JP2002161310A - Desulfurization process for liquid steel using rh vacuum degassing equipment - Google Patents

Desulfurization process for liquid steel using rh vacuum degassing equipment

Info

Publication number
JP2002161310A
JP2002161310A JP2000355477A JP2000355477A JP2002161310A JP 2002161310 A JP2002161310 A JP 2002161310A JP 2000355477 A JP2000355477 A JP 2000355477A JP 2000355477 A JP2000355477 A JP 2000355477A JP 2002161310 A JP2002161310 A JP 2002161310A
Authority
JP
Japan
Prior art keywords
desulfurizing agent
desulfurization
molten steel
carrier gas
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000355477A
Other languages
Japanese (ja)
Inventor
Eiji Sakurai
栄司 櫻井
Takuji Teraoka
卓治 寺岡
Masanori Komatani
昌紀 狛谷
Shinichi Akai
真一 赤井
Eiju Matsuno
英寿 松野
Takeshi Murai
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000355477A priority Critical patent/JP2002161310A/en
Publication of JP2002161310A publication Critical patent/JP2002161310A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently remove sulfur in liquid steel, achieving a constant, high rate of desulfurization by means of gas injection into the RH vacuum degasser (Rurstahl Hereaus De-gasser). SOLUTION: This desulfurization process featuring that powdered desulfurizing agent 5 is blown into liquid steel 3 together with carrier gas and that both blown-in desulfurizing agent and liquid steel are mixed for desulfurization in a vacuum bath 6 of RH vacuum degasser 1 specifies that the rate of blowing desulfurizing agent is 100 kg/min or less and the flow rate of carrier gas used is 2,000 Nl/min or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、RH真空脱ガス装
置において、溶鋼中硫黄を効率良く除去することのでき
る脱硫方法に関するものである。
The present invention relates to a desulfurization method capable of efficiently removing sulfur in molten steel in an RH vacuum degassing apparatus.

【0002】[0002]

【従来の技術】硫黄含有量が10ppm以下程度に低
い、ラインパイプ材等の所謂極低硫鋼を溶製するために
は、溶銑段階で行なう脱硫(溶銑脱硫という)と、溶鋼
段階で行なう脱硫(溶鋼脱硫という)とが必要である。
このうち溶鋼脱硫は、一般に、取鍋に受けた溶鋼中に脱
硫剤をキャリアガスと共に吹き込むインジェクション法
により行なわれるが、脱硫処理以外に脱ガス処理や脱炭
処理が必要な鋼種では、脱硫処理の前工程又は後工程
で、減圧下での精錬が可能なRH真空脱ガス装置にて処
理する必要があり、これら脱硫処理や脱ガス処理等の二
次精錬工程を簡素化するため、RH真空脱ガス装置にて
脱硫する方法が多数提案されている。
2. Description of the Related Art In order to produce so-called ultra-low sulfur steel such as line pipe materials having a sulfur content of about 10 ppm or less, desulfurization performed in a hot metal stage (called hot metal desulfurization) and desulfurization performed in a molten steel stage are performed. (Referred to as molten steel desulfurization).
Of these, molten steel desulfurization is generally performed by an injection method in which a desulfurizing agent is blown together with a carrier gas into molten steel received in a ladle, but for steel types that require degassing or decarburization in addition to desulfurization, In the pre-process or post-process, it is necessary to perform treatment with an RH vacuum degassing device capable of refining under reduced pressure. To simplify the secondary refining process such as desulfurization and degassing, RH vacuum degassing is performed. Many methods for desulfurization with a gas device have been proposed.

【0003】例えば、特公昭61−59375号公報に
は、RH真空脱ガス装置の上昇側浸漬管の下方に配置し
た吹き込みランスから、微粉状脱硫剤をキャリアガスと
共に溶鋼の上昇流中に吹き込む方法が開示されており、
又、特開昭61−130413号公報には、RH真空脱
ガス装置の真空槽下部の溶鋼湯面下に設けた羽口から、
粉状脱硫剤をキャリアガスと共に吹き込む方法が開示さ
れている。そして、脱硫剤としては、例えば特公平1−
49772号公報に開示されたように、低融点のCaO
−CaF2 系脱硫剤が一般に使用されている。
[0003] For example, Japanese Patent Publication No. 61-59375 discloses a method of blowing a fine powdery desulfurizing agent together with a carrier gas into a rising flow of molten steel from a blowing lance disposed below a rising immersion pipe of an RH vacuum degassing apparatus. Is disclosed,
Japanese Patent Application Laid-Open No. Sho 61-130413 discloses a tuyere provided below the surface of molten steel below the vacuum chamber of an RH vacuum degassing apparatus.
A method of blowing a powdery desulfurizing agent together with a carrier gas is disclosed. And as the desulfurizing agent, for example,
No. 49772 discloses a low melting point CaO.
-CaF 2 based desulfurizing agent is generally used.

【0004】[0004]

【発明が解決しようとする課題】RH真空脱ガス装置に
おいては、真空槽内では攪拌力が強く、添加した脱硫剤
と溶鋼とは強攪拌されるが、取鍋内では攪拌力が弱く、
溶鋼上に浮遊する取鍋内スラグ位置に浮上した脱硫剤と
溶鋼との反応は極めて遅い。そのため、RH真空脱ガス
装置でインジェクション法により脱硫する際には、脱硫
剤が取鍋内スラグ位置に浮上した後の脱硫反応、所謂パ
ーマネント反応は期待できず、吹き込まれた脱硫剤が取
鍋内の溶鋼湯面上に浮上するまでのトランジトリー反応
のみで効率良く脱硫しなければならない。
In the RH vacuum degassing apparatus, the stirring force is strong in the vacuum chamber and the added desulfurizing agent and the molten steel are strongly stirred, but in the ladle, the stirring force is weak.
The reaction between the desulfurizing agent floating at the slag position in the ladle floating on the molten steel and the molten steel is extremely slow. Therefore, when desulfurization is performed by the RH vacuum degassing apparatus by the injection method, a desulfurization reaction after the desulfurization agent has floated to the slag position in the ladle, a so-called permanent reaction, cannot be expected, and the injected desulfurization agent is in the ladle. It must be efficiently desulfurized only by a transient reaction until it floats on the surface of molten steel.

【0005】本発明者等は、上記従来技術に沿って、脱
硫剤吹き込み速度及びキャリアガス流量を変更した試験
操業を実施した。その結果、脱硫剤吹き込み速度及びキ
ャリアガス流量の変更に伴い、トランジトリー反応が左
右され、脱硫率が大きく変動することを確認すると共
に、高脱硫率を得るためには、これらの条件を制御する
ことが極めて重要であることが分かった。しかしなが
ら、上記従来技術は、脱硫剤吹き込み速度及びキャリア
ガス流量の脱硫率に及ぼす影響については、何ら開示し
ていない。
The present inventors conducted a test operation in which the blowing rate of the desulfurizing agent and the flow rate of the carrier gas were changed in accordance with the above-mentioned conventional technology. As a result, with the change of the desulfurizing agent blowing rate and the carrier gas flow rate, the transit reaction is influenced and the desulfurization rate is confirmed to fluctuate greatly, and these conditions are controlled to obtain a high desulfurization rate. Turned out to be extremely important. However, the above-mentioned prior art does not disclose any influence of the blowing rate of the desulfurizing agent and the flow rate of the carrier gas on the desulfurization rate.

【0006】本発明は上記事情に鑑みなされたもので、
その目的とするところは、RH真空脱ガス装置において
インジェクション法により溶鋼の脱硫を行なう際に、安
定した高脱硫率で、効率良く脱硫することのできる脱硫
方法を提供することである。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a desulfurization method capable of efficiently performing desulfurization with a stable high desulfurization rate when desulfurizing molten steel by an injection method in an RH vacuum degassing apparatus.

【0007】[0007]

【課題を解決するための手段】本発明によるRH真空脱
ガス装置での溶鋼の脱硫方法は、粉状の脱硫剤をキャリ
アガスと共に溶鋼中に吹き込み、吹き込んだ脱硫剤と溶
鋼とをRH真空脱ガス装置の真空槽内で混合して脱硫す
る溶鋼の脱硫方法において、前記脱硫剤の吹き込み速度
を100kg/min以下とし、且つ、前記キャリアガ
スの流量を2000Nl/min以上とすることを特徴
とするものである。
The method for desulfurizing molten steel in an RH vacuum degassing apparatus according to the present invention comprises blowing a powdery desulfurizing agent together with a carrier gas into molten steel, and subjecting the blown desulfurizing agent and the molten steel to RH vacuum degassing. A method for desulfurizing molten steel mixed and desulfurized in a vacuum chamber of a gas apparatus, wherein the blowing speed of the desulfurizing agent is 100 kg / min or less, and the flow rate of the carrier gas is 2000 Nl / min or more. Things.

【0008】本発明者等は、RH真空脱ガス装置におい
てインジェクション法により効率良く脱硫するための条
件を種々検討した。その結果、吹き込まれた脱硫剤の一
部は、脱硫反応に関与せず、キャリアガスに捕捉された
まま溶鋼中から離脱し、排ガス中に混じって真空槽から
排出されてしまい、これが脱硫率低下の主たる原因であ
ることを確認した。そして、この脱硫反応に関与せずに
真空槽から排出される脱硫剤の量は、脱硫剤吹き込み速
度とキャリアガス流量とに関係することが分かった。
The present inventors have studied various conditions for efficient desulfurization by an injection method in an RH vacuum degassing apparatus. As a result, some of the injected desulfurization agent does not participate in the desulfurization reaction, escapes from the molten steel while being trapped by the carrier gas, mixes with the exhaust gas, and is discharged from the vacuum chamber, which lowers the desulfurization rate. The main cause was confirmed. Then, it was found that the amount of the desulfurizing agent discharged from the vacuum chamber without being involved in the desulfurization reaction was related to the blowing speed of the desulfurizing agent and the flow rate of the carrier gas.

【0009】即ち、脱硫剤の吹き込み速度を100kg
/min以下に抑えると共に、キャリアガスの流量を2
000Nl/min以上とすることで、キャリアガスに
捕捉されたまま排出される脱硫剤が減少し、脱硫反応に
関与する脱硫剤が実質的に多くなり、脱硫反応が促進さ
れて高い脱硫率を得ることができる。尚、理論的には脱
硫剤吹き込み速度の下限は特にないが、工業的な実操業
としては20kg/min以上とすることが好ましい。
That is, the blowing speed of the desulfurizing agent is 100 kg.
/ Min or less and the carrier gas flow rate is 2
By setting the concentration to 000 Nl / min or more, the desulfurizing agent discharged while being captured by the carrier gas decreases, the desulfurizing agent involved in the desulfurizing reaction substantially increases, and the desulfurizing reaction is accelerated to obtain a high desulfurization rate. be able to. Note that, theoretically, there is no lower limit of the desulfurizing agent blowing rate, but it is preferable to set the rate to 20 kg / min or more for industrial practical operation.

【0010】又、キャリアガス流量を2000Nl/m
in以上とすることで、真空槽内は強攪拌され、脱硫剤
が溶鋼中に均一に分散され、脱硫反応が促進される。
尚、キャリアガス流量の上限は特に規定されるものでは
ないが、キャリアガス流量を多くしても効果は飽和する
ので、工業的な実操業としては5000Nl/min以
下とするのが好ましく、3000Nl/min以下でも
充分である。
Further, the flow rate of the carrier gas is set to 2000 Nl / m
By setting to in or more, the inside of the vacuum chamber is vigorously stirred, the desulfurizing agent is uniformly dispersed in the molten steel, and the desulfurization reaction is promoted.
The upper limit of the flow rate of the carrier gas is not particularly limited, but the effect is saturated even if the flow rate of the carrier gas is increased. Therefore, it is preferable that the flow rate be 5000 Nl / min or less in an actual industrial operation, and 3000 Nl / min or less. Min or less is sufficient.

【0011】[0011]

【発明の実施の形態】以下、本発明を図面に基づき説明
する。図1は、本発明を実施したRH真空脱ガス装置の
縦断面概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus embodying the present invention.

【0012】図1に示すように、RH真空脱ガス装置1
は、上部槽7及び下部槽8からなる真空槽6と、下部槽
8の下部に設けた上昇側浸漬管9及び下降側浸漬管10
とで、その基部が構成されている。上部槽7には、原料
投入口14と、排気装置(図示せず)と接続するダクト
15とが設けられ、又、上昇側浸漬管9にはAr吹き込
み管11と、脱硫剤5を収納するホッパー13に連結し
た脱硫剤吹き込み管12とが設けられている。Ar吹き
込み管11からは環流用Arが上昇側浸漬管9内に吹き
込まれ、又、脱硫剤吹き込み管12からはAr等の不活
性ガスをキャリアガスとして脱硫剤5が上昇側浸漬管9
内に吹き込まれる構造となっている。
As shown in FIG. 1, an RH vacuum degassing apparatus 1
Are a vacuum tank 6 composed of an upper tank 7 and a lower tank 8, and an ascending-side immersion pipe 9 and a descending-side immersion pipe 10 provided below the lower tank 8.
Thus, the base is formed. The upper tank 7 is provided with a raw material input port 14 and a duct 15 connected to an exhaust device (not shown), and the rising side immersion pipe 9 stores the Ar blowing pipe 11 and the desulfurizing agent 5. A desulfurizing agent blowing pipe 12 connected to the hopper 13 is provided. Ar for reflux is blown into the rising side immersion pipe 9 from the Ar blowing pipe 11, and the desulfurizing agent 5 is flown from the desulfurizing agent blowing pipe 12 by using an inert gas such as Ar as a carrier gas.
It has a structure that is blown into the interior.

【0013】このような構成のRH真空脱ガス装置1に
おける本発明の適用方法を以下に説明する。先ず、転炉
や電気炉等で溶銑を脱炭精錬して溶鋼3を得、こうして
得た溶鋼3を収納する取鍋2を真空槽6の直下に搬送す
る。取鍋2内には脱炭精錬時のスラグ4が一部混入し、
溶鋼3の湯面を覆っている。尚、脱炭精錬に使用する溶
銑は予め溶銑脱硫されたものである。又、出鋼後、取鍋
2内にCaO系のフラックスを添加し、スラグ4の組成
を脱硫反応に適したCaOを主成分とする組成としても
良い。
An application method of the present invention in the RH vacuum degassing apparatus 1 having such a configuration will be described below. First, the molten iron is decarburized and refined in a converter or an electric furnace to obtain molten steel 3, and the ladle 2 containing the molten steel 3 thus obtained is transported directly below the vacuum tank 6. The slag 4 from the decarburization refining is partially mixed in the ladle 2,
It covers the surface of molten steel 3. The hot metal used for the decarburization refining is hot metal desulfurized in advance. After tapping, a CaO-based flux may be added into the ladle 2 so that the composition of the slag 4 may be a composition mainly composed of CaO suitable for the desulfurization reaction.

【0014】次いで、昇降装置(図示せず)にて取鍋2
を上昇させ、上昇側浸漬管9及び下降側浸漬管10を取
鍋2内の溶鋼3に浸漬させる。そして、Ar吹き込み管
11から上昇側浸漬管9内にArを吹き込むと共に、真
空槽6内を排気装置にて排気して真空槽6内を減圧す
る。真空槽6内が減圧されると、取鍋2内の溶鋼3は、
Ar吹き込み管11から吹き込まれるArと共に上昇側
浸漬管9を上昇して真空槽6内に流入し、その後、下降
側浸漬管10を介して取鍋2に戻る流れ、所謂、環流を
形成してRH真空脱ガス精錬が施される。
Next, the ladle 2 is moved by a lifting device (not shown).
Is raised, and the ascending-side immersion pipe 9 and the descending-side immersion pipe 10 are immersed in the molten steel 3 in the ladle 2. Then, Ar is blown into the rising side immersion pipe 9 from the Ar blowing pipe 11, and the inside of the vacuum chamber 6 is evacuated by an exhaust device to reduce the pressure in the vacuum chamber 6. When the pressure in the vacuum chamber 6 is reduced, the molten steel 3 in the ladle 2
With the Ar blown from the Ar blowing pipe 11, the rising side immersion pipe 9 rises and flows into the vacuum chamber 6, and then returns to the ladle 2 via the descending side immersion pipe 10, forming a so-called reflux. RH vacuum degassing refining is performed.

【0015】溶鋼3中に溶解酸素が存在すると脱硫反応
が進行しないので、脱硫処理の前に、原料投入口14か
ら金属Alを投入して溶鋼3を予め脱酸する。金属Al
の添加量は、脱酸後の溶鋼中のAl濃度が0.01mass
%以上確保される量とする。尚、出鋼時に取鍋2内に金
属Alを添加し、予め脱酸しても良い。そして、脱酸
後、ホッパー13内の脱硫剤5をキャリアガスを介して
溶鋼3中に吹き込む。吹き込まれた脱硫剤5は、環流す
る溶鋼3と共に真空槽6内に流入し、次いで、下降側浸
漬管10を通り取鍋2内に至り、やがて取鍋2内で浮上
してスラグ4位置に到達する。その間に、脱硫剤5は溶
鋼3と反応して溶鋼3を脱硫する。その際、脱硫剤5の
吹き込み速度を100kg/min以下に調整すると共
に、キャリアガスの流量を2000Nl/min以上に
調整する。尚、キャリアガス流量の上限は特にないが、
上昇側浸漬管9の損耗量を少なくするために5000N
l/min以下とすることが望ましい。
If the molten oxygen is present in the molten steel 3, the desulfurization reaction does not proceed. Therefore, before the desulfurization treatment, metal Al is charged from the raw material inlet 14 to deoxidize the molten steel 3 in advance. Metal Al
The addition amount of Al is 0.01 mass in the molten steel after deoxidation.
% Or more. In addition, you may add metal Al in the ladle 2 at the time of tapping, and may deoxidize beforehand. After the deoxidation, the desulfurizing agent 5 in the hopper 13 is blown into the molten steel 3 via a carrier gas. The blown desulfurizing agent 5 flows into the vacuum chamber 6 together with the circulating molten steel 3, then reaches the ladle 2 through the descending dipping tube 10, and eventually floats in the ladle 2 to the slag 4 position. To reach. Meanwhile, the desulfurizing agent 5 reacts with the molten steel 3 to desulfurize the molten steel 3. At that time, the blowing speed of the desulfurizing agent 5 is adjusted to 100 kg / min or less, and the flow rate of the carrier gas is adjusted to 2000 Nl / min or more. Although there is no particular upper limit for the carrier gas flow rate,
5000N to reduce the amount of wear on the ascending side immersion pipe 9
1 / min or less is desirable.

【0016】使用する脱硫剤5は慣用のCaOを主成分
とする粉状のフラックスとし、脱硫剤5の添加量は、溶
鋼トン当り3.0kg(以下、「kg/t」と記す)以
上とすることが好ましい。3.0kg/t未満では、脱
硫剤5が不足して目的とするレベルまで脱硫できないこ
とがある。又、脱硫剤5の添加量の上限は特にないが、
脱硫剤5のコスト削減や脱硫剤5の添加による溶鋼3の
温度降下を防止するため、10.0kg/t以下とする
ことが好ましい。尚、脱硫処理中の真空槽6内の圧力は
1330Pa以下に保持する。1330Pa以下であれ
ば吹き込まれた脱硫剤5に含まれる水素による溶鋼3の
水素ピックアップもなく、製品特性上の劣化を招くこと
がないからである。
The desulfurizing agent 5 to be used is a conventional powdery flux containing CaO as a main component, and the amount of the desulfurizing agent 5 to be added is 3.0 kg per ton of molten steel (hereinafter, referred to as “kg / t”). Is preferred. If the rate is less than 3.0 kg / t, the desulfurizing agent 5 may be insufficient and desulfurization may not be performed to a target level. Although there is no particular upper limit on the amount of desulfurizing agent 5,
In order to reduce the cost of the desulfurizing agent 5 and to prevent the temperature of the molten steel 3 from dropping due to the addition of the desulfurizing agent 5, the temperature is preferably set to 10.0 kg / t or less. In addition, the pressure in the vacuum chamber 6 during the desulfurization treatment is maintained at 1330 Pa or less. If the pressure is 1330 Pa or less, there is no hydrogen pickup of the molten steel 3 by the hydrogen contained in the blown desulfurizing agent 5 and no deterioration in product characteristics is caused.

【0017】そして、所定量の脱硫剤5の添加完了後、
必要に応じて溶鋼3の成分調整を行い、次いで、真空槽
6内を大気圧に戻してRH真空脱ガス精錬を終了する。
その後、取鍋2を次工程の連続鋳造設備等の鋳造設備に
搬出して溶鋼3を鋳造する。尚、脱炭処理を行なう際に
は、金属Alを添加する前の溶鋼3が未脱酸の状態で行
なうこととする。
After completion of the addition of the predetermined amount of the desulfurizing agent 5,
If necessary, the components of the molten steel 3 are adjusted, and then the inside of the vacuum chamber 6 is returned to the atmospheric pressure to complete the RH vacuum degassing refining.
Thereafter, the ladle 2 is carried out to a casting facility such as a continuous casting facility in the next step, and the molten steel 3 is cast. In addition, when performing a decarburization process, it is assumed that the molten steel 3 before adding the metal Al is not deoxidized.

【0018】このようにして溶鋼3を脱硫することで、
キャリアガスに捕捉されたまま排気装置にて吸引される
脱硫剤5が減少して、脱硫反応に関与する脱硫剤が実質
的に増加するので、安定した高い脱硫率で脱硫処理を行
なうことができる。又、脱硫処理と同時に溶鋼3の脱ガ
ス処理も行なわれ、二次精錬工程が簡素化される。
By desulfurizing the molten steel 3 in this way,
Since the desulfurizing agent 5 sucked by the exhaust device while being trapped by the carrier gas decreases and the desulfurizing agent involved in the desulfurization reaction substantially increases, the desulfurization treatment can be performed at a stable and high desulfurization rate. . Further, simultaneously with the desulfurization treatment, the degassing treatment of the molten steel 3 is also performed, thereby simplifying the secondary refining process.

【0019】尚、上記説明では、上昇側浸漬管9に設け
た脱硫剤吹き込み管12を介して脱硫剤5を吹き込んで
いるが、脱硫剤5の添加方法はこの方法に限るものでは
なく、上昇側浸漬管9の下方に吹き込みランスを設け、
この吹き込みランスから上昇側浸漬管9に流入する溶鋼
3中に吹き込んでも、又、下部槽8内の溶鋼3の湯面下
に吹き込み管を設け、この吹き込み管から真空槽6内の
溶鋼3中に吹き込んでも良い。要は、キャリアガスと共
に吹き込む方法であれば、吹き込む位置はどこであって
も本発明を適用できる。又、脱硫剤吹き込み管12の個
数も1本に限るものではなく、複数本であっても本発明
を適用することができる。
In the above description, the desulfurizing agent 5 is blown through the desulfurizing agent blowing pipe 12 provided in the rising side immersion pipe 9, but the method of adding the desulfurizing agent 5 is not limited to this method. A blowing lance is provided below the side immersion pipe 9,
Even if the molten steel 3 flowing into the rising side immersion pipe 9 is blown from the blowing lance, a blowing pipe is provided below the surface of the molten steel 3 in the lower tank 8. You may blow it in. In short, the present invention can be applied to any position where the gas is blown, as long as it is blown together with the carrier gas. In addition, the number of the desulfurizing agent blowing pipes 12 is not limited to one, and the present invention can be applied to a plurality of the desulfurizing agent blowing pipes.

【0020】[0020]

【実施例】図1に示すRH真空脱ガス装置を用いて転炉
から出鋼された1ヒート250トンの溶鋼に本発明を適
用した例を以下に説明する。RH真空脱ガス装置の溶鋼
環流量は150t/minであり、使用した脱硫剤は、
CaF2 濃度が15mass%のCaO−CaF2 系粉状脱
硫剤で、脱硫剤の添加量を6.0kg/tの一定値とし
た。そして、脱硫剤の吹き込み速度を20〜100kg
/minとし、又、キャリアガスとしてArを2000
〜3000Nl/minの流量で吹き込み、合計14ヒ
ート脱硫処理した(実施例1〜14)。その際、脱硫処
理の前後に溶鋼から分析用試料を採取して溶鋼中硫黄濃
度を分析し、脱硫率を調査した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to molten steel of 250 tons per heat, which is produced from a converter by using an RH vacuum degassing apparatus shown in FIG. 1, will be described below. The molten steel ring flow rate of the RH vacuum degassing device was 150 t / min, and the desulfurizing agent used was:
CaF 2 concentration is 15 mass% of CaO-CaF 2 based powdery desulfurizing agent, and the amount of desulfurizing agent to a constant value of 6.0 kg / t. And, the blowing speed of the desulfurizing agent is 20 to 100 kg.
/ Min and Ar as a carrier gas of 2000
Blowing was performed at a flow rate of N3000 Nl / min to perform a total of 14 heat desulfurization treatments (Examples 1 to 14). At that time, samples for analysis were taken from the molten steel before and after the desulfurization treatment, the sulfur concentration in the molten steel was analyzed, and the desulfurization rate was investigated.

【0021】又、比較のために、脱硫剤の吹き込み速度
を100kg/min越えとし、その他の条件を上記実
施例と同一とした操業(比較例1〜5)と、キャリアガ
ス流量を2000Nl/min未満とし、その他の条件
を上記実施例と同一とした操業(比較例6〜12)を実
施した。表1に、実施例及び比較例での操業条件及び操
業結果をまとめて示す。
For comparison, the operation (comparative examples 1 to 5) in which the blowing rate of the desulfurizing agent was set to 100 kg / min and the other conditions were the same as in the above example, and the carrier gas flow rate was 2000 Nl / min The operation (Comparative Examples 6 to 12) was performed with the other conditions being the same as those of the above examples. Table 1 summarizes the operating conditions and operating results in the examples and comparative examples.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示すように、実施例1〜14までの
全ての実施例において、70%以上の高い脱硫率が得ら
れ、脱硫後の溶鋼中硫黄濃度は10ppm以下であっ
た。それに対して、比較例1〜12までの全ての比較例
で、脱硫率は低く、脱硫後の溶鋼中硫黄濃度が10pp
m以下となった操業は、比較例8と比較例11の2ヒー
トのみであった。
As shown in Table 1, in all of Examples 1 to 14, a high desulfurization rate of 70% or more was obtained, and the sulfur concentration in the molten steel after desulfurization was 10 ppm or less. In contrast, in all of Comparative Examples 1 to 12, the desulfurization rate was low, and the sulfur concentration in the molten steel after desulfurization was 10 pp.
m was less than m for only two heats of Comparative Example 8 and Comparative Example 11.

【0024】図2は、キャリアガス流量が2000Nl
/min以上である実施例1〜14及び比較例1〜5の
試験結果から、脱硫率と脱硫剤吹き込み速度との関係を
調査した結果を示す図である。図2に示すように、脱硫
剤吹き込み速度が100kg/min以下であれば、脱
硫率は高位安定しているが、脱硫剤吹き込み速度が10
0kg/minを越えた範囲では、脱硫剤吹き込み速度
の上昇と共に脱硫率が低下することが分かった。
FIG. 2 shows that the carrier gas flow rate is 2000 Nl.
It is a figure which shows the result of having investigated the relationship between the desulfurization rate and the desulfurizing agent blowing speed from the test results of Examples 1 to 14 and Comparative Examples 1 to 5 which are not less than / min. As shown in FIG. 2, when the desulfurizing agent injection speed is 100 kg / min or less, the desulfurization rate is high and stable, but the desulfurizing agent injection speed is 10 kg / min.
It was found that in the range exceeding 0 kg / min, the desulfurization rate decreased as the desulfurizing agent blowing rate increased.

【0025】図3は、脱硫剤吹き込み速度が100kg
/min以下である実施例1〜14及び比較例6〜12
の試験結果から、脱硫率とキャリアガス流量との関係を
調査した結果を示す図である。図3に示すように、キャ
リアガス流量が2000Nl/min以上であれば、脱
硫率は高位安定しているが、キャリアガス流量が200
0Nl/min未満の範囲では、キャリアガス流量の減
少と共に脱硫率が低下することが分かった。
FIG. 3 shows that the blowing rate of the desulfurizing agent is 100 kg.
/ Min and Examples 1-14 and Comparative Examples 6-12
FIG. 4 is a diagram showing the results of an investigation of the relationship between the desulfurization rate and the flow rate of carrier gas from the test results of FIG. As shown in FIG. 3, when the carrier gas flow rate is 2000 Nl / min or more, the desulfurization rate is high and stable, but the carrier gas flow rate is 200
It was found that in the range of less than 0 Nl / min, the desulfurization rate decreased as the flow rate of the carrier gas decreased.

【0026】このように本発明の実施例では、安定した
高い脱硫率で脱硫することができ、硫黄濃度を10pp
m以下に下げることができた。又、キャリアガス中に混
入して排出される脱硫剤が減少したので、少ない脱硫剤
使用量で目的とする水準まで脱硫することができた。
As described above, in the embodiment of the present invention, desulfurization can be performed at a stable and high desulfurization rate, and the sulfur concentration can be reduced to 10 pp.
m or less. Further, since the desulfurizing agent mixed into the carrier gas and discharged was reduced, it was possible to desulfurize to a target level with a small amount of the desulfurizing agent used.

【0027】[0027]

【発明の効果】本発明では、キャリアガス中に混入して
排出される脱硫剤を減少させて脱硫反応に関与する脱硫
剤を実質的に多くすることができるので、高脱硫率で安
定して脱硫することが可能となる。その結果、少ない脱
硫剤使用量で所定値まで脱硫することが可能となる。
According to the present invention, since the desulfurizing agent involved in the desulfurization reaction can be substantially increased by reducing the amount of the desulfurizing agent mixed into the carrier gas and discharged, the desulfurizing agent can be stably obtained at a high desulfurization rate. Desulfurization becomes possible. As a result, it is possible to desulfurize to a predetermined value with a small amount of desulfurizing agent used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施したRH真空脱ガス装置の縦断面
概略図である。
FIG. 1 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus embodying the present invention.

【図2】脱硫率と脱硫剤吹き込み速度との関係を調査し
た結果を示す図である。
FIG. 2 is a view showing a result of an investigation on a relationship between a desulfurization rate and a desulfurizing agent blowing speed.

【図3】脱硫率とキャリアガス流量との関係を調査した
結果を示す図である。
FIG. 3 is a diagram showing a result of investigation on a relationship between a desulfurization rate and a carrier gas flow rate.

【符号の説明】[Explanation of symbols]

1 RH真空脱ガス装置 2 取鍋 3 溶鋼 4 スラグ 5 脱硫剤 6 真空槽 7 上部槽 8 下部槽 9 上昇側浸漬管 10 下降側浸漬管 11 Ar吹き込み管 12 脱硫剤吹き込み管 13 ホッパー 14 原料投入口 15 ダクト DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Desulfurizer 6 Vacuum tank 7 Upper tank 8 Lower tank 9 Upside immersion pipe 10 Downside immersion pipe 11 Ar blowing pipe 12 Desulfurizing agent blowing pipe 13 Hopper 14 Raw material inlet 15 Duct

フロントページの続き (72)発明者 狛谷 昌紀 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 赤井 真一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松野 英寿 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村井 剛 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K013 AA00 AA09 BA05 BA08 CA02 CA11 CA15 CB04 CB09 CC01 CE01 CE05 CE07 CF13 EA03 EA09 EA19 Continuing on the front page (72) Inventor Masaki Komatani 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Shinichi Akai 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Inside (72) Inventor Hidetoshi Matsuno 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Go Murai 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. F term (reference) 4K013 AA00 AA09 BA05 BA08 CA02 CA11 CA15 CB04 CB09 CC01 CE01 CE05 CE07 CF13 EA03 EA09 EA19

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粉状の脱硫剤をキャリアガスと共に溶鋼
中に吹き込み、吹き込んだ脱硫剤と溶鋼とをRH真空脱
ガス装置の真空槽内で混合して脱硫する溶鋼の脱硫方法
において、前記脱硫剤の吹き込み速度を100kg/m
in以下とし、且つ、前記キャリアガスの流量を200
0Nl/min以上とすることを特徴とするRH真空脱
ガス装置での溶鋼の脱硫方法。
1. A method for desulfurizing molten steel, comprising blowing a desulfurizing agent in powder form into molten steel together with a carrier gas and mixing the blown desulfurizing agent and molten steel in a vacuum chamber of an RH vacuum degassing apparatus to desulfurize the molten steel. 100 kg / m
in or less, and the flow rate of the carrier gas is 200
A method for desulfurizing molten steel in an RH vacuum degassing apparatus, wherein the desulfurization is performed at 0 Nl / min or more.
JP2000355477A 2000-11-22 2000-11-22 Desulfurization process for liquid steel using rh vacuum degassing equipment Pending JP2002161310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000355477A JP2002161310A (en) 2000-11-22 2000-11-22 Desulfurization process for liquid steel using rh vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000355477A JP2002161310A (en) 2000-11-22 2000-11-22 Desulfurization process for liquid steel using rh vacuum degassing equipment

Publications (1)

Publication Number Publication Date
JP2002161310A true JP2002161310A (en) 2002-06-04

Family

ID=18827888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000355477A Pending JP2002161310A (en) 2000-11-22 2000-11-22 Desulfurization process for liquid steel using rh vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP2002161310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966402A (en) * 2014-05-14 2014-08-06 东北大学 RH (Relative Humidity) vacuum refining system and desulfuration method for molten steel desulfuration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966402A (en) * 2014-05-14 2014-08-06 东北大学 RH (Relative Humidity) vacuum refining system and desulfuration method for molten steel desulfuration
CN103966402B (en) * 2014-05-14 2016-07-13 东北大学 RH vacuum refining system and sulfur method for molten steel desulfurizing

Similar Documents

Publication Publication Date Title
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP2015042777A (en) Method for smelting high nitrogen steel
JPH09217110A (en) Method for melting extra-low sulfur steel
JP5200380B2 (en) Desulfurization method for molten steel
JP2006283080A (en) Method for smelting high nitrogen steel
JP2002161310A (en) Desulfurization process for liquid steel using rh vacuum degassing equipment
KR102454518B1 (en) Method for producing Ti-containing ultralow-carbon steel
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP2013237892A (en) Method for preventing return of sulfur to molten iron after desulfurization treatment
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JPH0987732A (en) Method for refining molten steel
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP2000212641A (en) High speed vacuum refining of molten steel
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
JPH0987730A (en) Method for heat-raising and refining molten steel
JP7319548B2 (en) Molten steel desulfurization method
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP3550039B2 (en) Powder desulfurization method of molten steel under reduced pressure and reaction vessel for powder desulfurization under reduced pressure
JP3465801B2 (en) Method for refining molten Fe-Ni alloy
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JPH11158537A (en) Production of extra-low carbon steel excellent in cleanliness
CN117460847A (en) Method for denitriding molten steel and method for producing steel
CN117529566A (en) Method for denitriding molten steel, method for simultaneously denitriding and desulfurizing molten steel, and method for producing steel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921