. As the intermediate layer, cracking of the lining layer can be suppressed by making the intermediate layer strong enough not to be deformed by pressure during resin molding.

すなわち、第一の本発明の成形機用シリンダは、中空円筒状の鋼製外筒の内面側にニッケルを主体とする耐摩耗耐食性合金からなるライニング層を形成した成形機用シリンダにおいて、前記ライニング層と鋼製外筒の間に中間層を形成し、該中間層はニッケルを主体とする基地中に金属タングステンおよびタングステンを主体とする合金のいずれか1種以上からなる高融点粒子を含んでなることを特徴とする。   That is, the cylinder for a molding machine according to the first aspect of the present invention is the cylinder for a molding machine in which a lining layer made of a wear-resistant and corrosion-resistant alloy mainly composed of nickel is formed on the inner surface side of a hollow cylindrical steel outer cylinder. An intermediate layer is formed between the layer and the steel outer cylinder, and the intermediate layer includes high melting point particles made of one or more of metal tungsten and an alloy mainly containing tungsten in a base mainly containing nickel. It is characterized by becoming.

また、第二の本発明の成形機用シリンダは、中空円筒状の鋼製外筒の内面側にニッケルを主体とする耐摩耗耐食性合金からなるライニング層を形成した成形機用シリンダにおいて、前記ライニング層と鋼製外筒の間に中間層を形成し、該中間層はニッケルを主体とする基地中にタングステン化合物からなる高融点粒子を含んでなることを特徴とする。   A cylinder for a molding machine according to a second aspect of the present invention is the cylinder for a molding machine in which a lining layer made of a wear-resistant and corrosion-resistant alloy mainly composed of nickel is formed on the inner surface side of a hollow cylindrical steel outer cylinder. An intermediate layer is formed between the layer and the steel outer cylinder, and the intermediate layer includes a high melting point particle made of a tungsten compound in a base mainly composed of nickel.

前記第二の本発明において、タングステン化合物が金属タングステン中に炭化タングステンを分散させたものであることを特徴とする。   In the second aspect of the present invention, the tungsten compound is obtained by dispersing tungsten carbide in metallic tungsten.

また、第一および第二の本発明において、高融点粒子が面積率で20〜80%含有することを特徴とする。   In the first and second aspects of the present invention, the high melting point particles are contained in an area ratio of 20 to 80%.

第一および第二の本発明において、高融点粒子の最大長さが250μm以下であることを特徴とする。   In the first and second aspects of the present invention, the maximum length of the high melting point particles is 250 μm or less.

第一の本発明において、中間層の成分が質量%で、B:0.5〜3.5%、W:20.0〜60.0%および残部実質上Niからなることを特徴とする。   The first aspect of the present invention is characterized in that the components of the intermediate layer are mass%, B: 0.5 to 3.5%, W: 20.0 to 60.0% and the balance substantially Ni.

第二の本発明において、中間層の成分が質量%で、B:0.5〜3.5%、W:20.0〜60.0%、C:0.5〜3.5%および残部実質上Niからなる組成を有することを特徴とする。   In the second aspect of the present invention, the components of the intermediate layer are mass%, B: 0.5 to 3.5%, W: 20.0 to 60.0%, C: 0.5 to 3.5%, and the balance It has a composition substantially consisting of Ni.

第一および第二の本発明において、さらに質量%で、Si:0.5〜5.0%、Cr:1.0〜10.0%、Co:1.0〜20.0%およびFe:20.0%以下の元素のうち少なくとも一種を含有することを特徴とする。   In the first and second aspects of the present invention, Si: 0.5 to 5.0%, Cr: 1.0 to 10.0%, Co: 1.0 to 20.0%, and Fe: It contains at least one element out of 20.0% or less.

前記中間層は、さらに質量%で、Mn:2.0%以下およびCu:5.0%以下の元素のうち少なくとも一種を含有することを特徴とする。   The intermediate layer further includes at least one element selected from the group consisting of Mn: 2.0% or less and Cu: 5.0% or less by mass%.

前記中間層の最大厚みが、0.2mm〜2.0mmであることを特徴とする。   The maximum thickness of the intermediate layer is 0.2 mm to 2.0 mm.

前記ライニング層に含まれるFeが質量%で6.0%以下であることを特徴とする。   Fe contained in the lining layer is 6.0% or less by mass%.

第一および第二の本発明のシリンダが、フッ素樹脂成形機用シリンダであることを特徴とする。   The cylinders according to the first and second aspects of the invention are characterized in that they are cylinders for a fluororesin molding machine.

前記中間層を遠心鋳造法により形成したことを特徴とする。   The intermediate layer is formed by a centrifugal casting method.

前記ライニング層の融点をT1(℃)、前記中間層の融点をT2(℃)、鋼製外筒の融点をT3(℃)としたとき、下記(1)式を満足することを特徴とする。
T1<T2<T3 ・・・・・・・・(1)
When the melting point of the lining layer is T1 (° C.), the melting point of the intermediate layer is T2 (° C.), and the melting point of the steel outer cylinder is T3 (° C.), the following equation (1) is satisfied. .
T1 <T2 <T3 (1)

本発明の成形機用シリンダについて以下に詳述する。   The molding machine cylinder of the present invention will be described in detail below.

[1]中間層
第一の本発明のシリンダは、ライニング層と鋼製外筒の間に中間層を形成し、該中間層はニッケルを主体とする基地中に金属タングステンおよびタングステンを主体とする合金のいずれか1種以上からなる高融点粒子を含んでなる。なお、本発明の高融点粒子とは、基地の融点よりも高い融点を持つ粒子のことである。金属タングステンは融点が3000℃以上と極めて高融点である。また、タングステンを主体とする合金も一般的に高融点であり、例えばタングステンを質量%で50%以上含むニッケル合金の融点は1500℃以上である。なお、ニッケルを主体とする基地の融点は1000〜1200℃である。一方、前記高融点粒子は鋼製外筒(1400〜1500℃)よりも融点が高いため、高融点粒子自身を溶融接合させることは困難である。そこで、これらの高融点粒子を、比較的低融点のニッケルもしくはニッケル基合金と混合させることで、中間層として鋼製外筒の内面側に溶着することができる。
[1] Intermediate layer In the cylinder of the first aspect of the present invention, an intermediate layer is formed between the lining layer and the steel outer cylinder, and the intermediate layer is mainly composed of metallic tungsten and tungsten in a base mainly composed of nickel. It comprises high melting point particles comprising at least one of the alloys. The high melting point particles of the present invention are particles having a melting point higher than the melting point of the matrix. Metal tungsten has an extremely high melting point of 3000 ° C. or higher. An alloy mainly composed of tungsten generally has a high melting point. For example, a nickel alloy containing 50% or more by mass of tungsten has a melting point of 1500 ° C. or more. The melting point of the base mainly composed of nickel is 1000 to 1200 ° C. On the other hand, since the high melting point particles have a higher melting point than the steel outer cylinder (1400 to 1500 ° C.), it is difficult to melt and bond the high melting point particles themselves. Therefore, these high melting point particles can be mixed with a relatively low melting point nickel or a nickel-base alloy to be welded to the inner surface side of the steel outer cylinder as an intermediate layer.

また、第二の本発明のシリンダは、ライニング層と鋼製外筒の間に中間層を形成し、該中間層はニッケルを主体とする基地中にタングステン化合物からなる高融点粒子を含んでなる。タングステン化合物も高融点であり、例えばタングステン炭化物の融点は2400℃以上である。この高融点粒子を、比較的低融点のニッケルもしくはニッケル基合金と混合させることで、中間層として鋼製外筒の内面側に溶着することができる。   In the cylinder of the second invention, an intermediate layer is formed between the lining layer and the steel outer cylinder, and the intermediate layer includes high melting point particles made of a tungsten compound in a base mainly composed of nickel. . Tungsten compounds also have a high melting point. For example, the melting point of tungsten carbide is 2400 ° C. or higher. By mixing the high melting point particles with nickel or a nickel base alloy having a relatively low melting point, the intermediate layer can be welded to the inner surface side of the steel outer cylinder.

タングステン化合物のなかでも、金属タングステン中に炭化タングステンが分散した粒子が、高融点であるとともに被削性に優れるので望ましい。   Among tungsten compounds, particles in which tungsten carbide is dispersed in metallic tungsten are desirable because they have a high melting point and excellent machinability.

中間層に含まれる高融点粒子が面積率で20〜80%
中間層に含まれる高融点粒子は、面積率で20〜80%であり、さらに好ましくは30〜70%である。中間層に含まれる高融点粒子が面積率で20%未満では、中間層自体の融点が低くなる。融点が低いと、ライニング層を高温で加熱溶融して中間層の内面側に溶融接合させる際に、中間層がライニング層へ多量に溶け込む。それに伴い中間層中に含まれる鉄もライニング層に多量に溶け込み、中間層による鉄の混入防止効果が得られない。一方、その面積率が80%を超えると、中間層にキャビティなどの鋳造欠陥を生じやすく、強度が低下し好ましくない。
High melting point particles contained in the intermediate layer are 20 to 80% in area ratio
The high melting point particles contained in the intermediate layer is 20 to 80% by area ratio, more preferably 30 to 70%. When the high melting point particles contained in the intermediate layer are less than 20% by area ratio, the melting point of the intermediate layer itself is low. When the melting point is low, when the lining layer is heated and melted at a high temperature and melt-bonded to the inner surface side of the intermediate layer, the intermediate layer dissolves in a large amount into the lining layer. As a result, a large amount of iron contained in the intermediate layer also dissolves in the lining layer, and the effect of preventing the iron from being mixed by the intermediate layer cannot be obtained. On the other hand, if the area ratio exceeds 80%, casting defects such as cavities are likely to occur in the intermediate layer, and the strength decreases, which is not preferable.

高融点粒子の最大長さが250μm以下
中間層に含まれる高融点粒子の最大長さが250μmより長いと、ミクロ的な組織の均一性が損なわれ、中間層の融点が不均一となり、キャビティなどの鋳造欠陥を生じやすく、強度が低下し好ましくない。
The maximum length of the high melting point particles is 250 μm or less If the maximum length of the high melting point particles contained in the intermediate layer is longer than 250 μm, the uniformity of the microscopic structure is impaired, the melting point of the intermediate layer becomes non-uniform, and the cavity This is not preferred because it tends to cause casting defects and decreases the strength.

[2]第一の本発明の中間層の組成(質量%)
必須成分
(a1)B:0.5〜3.0%
硼素は、合金の融点を下げる作用があり、遠心鋳造法で製造する場合、合金溶湯の流動性を高めることにより、シリンダの円周方向ならびに軸方向での合金の均質分布性向上に寄与する。また、硼素は、ニッケルやタングステンの合金元素と結合し硼化物を晶出または析出し、強度向上に寄与する。硼素が0.5%未満ではこの効果が十分に得られない。一方、硼素が3.0%を超えると、硼化物の量が過剰となり、合金溶湯の流動性が低下し、キャビティなどの鋳造欠陥を生じやすく、強度が低下し好ましくない。硼素の含有量は好ましくは1.0〜2.0%である。
[2] Composition (mass%) of the intermediate layer of the first invention
Essential component (a1) B: 0.5 to 3.0%
Boron has the effect of lowering the melting point of the alloy. When manufactured by centrifugal casting, boron contributes to improving the homogeneous distribution of the alloy in the circumferential direction and the axial direction of the cylinder by increasing the fluidity of the molten alloy. Boron combines with nickel or tungsten alloy elements to crystallize or precipitate borides, contributing to strength improvement. If boron is less than 0.5%, this effect cannot be sufficiently obtained. On the other hand, if the boron content exceeds 3.0%, the amount of boride becomes excessive, the fluidity of the molten alloy decreases, casting defects such as cavities tend to occur, and the strength decreases, which is not preferable. The boron content is preferably 1.0 to 2.0%.

(b1)W:20.0〜60.0%
タングステンは主に、第一の本発明の高融点粒子を形成する主要元素であり、中間層の融点を上昇させる。タングステンが20.0%未満では高融点粒子の量が不足し、十分に融点が上昇しない。一方、タングステンが60.0%を超えると、高融点粒子の量が過多となり、キャビティなどの鋳造欠陥を生じやすく、強度が低下し好ましくない。
(B1) W: 20.0 to 60.0%
Tungsten is mainly a main element that forms the high melting point particles of the first aspect of the present invention, and raises the melting point of the intermediate layer. If tungsten is less than 20.0%, the amount of high melting point particles is insufficient, and the melting point does not rise sufficiently. On the other hand, if the content of tungsten exceeds 60.0%, the amount of high melting point particles becomes excessive, casting defects such as cavities tend to occur, and the strength decreases, which is not preferable.

(c1)残部Ni
ニッケルは高融点粒子を保持する基地を形成する主要元素である。ニッケルは主に金属状態で存在し、一部は硼素などと結合し硼化物となり、基地を強化する。ニッケルは耐食性に優れ、硼素を適切に制御することで他の金属元素、例えば鋼に比べその合金が低融点となる特徴をもつ。なお、中間層には、鋼製外筒より、不可避的不純物として炭素、珪素、マンガン、クロム、鉄が混入する。
(C1) Remaining Ni
Nickel is the main element that forms the matrix that holds the high melting point particles. Nickel exists mainly in a metallic state, and part of it is combined with boron to form a boride, strengthening the base. Nickel is excellent in corrosion resistance and has a feature that its alloy has a lower melting point than other metal elements such as steel by appropriately controlling boron. In the intermediate layer, carbon, silicon, manganese, chromium and iron are mixed as inevitable impurities from the steel outer cylinder.

[2]第二の本発明の中間層の組成(質量%)
必須成分
硼素、タングステン、ニッケルの限定理由は上記(a1)、(b1)、(c1)と同様である。第二の本発明はこれらの元素以外に、次に説明する炭素を含むことを特徴とする。
[2] Composition (mass%) of the intermediate layer of the second invention
Essential components The reasons for limiting boron, tungsten, and nickel are the same as in (a1), (b1), and (c1) above. The second aspect of the present invention is characterized by containing carbon described below in addition to these elements.

(d)C:0.5〜3.5%
炭素は主にタングステンと結合し、高融点粒子の主体である炭化タングステンを形成する。一部の炭素は、基地中の合金元素と結合し炭化物を形成する。炭素が0.5%未満では高融点粒子の主体となる炭化タングステンの量が不足し、中間層自体の融点を十分に上昇させることができない。一方、炭素が3.5%を超えると、高融点粒子の主体となる炭化タングステンの量が過多となり、キャビティなどの鋳造欠陥を生じやすく、強度が低下し好ましくない。炭素含有量は好ましくは2.0〜3.0%である。
(D) C: 0.5 to 3.5%
Carbon is mainly bonded to tungsten to form tungsten carbide, which is the main component of the high melting point particles. Some carbon combines with alloy elements in the matrix to form carbides. If the carbon content is less than 0.5%, the amount of tungsten carbide which is the main component of the high melting point particles is insufficient, and the melting point of the intermediate layer itself cannot be sufficiently increased. On the other hand, if the carbon content exceeds 3.5%, the amount of tungsten carbide that is the main component of the high melting point particles becomes excessive, and casting defects such as cavities are likely to occur, and the strength is lowered. The carbon content is preferably 2.0 to 3.0%.

[3]中間層の任意成分
上述した第一および第二の本発明の中間層は以下の元素を適宜含有しても良い。
(e)Si:0.5〜5.0%
珪素は、合金の融点を下げる作用があり、遠心鋳造法で製造する場合、合金溶湯の流動性を高めることにより、シリンダの円周方向ならびに軸方向での合金の均質分布性向上に寄与する。また、珪素は、基地に固溶して、基地強化に寄与する。珪素が0.5%未満ではこの効果が十分に得られない。一方、珪素が5.0%を超えると、珪化物の量が過剰となり、鋳造欠陥を生じやすく、強度が低下し好ましくない。珪素の含有量は好ましくは1.0〜2.5%である。
[3] Optional components of intermediate layer The intermediate layers of the first and second inventions described above may contain the following elements as appropriate.
(E) Si: 0.5 to 5.0%
Silicon has the effect of lowering the melting point of the alloy, and when manufactured by centrifugal casting, it contributes to improving the homogeneous distribution of the alloy in the circumferential direction and the axial direction of the cylinder by increasing the fluidity of the molten alloy. In addition, silicon dissolves in the base and contributes to strengthening the base. If silicon is less than 0.5%, this effect cannot be sufficiently obtained. On the other hand, if silicon exceeds 5.0%, the amount of silicide becomes excessive, casting defects are likely to occur, and the strength is lowered, which is not preferable. The silicon content is preferably 1.0 to 2.5%.

(f)Cr:1.0〜10.0%
クロムは、主にBと結合し硼化物を形成し、一部は炭素と結合し炭化物を形成し強度を向上させる。クロムが1.0%未満では、前記の効果が不十分である。一方、クロムが10.0%を超えると、硼化物の量が過多となり、鋳造欠陥を生じやすく、強度が低下し好ましくない。
(F) Cr: 1.0 to 10.0%
Chromium mainly combines with B to form a boride, and part of it combines with carbon to form a carbide to improve the strength. If chromium is less than 1.0%, the above effect is insufficient. On the other hand, if the chromium content exceeds 10.0%, the amount of borides becomes excessive, casting defects are likely to occur, and the strength is lowered.

(g)Co:1.0〜20.0%
コバルトは合金の靭性向上に有用な元素である。また、コバルトは極めて高価な元素であるため、経済性を考慮し、その含有量を決定するのが望ましい。
(G) Co: 1.0-20.0%
Cobalt is an element useful for improving the toughness of the alloy. Further, since cobalt is an extremely expensive element, it is desirable to determine its content in consideration of economy.

(h)Fe:20.0%以下
鉄は、遠心鋳造法で鋳造の際、中間層を形成せしめる中間層材溶融時に鋼製外筒を侵食することにより、外筒に含まれる鉄から不可避的に混入する。鉄が20%を超えると、ライニング層形成時に中間層よりライニング層に混入する鉄の量が多くなり好ましくない。
(H) Fe: 20.0% or less Iron is unavoidable from the iron contained in the outer cylinder by eroding the steel outer cylinder when the intermediate layer material is melted to form the intermediate layer when casting by centrifugal casting. Mixed in. When iron exceeds 20%, the amount of iron mixed into the lining layer is larger than that in the intermediate layer when forming the lining layer, which is not preferable.

(i)Mn:2.0%以下
マンガンは溶湯の脱酸作用を有する。またマンガンは、遠心鋳造の際、主に中間層溶融時に鋼製外筒を侵食することにより外筒に含まれるマンガンから混入する。脱酸作用はマンガンが2.0%あれば十分である。マンガンの含有量は好ましくは0.1〜0.6%である。
(I) Mn: 2.0% or less Manganese has a deoxidizing action of the molten metal. Further, manganese is mixed from manganese contained in the outer cylinder by eroding the steel outer cylinder at the time of centrifugal casting mainly during melting of the intermediate layer. For deoxidation, 2.0% manganese is sufficient. The manganese content is preferably 0.1 to 0.6%.

(j)Cu:5.0%以下
銅は基地に固溶し、合金溶湯の融点を上昇させる作用がある。よって、溶湯の融点調整のために添加しても良い。銅は5.0%を超えると鋼製外筒との接合が健全でなくなる。また、銅は極めて高価な元素であるため、経済性を考慮し、その含有量を決定するのが望ましい。
(J) Cu: 5.0% or less Copper dissolves in the base and has an action of increasing the melting point of the molten alloy. Therefore, it may be added to adjust the melting point of the molten metal. If copper exceeds 5.0%, the joining with the steel outer cylinder becomes unsound. Moreover, since copper is an extremely expensive element, it is desirable to determine its content in consideration of economy.

中間層の最大厚みが0.2mm〜2.0mm
中間層は、鋼製外筒からライニング層への鉄の混入を防止する。そのため、中間層は、ある程度、半径方向の厚さが必要である。中間層の最大厚みが0.2mm未満では、ライニング層形成時に中間層自体が溶融してしまうため好ましくない。中間層の最大厚みが2.0mmを超えると、鉄の混入防止効果は飽和する。よって中間層の最大厚みは0.2mm〜2.0mmが好ましい。
Maximum thickness of the intermediate layer is 0.2mm to 2.0mm
The intermediate layer prevents iron from being mixed into the lining layer from the steel outer cylinder. Therefore, the intermediate layer needs to have a certain radial thickness. If the maximum thickness of the intermediate layer is less than 0.2 mm, the intermediate layer itself is melted when the lining layer is formed, which is not preferable. When the maximum thickness of the intermediate layer exceeds 2.0 mm, the effect of preventing iron contamination is saturated. Therefore, the maximum thickness of the intermediate layer is preferably 0.2 mm to 2.0 mm.

ライニング層に含まれるFeが6.0%以下
本発明のライニング層はニッケルを主体とする耐摩耗耐食性合金である。ニッケルを主体とすることで、塩素ガスや硫酸ガスなどの腐食性ガスに対する耐食性に優れる。一方、ライニング層を遠心鋳造法で形成させる際、前記ライニング層は高温で加熱溶融されるため、中間層を侵食する。そのため、中間層に含まれる鉄がライニング層に不可避的に混入する。鉄の含有量が6.0%を越えると、耐食性が低下するとともに、特にフッ素ガスに対する耐食性が低下するため好ましくない。鉄の含有量は少ないほど好ましく、より好ましくは4.0%以下である。
Fe contained in the lining layer is 6.0% or less The lining layer of the present invention is a wear and corrosion resistant alloy mainly composed of nickel. By having nickel as the main component, it has excellent corrosion resistance against corrosive gases such as chlorine gas and sulfuric acid gas. On the other hand, when the lining layer is formed by the centrifugal casting method, the lining layer is heated and melted at a high temperature, so that the intermediate layer is eroded. Therefore, iron contained in the intermediate layer is inevitably mixed into the lining layer. If the iron content exceeds 6.0%, the corrosion resistance decreases, and in particular, the corrosion resistance against fluorine gas decreases. The lower the iron content, the better, and more preferably 4.0% or less.

中間層を遠心鋳造法により形成
中間層を遠心鋳造法により形成することにより、金属タングステン、タングステンを主体とする合金およびタングステン化合物のいずれかよりなる高融点粒子を遠心分離させることができる。これにより、より強固な中間層を得られるだけでなく、高融点粒子の面積率を濃化させることができ、中間層の融点を高めることにより、ライニング層への鋼製外筒からの鉄の混入を効果的に低減させ得るので好ましい。
Formation of the intermediate layer by centrifugal casting By forming the intermediate layer by centrifugal casting, it is possible to centrifuge high melting point particles made of any one of metallic tungsten, an alloy mainly composed of tungsten, and a tungsten compound. As a result, not only a stronger intermediate layer can be obtained, but also the area ratio of the high melting point particles can be concentrated, and by increasing the melting point of the intermediate layer, the iron from the steel outer cylinder to the lining layer can be increased. This is preferable because contamination can be effectively reduced.

本発明は、鋼製外筒の内面側に中間層を形成させた後、ライニング層を形成させることでライニング層への鉄の混入を防止するものである。また、中間層およびライニング層は遠心鋳造で形成することを特徴とする。よって、鋼製外筒の融点T3(℃)が中間層の融点T2(℃)よりも高いことが好ましい。さらに、中間層の融点T2はライニング層の融点T1(℃)よりも高いことが望ましい。すなわち、各融点が、T1<T2<T3の関係にあることが好ましい。   In the present invention, after the intermediate layer is formed on the inner surface side of the steel outer cylinder, the lining layer is formed to prevent iron from being mixed into the lining layer. The intermediate layer and the lining layer are formed by centrifugal casting. Therefore, it is preferable that melting | fusing point T3 (degreeC) of a steel outer cylinder is higher than melting | fusing point T2 (degreeC) of an intermediate | middle layer. Further, the melting point T2 of the intermediate layer is desirably higher than the melting point T1 (° C.) of the lining layer. That is, the melting points are preferably in the relationship of T1 <T2 <T3.

第一の本発明の成形機用シリンダは、中間層に金属タングステンおよびタングステンを主体とする合金のいずれか1種以上からなる高融点粒子を含んでおり、ライニング層への鉄混入防止効果に優れる。また、第二の本発明の成形機用シリンダは、中間層にタングステン化合物からなる高融点粒子を含み、ライニング層への鉄混入防止効果に優れる。   The cylinder for a molding machine according to the first aspect of the present invention includes high melting point particles made of at least one of metallic tungsten and an alloy mainly composed of tungsten in the intermediate layer, and is excellent in preventing iron contamination into the lining layer. . Moreover, the cylinder for molding machines of the second aspect of the present invention includes high melting point particles made of a tungsten compound in the intermediate layer, and is excellent in preventing iron from being mixed into the lining layer.

本発明を以下の実施例により詳細に説明する。なお、本発明はこれらに限定されるものではない。   The invention is illustrated in detail by the following examples. The present invention is not limited to these.

[実施例1]
ライニング層に与える鉄の影響を調べるために、実験室にて試料を作成しフッ素に対する耐食性試験を行なった。所定の組成に混合した粉末を黒鉛ルツボ内で加熱溶解を行い鋳型に鋳造した。試料は、2mm×2mm×10mmの角型に切り出し、ライニング層試料とした。
[Example 1]
In order to investigate the effect of iron on the lining layer, a sample was prepared in the laboratory and a corrosion resistance test against fluorine was performed. The powder mixed to a predetermined composition was heated and dissolved in a graphite crucible and cast into a mold. The sample was cut into a 2 mm × 2 mm × 10 mm square and used as a lining layer sample.

これらのライニング層試料を、フッ素に対する耐食性の評価として、試験濃度10%、温度50℃のフッ化水素酸水溶液中に24時間浸漬した。評価は、腐食減量率で行なった。すなわち、下記式の如く、試験前の重量から試験後の重量を減じた値を腐食減量とし、腐食減量と試験前の試験片表面積の比を計算して評価とした。
腐食減量率(mg/cm)=[腐食減量(mg)]÷[試験片表面積(cm)]
These lining layer samples were immersed for 24 hours in a hydrofluoric acid aqueous solution having a test concentration of 10% and a temperature of 50 ° C. as an evaluation of corrosion resistance to fluorine. The evaluation was performed using the corrosion weight loss rate. That is, as the following formula, the value obtained by subtracting the weight after the test from the weight before the test was regarded as the corrosion weight loss, and the ratio between the corrosion weight loss and the test piece surface area before the test was calculated and evaluated.
Corrosion weight loss rate (mg / cm 2 ) = [Corrosion weight loss (mg)] ÷ [Specimen surface area (cm 2 )]

表1に、ライニング層試料の組成(質量%)および腐食減量率の結果を示す。また、図1に試料中の鉄の含有量と腐食減量率の関係を示す。   Table 1 shows the composition (mass%) and corrosion loss rate results of the lining layer sample. FIG. 1 shows the relationship between the iron content in the sample and the corrosion weight loss rate.

表1より、鉄の含有量が高くなると腐食減量率が悪化することが判った。また、図1より、鉄の含有量が6.0%を超えると腐食減量率が急激に悪化することが判明した。   From Table 1, it was found that the corrosion weight loss rate deteriorates as the iron content increases. Further, FIG. 1 shows that when the iron content exceeds 6.0%, the corrosion weight loss rate rapidly deteriorates.

[実施例2]
中間層を形成せしめる粉末として、基地となる合金粉末にあらかじめ準備しておいた本発明の高融点粒子を所定量混合した中間層混合粉末を準備した。また、ライニング層を形成せしめる粉末を、所定量混合したライニング層混合粉末を別途準備した。なお、中間層混合粉末の高融点粒子は粒径が異なるものを数種類使用した。
[Example 2]
As a powder for forming the intermediate layer, an intermediate layer mixed powder prepared by mixing a predetermined amount of the high melting point particles of the present invention prepared in advance with the base alloy powder was prepared. Further, a lining layer mixed powder prepared by mixing a predetermined amount of powder for forming a lining layer was separately prepared. In addition, several types of high melting point particles of the intermediate layer mixed powder having different particle sizes were used.

中間層混合粉末を黒鉛ルツボに投入し、高周波電気炉内で1300〜1500℃に加熱溶融した後、鋳型に鋳造し板状の中間層素材を作成した。ライニング層混合粉末も、同様に加熱溶融を行い、板状のライニング層素材を作成した。なお、中間層素材、ライニング層素材および鋼製外筒のサンプルを示差熱分析装置により、各融点の測定を行った。その結果、鋼製外筒の融点T3(℃)、中間層の融点T2(℃)、ライニング層の融点T1(℃)の関係が、T1<T2<T3の関係にあることを確認した。   The intermediate layer mixed powder was put into a graphite crucible, heated and melted at 1300 to 1500 ° C. in a high frequency electric furnace, and then cast into a mold to prepare a plate-like intermediate layer material. The lining layer mixed powder was similarly heated and melted to prepare a plate-shaped lining layer material. In addition, each melting | fusing point was measured with the differential thermal analyzer for the sample of the intermediate | middle layer raw material, the lining layer raw material, and the steel outer cylinder. As a result, it was confirmed that the relationship between the melting point T3 (° C.) of the steel outer cylinder, the melting point T2 (° C.) of the intermediate layer, and the melting point T1 (° C.) of the lining layer was T1 <T2 <T3.

鋼製外筒は、外径φ100mm、長さ800mmの機械構造用鋼の軸方向に内径φ34mmの貫通孔を設けたものを準備した。前記外筒の貫通孔内に前記中間層素材を破砕したものを装入し、貫通孔の両端を金属製の蓋で封止した。これを加熱炉中で所定の温度まで加熱し、中間層素材を溶融させた後、遠心鋳造機上にセットした。これを遠心鋳造機で所定の回転数で回転させ、外筒の貫通孔内面に4mm厚さ程度の中間層を形成させた。これを冷却後、両端の蓋を加工除去し、外径φ100mm、長さ760mmのシリンダ前駆体とした。また、内径を所定の寸法に加工し、中間層の厚さを調整した。例えば、内径をφ31mmに加工すれば、中間層厚さは1.5mmとなる。   The steel outer cylinder prepared what provided the through-hole of inner diameter (phi) 34mm in the axial direction of the steel for machine structure of outer diameter (phi) 100mm and length 800mm. What crushed the said intermediate | middle layer raw material was inserted in the through-hole of the said outer cylinder, and the both ends of the through-hole were sealed with the metal lid | covers. This was heated to a predetermined temperature in a heating furnace to melt the intermediate layer material, and then set on a centrifugal casting machine. This was rotated at a predetermined rotational speed with a centrifugal casting machine to form an intermediate layer having a thickness of about 4 mm on the inner surface of the through hole of the outer cylinder. After cooling this, the lids at both ends were processed and removed to obtain a cylinder precursor having an outer diameter of φ100 mm and a length of 760 mm. Further, the inner diameter was processed to a predetermined dimension, and the thickness of the intermediate layer was adjusted. For example, if the inner diameter is processed to φ31 mm, the intermediate layer thickness is 1.5 mm.

シリンダ前駆体の断面模式図を図2に示す。図2中のイ部は外筒、ロ部は高融点粒子が分散した層、ハ部は高融点粒子が乏しい層、ニは中空部である。遠心鋳造法により溶融した中間層素材は、外筒(イ部)と溶着する。また、溶融した中間層素材中の高融点粒子は比重が大きいため遠心鋳造時に外筒側に凝集し、高融点粒子が分散した中間層(ロ部)を形成する。比重の小さい残部は中空部(ニ部)側に高融点粒子が乏しい層(ハ部)を形成する。本発明では、前記ハ部およびロ部の一部を加工除去し、前記ロ部を露出させた。   A schematic cross-sectional view of the cylinder precursor is shown in FIG. In FIG. 2, part A is an outer cylinder, part B is a layer in which high melting point particles are dispersed, part C is a layer in which high melting point particles are poor, and part D is a hollow part. The intermediate layer material melted by the centrifugal casting method is welded to the outer cylinder (a portion). Further, since the high melting point particles in the melted intermediate layer material have a large specific gravity, they are aggregated on the outer cylinder side during centrifugal casting to form an intermediate layer (b) where the high melting point particles are dispersed. The remaining portion having a small specific gravity forms a layer (part C) in which the high melting point particles are poor on the hollow part (part D) side. In the present invention, a part of the part C and the part B is processed and removed to expose the part B.

次にそのシリンダ前駆体の貫通孔内に前記ライニング層素材を破砕したものを装入し、貫通孔の両端を金属製の蓋で封止した。これを加熱炉中で所定の温度まで加熱し、ライニング層素材を溶融させた後、遠心鋳造機上にセットした。これを遠心鋳造機で所定の回転数で回転させ、外筒の貫通孔内面に5mm厚さ程度のライニング層を形成させた。これを冷却後、両端の蓋を加工除去し、外径φ100mm、長さ720mmのシリンダ材とした。このシリンダ材の内径を、製品内径まで加工して、シリンダ製品とする。   Next, a material obtained by crushing the lining layer material was inserted into the through hole of the cylinder precursor, and both ends of the through hole were sealed with metal lids. This was heated to a predetermined temperature in a heating furnace to melt the lining layer material, and then set on a centrifugal casting machine. This was rotated at a predetermined rotational speed by a centrifugal casting machine, and a lining layer having a thickness of about 5 mm was formed on the inner surface of the through hole of the outer cylinder. After cooling this, the lids at both ends were processed and removed to obtain a cylinder material having an outer diameter of φ100 mm and a length of 720 mm. The inside diameter of this cylinder material is processed to the inside diameter of the product to obtain a cylinder product.

前記のシリンダ材の断面模式図を図3に示す。図3中のイ部は外筒、ロ部は高融点粒子が分散した中間層、ホ部はライニング層、ニは中空部である。遠心鋳造法により溶融したライニング層素材は、中間層(ロ部)と溶着する。   FIG. 3 shows a schematic cross-sectional view of the cylinder material. In FIG. 3, part A is an outer cylinder, part B is an intermediate layer in which high melting point particles are dispersed, part E is a lining layer, and part D is a hollow part. The lining layer material melted by the centrifugal casting method is welded to the intermediate layer (b).

前記シリンダ材の片側端面から50mmを切断し、外径φ100mm、長さ50mmの供試材を採取した。供試材の中間層部より化学成分測定用の試験片を採取し、各供試材の中間層の化学成分を測定した。また、光学顕微鏡を用いて中間層の厚さを測定した。さらに、高融点粒子の面積率と最大長を、光学顕微鏡および画像解析装置を用いて測定した。また、ライニング層部より化学成分測定用の試験片を採取し、各供試材のライニング層における鉄の含有量を測定した。   50 mm was cut from one end face of the cylinder material, and a test material having an outer diameter of 100 mm and a length of 50 mm was collected. Test pieces for measuring chemical components were collected from the intermediate layer of the test material, and the chemical components of the intermediate layer of each test material were measured. Further, the thickness of the intermediate layer was measured using an optical microscope. Furthermore, the area ratio and the maximum length of the high melting point particles were measured using an optical microscope and an image analyzer. Moreover, the test piece for a chemical component measurement was extract | collected from the lining layer part, and iron content in the lining layer of each test material was measured.

また、各供試材の中間層より、5mm×1.0mm×40mmの抗折試験片を採取し、4点曲げ試験を行い抗折力の測定を行った。   Moreover, the bending test piece of 5 mm x 1.0 mm x 40 mm was extract | collected from the intermediate | middle layer of each test material, the 4-point bending test was done, and the bending strength was measured.

表2に第一の本発明の中間層部の測定結果を示す。すなわち、中間層の化学成分(質量%)、中間層に含まれる高融点粒子の種類、面積率(%)および最大長さ(μm)、中間層の厚さ(mm)、中間層の抗折力(MPa)、ライニング層に含まれる鉄の含有量(質量%)を示す。また、表2中の供試材No.1〜12は第一の本発明例であり、中間層はニッケルを含む基地と、金属タングステンおよびタングステンを主体とする合金のいずれか一種以上からなる高融点粒子とにより構成されているものである。   Table 2 shows the measurement results of the intermediate layer part of the first invention. That is, the chemical composition (% by mass) of the intermediate layer, the type of high melting point particles contained in the intermediate layer, the area ratio (%) and the maximum length (μm), the thickness of the intermediate layer (mm), the bending resistance of the intermediate layer The force (MPa) indicates the iron content (% by mass) contained in the lining layer. In addition, the test material No. 1 to 12 are examples of the first invention, and the intermediate layer is composed of a base containing nickel and high melting point particles made of at least one of metallic tungsten and an alloy mainly containing tungsten. .

供試材No.1〜3は、中間層に高融点粒子として、それぞれ、金属タングステン、タングステンニッケル合金、金属タングステンとタングステンニッケル合金を混合したものを、面積率で38〜41%含有させたものである。抗折力を測定した結果、これらの供試材の中間層における抗折力は734〜742MPaと十分な強度を持つことがわかった。また、これらの供試材のライニング層に含まれる鉄は2.8〜4.0%となり、耐食性に優れることがわかった。   Specimen No. Nos. 1 to 3 contain 38 to 41% by area ratio of metal tungsten, tungsten nickel alloy, and a mixture of metal tungsten and tungsten nickel alloy as high melting point particles in the intermediate layer. As a result of measuring the bending strength, it was found that the bending strength in the intermediate layer of these test materials had a sufficient strength of 734 to 742 MPa. Moreover, the iron contained in the lining layer of these test materials was 2.8 to 4.0%, and it was found that the corrosion resistance was excellent.

供試材No.4〜6は、中間層に高融点粒子として、それぞれ、金属タングステン、タングステンニッケル合金、金属タングステンとタングステンニッケル合金を混合したものを、面積率で72〜75%含有させたものである。高融点粒子の含有量が比較的多いので、中間層に含まれる鉄の含有量が5.0〜5.8%と低くなる。その結果、中間層からライニング層に混入する鉄の量が少なくなるため、ライニング層の鉄の含有量は1.1〜1.4%と非常に少なく、耐食性に極めて優れる。また、中間層に含まれる高融点粒子が多いため、抗折力は349〜385MPaと相対的に低くなる。   Specimen No. Nos. 4 to 6 are obtained by adding 72 to 75% by area ratio of metal tungsten, tungsten nickel alloy, and a mixture of metal tungsten and tungsten nickel alloy as high melting point particles in the intermediate layer, respectively. Since the content of the high melting point particles is relatively large, the content of iron contained in the intermediate layer is as low as 5.0 to 5.8%. As a result, since the amount of iron mixed into the lining layer from the intermediate layer is reduced, the iron content in the lining layer is extremely low, 1.1 to 1.4%, and the corrosion resistance is extremely excellent. Moreover, since there are many high melting point particles contained in an intermediate | middle layer, a bending strength becomes comparatively low with 349-385 MPa.

供試材No.7〜9は、中間層に高融点粒子として、それぞれ、金属タングステン、タングステンニッケル合金、金属タングステンとタングステンニッケル合金を混合したものを、面積率で21〜24%含有させたものである。高融点粒子の含有量が比較的少ないので、中間層に含まれる鉄の含有量が15.4〜15.7%と高くなる。その結果、中間層からライニング層に混入する鉄の量が多くなるため、ライニング層の鉄の含有量は5.1〜5.6%と相対的に多くなる。また、中間層に含まれる高融点粒子が少ないため、抗折力は819〜827MPaと優れる。   Specimen No. Nos. 7 to 9 contain 21 to 24% by area ratio of metal tungsten, tungsten nickel alloy, and a mixture of metal tungsten and tungsten nickel alloy as high melting point particles in the intermediate layer. Since the content of the high melting point particles is relatively small, the content of iron contained in the intermediate layer is as high as 15.4 to 15.7%. As a result, since the amount of iron mixed into the lining layer from the intermediate layer increases, the iron content of the lining layer relatively increases to 5.1 to 5.6%. Moreover, since there are few high melting point particles contained in an intermediate | middle layer, a bending strength is excellent with 819-827 MPa.

供試材No.10〜12は、供試材No.1を基本材質として、種々の変更を行なったものである。供試材No.10は、供試材No.1の中間層の基地を、ニッケルと硼素のみで構成したものである。また、前記中間層の基地は鋼製外筒から混入した元素として炭素、珪素、マンガン、クロム、鉄を不純物として含む。本供試材は、基地を強化する珪素の含有量が十分でないため、抗折力が484MPaと比較的低い。   Specimen No. Nos. 10 to 12 are specimen Nos. Various changes were made using 1 as a basic material. Specimen No. 10 is a specimen No. 10; The base of one intermediate layer is composed only of nickel and boron. The base of the intermediate layer includes carbon, silicon, manganese, chromium, and iron as impurities as elements mixed from the steel outer cylinder. This sample material has a relatively low bending strength of 484 MPa because the content of silicon for strengthening the base is not sufficient.

供試材No.11は、供試材No.1の中間層の厚さを、0.3mmに調整したものである。中間層の厚さが供試材No.1に比べて薄いため、ライニング層に対する鉄の混入防止効果が小さくなり、ライニング層の鉄含有量が5.3%と比較的高くなる。なお、本供試材んぼ中間層は、厚さが0.3mmと薄く、抗折試験片を採取できず、抗折力の測定ができなかった。   Specimen No. 11 is a specimen No. The thickness of the intermediate layer 1 is adjusted to 0.3 mm. The thickness of the intermediate layer is the specimen No. Since it is thinner than 1, the effect of preventing iron from entering the lining layer is reduced, and the iron content of the lining layer is relatively high at 5.3%. In addition, this sample material intermediate | middle layer was as thin as 0.3 mm, the bending test piece was not extractable, and the bending strength was not able to be measured.

供試材No.12は、供試材No.1の中間層中に含まれる高融点粒子の最大長さを295μmと大きくしたものである。その結果、ミクロ的な組織の均一性が損なわれ、中間層の融点が不均一となり、キャビティが発生したため、抗折力が353MPaと低くなった。   Specimen No. No. 12 is a specimen No. The maximum length of the high melting point particles contained in one intermediate layer is increased to 295 μm. As a result, the uniformity of the microscopic structure was impaired, the melting point of the intermediate layer became nonuniform, and cavities were generated, so that the bending strength was lowered to 353 MPa.

供試材No.33は、比較例であり、従来のニッケル基シリンダであり、中間層を持たない。そのため、製造の際に、溶融したニッケル基合金により鋼製外筒の一部が溶かされ、鋼製外筒の主成分である鉄が多量にニッケル基合金中に溶け込む。形成されたライニング層中に含まれる鉄は22.7%と多量であり、耐食性に極めて劣る。なお、供試材No.33は第二の本発明の比較例にも用いた。   Specimen No. 33 is a comparative example, which is a conventional nickel-based cylinder and does not have an intermediate layer. Therefore, at the time of manufacture, a part of the steel outer cylinder is melted by the molten nickel base alloy, and a large amount of iron, which is the main component of the steel outer cylinder, dissolves in the nickel base alloy. The iron contained in the formed lining layer is as large as 22.7%, which is extremely inferior in corrosion resistance. The test material No. 33 was also used for the comparative example of the second invention.

表3に第二の本発明の中間層部の測定結果を示す。すなわち、中間層の化学成分(質量%)、中間層に含まれる高融点粒子の種類、面積率(%)および最大長さ(μm)、中間層の厚さ(mm)、中間層の抗折力(MPa)、ライニング層に含まれる鉄の含有量(質量%)を示す。また、表3中の供試材No.21〜32は第二の本発明例であり、中間層はニッケルを含む基地と、タングステン化合物からなる高融点粒子とにより構成されているものである。   Table 3 shows the measurement results of the intermediate layer part of the second invention. That is, the chemical composition (% by mass) of the intermediate layer, the type of high melting point particles contained in the intermediate layer, the area ratio (%) and the maximum length (μm), the thickness of the intermediate layer (mm), the bending resistance of the intermediate layer The force (MPa) indicates the iron content (% by mass) contained in the lining layer. In addition, the test material No. Reference numerals 21 to 32 are second examples of the present invention, and the intermediate layer is composed of a base containing nickel and high melting point particles made of a tungsten compound.

供試材No.21〜23は、中間層に高融点粒子として、それぞれ、炭化タングステン、金属タングステン中に炭化タングステンを分散したもの、炭化タングステンと金属タングステン中に炭化タングステンを分散したものを、面積率で36〜46%含有させたものである。抗折力を測定した結果、これらの供試材の中間層における抗折力は731〜752MPaと十分な強度を持つことがわかった。また、これらの供試材のライニング層に含まれる鉄は3.1〜3.5%となり、耐食性に優れることが判った。   Specimen No. Nos. 21 to 23 are high-melting particles in the intermediate layer, respectively, tungsten carbide, tungsten carbide dispersed in tungsten, and tungsten carbide dispersed in tungsten carbide and metal tungsten in an area ratio of 36-46. %. As a result of measuring the bending strength, it was found that the bending strength in the intermediate layer of these test materials had a sufficient strength of 731 to 752 MPa. Moreover, iron contained in the lining layer of these test materials was 3.1 to 3.5%, and it was found that the corrosion resistance was excellent.

供試材No.24〜26は、中間層に高融点粒子として、それぞれ、炭化タングステン、金属タングステン中に炭化タングステンを分散したもの、炭化タングステンと金属タングステン中に炭化タングステンを分散したものを、面積率で75〜79%含有させたものである。高融点粒子の含有量が比較的多いので、中間層に含まれる鉄の含有量が5.1〜6.1%と低くなる。その結果、中間層からライニング層に混入する鉄の量が少なくなるため、ライニング層の鉄の含有量は1.0〜1.3%と非常に少なく、耐食性に極めて優れる。また、中間層に含まれる高融点粒子が多いため、抗折力は351〜375MPaと相対的に低くなる。   Specimen No. Nos. 24-26 are high melting point particles in the intermediate layer, respectively, tungsten carbide, tungsten carbide dispersed in tungsten, and tungsten carbide dispersed in tungsten carbide and metal tungsten in an area ratio of 75-79. %. Since the content of the high melting point particles is relatively large, the content of iron contained in the intermediate layer is as low as 5.1 to 6.1%. As a result, since the amount of iron mixed into the lining layer from the intermediate layer is reduced, the iron content of the lining layer is as very low as 1.0 to 1.3%, and the corrosion resistance is extremely excellent. Moreover, since there are many high melting point particles contained in an intermediate | middle layer, a bending strength becomes relatively low with 351-375 MPa.

供試材No.27〜29は、中間層に高融点粒子として、それぞれ、炭化タングステン、金属タングステン中に炭化タングステンを分散したもの、炭化タングステンと金属タングステン中に炭化タングステンを分散したものを、面積率で21〜25%含有させたものである。高融点粒子の含有量が比較的少ないので、中間層に含まれる鉄の含有量が15.0〜16.3%と高くなる。その結果、中間層からライニング層に混入する鉄の量が多くなるため、ライニング層の鉄の含有量は4.8〜5.1%と相対的に多くなる。また、中間層に含まれる高融点粒子が少ないため、抗折力は819〜843MPaと優れる。   Specimen No. Nos. 27 to 29 are, as high melting point particles in the intermediate layer, tungsten carbide, tungsten carbide dispersed in tungsten, and tungsten carbide dispersed in tungsten carbide and metal tungsten, respectively. %. Since the content of the high melting point particles is relatively small, the content of iron contained in the intermediate layer is as high as 15.0 to 16.3%. As a result, since the amount of iron mixed from the intermediate layer into the lining layer increases, the iron content of the lining layer relatively increases to 4.8 to 5.1%. Moreover, since there are few high melting point particles contained in an intermediate | middle layer, a bending strength is excellent with 819-843 MPa.

供試材No.30〜32は、供試材No.21を基本材質として、種々の変更を行なったものである。供試材No.30は、供試材No.21の中間層の基地を、ニッケルと硼素のみで構成したものである。また、前記中間層の基地は鋼製外筒から混入した元素として、珪素、マンガン、クロム、鉄を不純物として含む。本供試材は、基地を強化する珪素の含有量が十分でないため、抗折力が502MPaと比較的低い。   Specimen No. 30 to 32 are specimen Nos. Various changes were made using 21 as a basic material. Specimen No. 30 is a specimen No. The base of 21 intermediate layers is composed only of nickel and boron. The base of the intermediate layer contains silicon, manganese, chromium, and iron as impurities as elements mixed from the steel outer cylinder. Since the content of silicon for strengthening the base is not sufficient, this specimen has a relatively low bending strength of 502 MPa.

供試材No.31は、供試材No.21の中間層の厚さを、0.3mmに調整したものである。中間層の厚さが供試材No.21に比べて薄いため、ライニング層に対する鉄の混入防止効果が小さくなり、ライニング層の鉄含有量が5.7%と比較的高くなる。なお、本供試材んぼ中間層は、厚さが0.3mmと薄く、抗折試験片を採取できず、抗折力の測定ができなかった。   Specimen No. 31 is a specimen No. The thickness of the intermediate layer 21 is adjusted to 0.3 mm. The thickness of the intermediate layer is the specimen No. Since it is thinner than 21, the effect of preventing iron from mixing into the lining layer is reduced, and the iron content of the lining layer is relatively high at 5.7%. In addition, this sample material intermediate | middle layer was as thin as 0.3 mm, the bending test piece was not extractable, and the bending strength was not able to be measured.

供試材No.32は、供試材No.21の中間層中に含まれる高融点粒子の最大長さを297μmと大きくしたものである。その結果、ミクロ的な組織の均一性が損なわれ、中間層の融点が不均一となり、キャビティが発生したため、抗折力が363MPaと低くなった。   Specimen No. 32 is a specimen No. The maximum length of the high melting point particles contained in the intermediate layer 21 is increased to 297 μm. As a result, the uniformity of the microscopic structure was impaired, the melting point of the intermediate layer became non-uniform, and cavities were generated, so the bending strength was lowered to 363 MPa.

中間層の被削性を勘案し、本発明の供試材No.22と同様な方法で、外径φ90mm×内径φ28mm×全長500mmの成形機用シリンダを製造した。この成形機用シリンダを実際射出成形に供したところ、従来のニッケル基シリンダに比べ、腐食の発生は認められず、優れた耐食性を発揮し、良好に使用できることが判った。   In consideration of the machinability of the intermediate layer, the test material No. 22 was used to produce a molding machine cylinder having an outer diameter of 90 mm, an inner diameter of 28 mm, and a total length of 500 mm. When this cylinder for molding machines was actually used for injection molding, it was found that no corrosion was observed compared to conventional nickel-based cylinders, and it exhibited excellent corrosion resistance and could be used satisfactorily.

第一の本発明の成形機用シリンダは、中間層に金属タングステンおよびタングステンを主体とする合金のいずれか1種以上からなる高融点粒子を含んでおり、ライニング層への鉄混入防止効果に優れる。また、第二の本発明の成形機用シリンダは、中間層にタングステン化合物からなる高融点粒子を含み、ライニング層への鉄混入防止効果に優れる。ライニング層への鉄の混入が阻止されることにより、ライニング層は優れた耐食性を発揮することができる。   The cylinder for a molding machine according to the first aspect of the present invention includes high melting point particles made of at least one of metallic tungsten and an alloy mainly composed of tungsten in the intermediate layer, and is excellent in preventing iron contamination into the lining layer. . Moreover, the cylinder for molding machines of the second aspect of the present invention includes high melting point particles made of a tungsten compound in the intermediate layer, and is excellent in preventing iron from being mixed into the lining layer. By preventing iron from being mixed into the lining layer, the lining layer can exhibit excellent corrosion resistance.

腐食試験結果の図である。It is a figure of a corrosion test result. 本発明の成形機用シリンダ前駆体の断面模式図である。It is a cross-sectional schematic diagram of the cylinder precursor for molding machines of this invention. 本発明の成形機用シリンダ材の断面模式図である。It is a cross-sectional schematic diagram of the cylinder material for molding machines of this invention.

符号の説明Explanation of symbols

イ 鋼製外筒、 ロ 高融点粒子が分散した中間層、 ハ 高融点粒子が乏しい層、
ニ 中空部、 ホ ライニング層
A steel outer cylinder, b an intermediate layer in which high melting point particles are dispersed, c a layer in which high melting point particles are poor,
D Hollow part, lining layer

Claims (14)

中空円筒状の鋼製外筒の内面側にニッケルを主体とする耐摩耗耐食性合金からなるライニング層を形成した成形機用シリンダにおいて、前記ライニング層と鋼製外筒の間に中間層を形成し、該中間層はニッケルを主体とする基地中に金属タングステンおよびタングステンを主体とする合金のいずれか1種以上からなる高融点粒子を含んでなることを特徴とする成形機用シリンダ。 In a cylinder for a molding machine in which a lining layer made of a wear and corrosion resistant alloy mainly composed of nickel is formed on the inner surface side of a hollow cylindrical steel outer cylinder, an intermediate layer is formed between the lining layer and the steel outer cylinder. The cylinder for a molding machine, wherein the intermediate layer comprises high melting point particles made of at least one of metallic tungsten and an alloy mainly containing tungsten in a base mainly containing nickel. 中空円筒状の鋼製外筒の内面側にニッケルを主体とする耐摩耗耐食性合金からなるライニング層を形成した成形機用シリンダにおいて、前記ライニング層と鋼製外筒の間に中間層を形成し、該中間層はニッケルを主体とする基地中にタングステン化合物からなる高融点粒子を含んでなることを特徴とする成形機用シリンダ。 In a cylinder for a molding machine in which a lining layer made of a wear and corrosion resistant alloy mainly composed of nickel is formed on the inner surface side of a hollow cylindrical steel outer cylinder, an intermediate layer is formed between the lining layer and the steel outer cylinder. The cylinder for a molding machine, wherein the intermediate layer comprises high melting point particles made of a tungsten compound in a base mainly composed of nickel. 前記タングステン化合物が金属タングステン中に炭化タングステンを分散させたものであることを特徴とする請求項2に記載の成形機用シリンダ。 The cylinder for a molding machine according to claim 2, wherein the tungsten compound is obtained by dispersing tungsten carbide in metallic tungsten. 前記高融点粒子が面積率で20〜80%含有することを特徴とする請求項1〜3のいずれかに記載の成形機用シリンダ。 The cylinder for a molding machine according to any one of claims 1 to 3, wherein the high melting point particles are contained in an area ratio of 20 to 80%. 前記高融点粒子の最大長さが250μm以下であることを特徴とする請求項1〜4のいずれかに記載の成形機用シリンダ。 The cylinder for a molding machine according to any one of claims 1 to 4, wherein a maximum length of the high melting point particles is 250 µm or less. 前記中間層の成分が質量%で、B:0.5〜3.5%、W:20.0〜60.0%および残部実質上Niからなることを特徴とする請求項1、4、5のいずれかに記載の成形機用シリンダ。 The components of the intermediate layer are mass%, B: 0.5 to 3.5%, W: 20.0 to 60.0%, and the balance substantially consisting of Ni. A cylinder for a molding machine according to any one of the above. 前記中間層の成分が質量%で、B:0.5〜3.5%、W:20.0〜60.0%、C:0.5〜3.5%および残部実質上Niからなる組成を有することを特徴とする請求項2〜5のいずれかに記載の成形機用シリンダ。 The composition of the intermediate layer is composed of mass%, B: 0.5-3.5%, W: 20.0-60.0%, C: 0.5-3.5% and the balance substantially Ni. The cylinder for molding machines according to any one of claims 2 to 5, wherein 前記中間層は、さらに質量%で、Si:0.5〜5.0%、Cr:1.0〜10.0%、Co:1.0〜20.0%およびFe:20.0%以下の元素のうち少なくとも一種を含有することを特徴とする請求項6または7に記載の成形機用シリンダ。 The intermediate layer is further mass%, Si: 0.5 to 5.0%, Cr: 1.0 to 10.0%, Co: 1.0 to 20.0%, and Fe: 20.0% or less The cylinder for molding machines according to claim 6 or 7, comprising at least one of these elements. 前記中間層は、さらに質量%で、Mn:2.0%以下およびCu:5.0%以下の元素のうち少なくとも一種を含有することを特徴とする請求項6〜8のいずれかに記載の成形機用シリンダ。 9. The intermediate layer according to claim 6, wherein the intermediate layer further contains at least one element selected from the group consisting of Mn: 2.0% or less and Cu: 5.0% or less in mass%. Cylinder for molding machine. 前記中間層の最大厚みが、0.2mm〜2.0mmであることを特徴とする請求項1〜9のいずれかに記載の成形機用シリンダ。 The cylinder for a molding machine according to any one of claims 1 to 9, wherein a maximum thickness of the intermediate layer is 0.2 mm to 2.0 mm. 前記ライニング層に含まれるFeが質量%で6.0%以下であることを特徴とする請求項1〜10のいずれかに記載の成形機用シリンダ。 The cylinder for molding machines according to any one of claims 1 to 10, wherein Fe contained in the lining layer is 6.0% or less by mass. 請求項1〜11のいずれかに記載のフッ素樹脂成形機用シリンダ。 The cylinder for a fluororesin molding machine according to any one of claims 1 to 11. 前記中間層を遠心鋳造法により形成したことを特徴とする請求項1〜12のいずれかに記載の成形機用シリンダ。 The cylinder for a molding machine according to any one of claims 1 to 12, wherein the intermediate layer is formed by a centrifugal casting method. 前記ライニング層の融点をT1(℃)、前記中間層の融点をT2(℃)、鋼製外筒の融点をT3(℃)としたとき、下記(1)式を満足することを特徴とする請求項13に記載の成形機用シリンダ。
T1<T2<T3 ・・・・・・・・(1)
When the melting point of the lining layer is T1 (° C.), the melting point of the intermediate layer is T2 (° C.), and the melting point of the steel outer cylinder is T3 (° C.), the following equation (1) is satisfied. The cylinder for molding machines according to claim 13.
T1 <T2 <T3 (1)
JP2007292417A 2007-11-09 2007-11-09 Cylinder for molding machine Active JP5177632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292417A JP5177632B2 (en) 2007-11-09 2007-11-09 Cylinder for molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292417A JP5177632B2 (en) 2007-11-09 2007-11-09 Cylinder for molding machine

Publications (2)

Publication Number Publication Date
JP2009113457A true JP2009113457A (en) 2009-05-28
JP5177632B2 JP5177632B2 (en) 2013-04-03

Family

ID=40781129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292417A Active JP5177632B2 (en) 2007-11-09 2007-11-09 Cylinder for molding machine

Country Status (1)

Country Link
JP (1) JP5177632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129754A1 (en) * 2014-02-25 2015-09-03 日立金属株式会社 Molding-machine cylinder and method for producing same
WO2016052660A1 (en) * 2014-09-30 2016-04-07 日立金属株式会社 Composite cylinder for molding machine and process for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351948B (en) * 2018-11-01 2020-07-03 苏州市海威特铸造厂 Casting process of copper-iron insert casting

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432413B2 (en) * 1971-11-10 1979-10-15
JPS5983753A (en) * 1982-11-01 1984-05-15 Hitachi Metals Ltd Preparation of composite cylinder for molding plastics
JPS62197264A (en) * 1986-02-20 1987-08-31 Toshiba Mach Co Ltd Production of wear resistant layer
JPH0461059B2 (en) * 1988-05-20 1992-09-29 Taihei Kinzoku Kogyo Kk
JPH04371820A (en) * 1991-06-20 1992-12-24 Hitachi Metals Ltd Injection or extrusion molding machine
JPH07290186A (en) * 1994-04-27 1995-11-07 Japan Steel Works Ltd:The Tungsten carbide composite lining material and layer for centrifugal casting
JP2000239770A (en) * 1999-02-22 2000-09-05 Wall Colmonoy Corp Production of cast alloy and complex cylinder
JP2002161319A (en) * 2000-11-17 2002-06-04 Hitachi Metals Ltd Cylinder for molding machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432413B2 (en) * 1971-11-10 1979-10-15
JPS5983753A (en) * 1982-11-01 1984-05-15 Hitachi Metals Ltd Preparation of composite cylinder for molding plastics
JPS62197264A (en) * 1986-02-20 1987-08-31 Toshiba Mach Co Ltd Production of wear resistant layer
JPH0461059B2 (en) * 1988-05-20 1992-09-29 Taihei Kinzoku Kogyo Kk
JPH04371820A (en) * 1991-06-20 1992-12-24 Hitachi Metals Ltd Injection or extrusion molding machine
JPH07290186A (en) * 1994-04-27 1995-11-07 Japan Steel Works Ltd:The Tungsten carbide composite lining material and layer for centrifugal casting
JP2000239770A (en) * 1999-02-22 2000-09-05 Wall Colmonoy Corp Production of cast alloy and complex cylinder
JP2002161319A (en) * 2000-11-17 2002-06-04 Hitachi Metals Ltd Cylinder for molding machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129754A1 (en) * 2014-02-25 2015-09-03 日立金属株式会社 Molding-machine cylinder and method for producing same
JP6044737B2 (en) * 2014-02-25 2016-12-14 日立金属株式会社 Cylinder for molding machine and manufacturing method thereof
US10300527B2 (en) 2014-02-25 2019-05-28 Hitachi Metals, Ltd. Molding machine cylinder and its production method
US10376952B2 (en) 2014-02-25 2019-08-13 Hitachi Metals, Ltd. Molding machine cylinder and its production method
WO2016052660A1 (en) * 2014-09-30 2016-04-07 日立金属株式会社 Composite cylinder for molding machine and process for producing same

Also Published As

Publication number Publication date
JP5177632B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP4900806B2 (en) Cylinder for molding machine
EP3089839B1 (en) Centrifugal cast composite metal product
JP6973416B2 (en) Composite roll for rolling and its manufacturing method
JP4558736B2 (en) Manufacturing method of composite member
US10300527B2 (en) Molding machine cylinder and its production method
JP5165895B2 (en) Abrasion resistant material
Aramian et al. A review on the microstructure and properties of TiC and Ti (C, N) based cermets
CN113174525A (en) High-entropy alloy powder and preparation and application thereof
JP5177632B2 (en) Cylinder for molding machine
JP2007175736A (en) Composite roll for rolling and its production method
WO2016052660A1 (en) Composite cylinder for molding machine and process for producing same
CN113172365B (en) Preparation method of ternary boride hard alloy surfacing welding electrode
JP5096899B2 (en) Continuous casting mold and W-based self-fluxing alloy
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
EP3650560A1 (en) Oxidation-resistant heat-resistant alloy and preparing method
JP6086444B2 (en) Alloy composition for aluminum die-cast mold and method for producing the same
JP2008246550A (en) Method for manufacturing preform, preform, and cast-in product using preform
JP2006257507A (en) Alloy for nonferrous molten metal
JP2001279369A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
Li et al. TiC–High Mn Steel‐Bonded Cermets with Improved Strength and Impact Toughness
WO2018193982A1 (en) Spray coating, laminated pipe, and method for manufacturing spray coating
WO2019167149A1 (en) Member for equipment in baths, equipment in molten metal bath, and molten metal plating material production device
JP2006291285A (en) Erosion-resistant member for nonferrous molten metal
JP2005154826A (en) High-rigidity ingot steel having excellent machinability
JP2008246551A (en) Sleeve for die casting machine, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5177632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350