JP2002156328A - Microscopic device capable of mapping measurement and mapping method - Google Patents

Microscopic device capable of mapping measurement and mapping method

Info

Publication number
JP2002156328A
JP2002156328A JP2000351414A JP2000351414A JP2002156328A JP 2002156328 A JP2002156328 A JP 2002156328A JP 2000351414 A JP2000351414 A JP 2000351414A JP 2000351414 A JP2000351414 A JP 2000351414A JP 2002156328 A JP2002156328 A JP 2002156328A
Authority
JP
Japan
Prior art keywords
sample
measured
mapping
aperture
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000351414A
Other languages
Japanese (ja)
Other versions
JP4511713B2 (en
Inventor
Toshiyuki Nagoshi
利之 名越
Masatsugu Kawasaki
雅嗣 川崎
Takamasa Chisaka
高雅 千坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2000351414A priority Critical patent/JP4511713B2/en
Publication of JP2002156328A publication Critical patent/JP2002156328A/en
Application granted granted Critical
Publication of JP4511713B2 publication Critical patent/JP4511713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device, capable of executing comparatively inexpensive mapping without requiring complicated works for mapping a measuring object or without complicating an optical system, and to provide a method for mapping comparatively simply. SOLUTION: This microscopic device 2, capable of executing mapping measurement of a sample to be measured 4, is equipped with a stage 6 for loading the sample to be measured 4, and an aperture 22 arranged on a conjugate plane b relative to an observation plane of the sample to be measured, capable of restricting an observation range of the sample to be measured by the size of the opening. The device 2 is characterized by executing a mapping measurement in a specific range of the sample to be measured, without moving the stage on the plane parallel to the observation plane by adjusting the opening position of the aperture, because the opening of the aperture can be set not about the optical axis of the microscopic device on the conjugate plane relative to the observation plane of the sample to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は顕微装置及びそれを
用いた被測定試料のマッピング方法、特にマッピング測
定可能な顕微装置における被測定試料のマッピング測定
機構及び方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope and a method for mapping a sample to be measured using the same, and more particularly to an improvement in a mechanism and method for mapping and measuring a sample to be measured in a microscope capable of performing mapping measurement.

【0002】[0002]

【従来の技術】いわゆる顕微鏡を用い、各種被測定物の
物性等を測定することが広く行われており、例えば顕微
鏡を用いて被測定物の赤外スペクトルを測定し、該赤外
スペクトル特性より被測定物の特定微小部位の成分など
を分析することが可能となっている。
2. Description of the Related Art It is widely practiced to measure the physical properties and the like of various objects to be measured using a so-called microscope. For example, an infrared spectrum of an object to be measured is measured using a microscope, and the infrared spectrum characteristics are measured. It is possible to analyze components and the like of a specific minute portion of an object to be measured.

【0003】このような顕微鏡によって、被測定試料を
高倍率で拡大観察すると、その視野は非常に狭いものと
なり、測定対象である被測定物の特定範囲を全体的に捕
らえることが困難となる。そこで被測定試料の全体また
は特定の範囲を全体的に捕らえるために、高倍率で観察
した観察像やスペクトルをマッピングし、前記マッピン
グによって高倍率観察像や物性的分布など広視野の測定
データを視覚的に確認する技術などが存在した。
When a sample to be measured is magnified and observed at a high magnification with such a microscope, the field of view becomes very narrow, and it becomes difficult to capture a specific range of the object to be measured as a whole. Therefore, in order to capture the whole of the sample to be measured or a specific range as a whole, an observation image or spectrum observed at a high magnification is mapped, and the mapping enables visual observation of a high-magnification observation image or wide-field measurement data such as physical distribution. There was a technology to confirm it.

【0004】このようなマッピングは、従来では被測定
物が載置されたサンプルステージを駆動し、被測定物の
測定部位を1点1点測定して行く方法、或いは2次元検
出器を用いる方法が採られていた。
Conventionally, such mapping is performed by driving a sample stage on which an object to be measured is mounted, and measuring a measurement site of the object to be measured one by one, or by using a two-dimensional detector. Was taken.

【0005】[0005]

【発明が解決しようとする課題】被測定物が載置された
サンプルステージを駆動し、被測定物の測定部位を1点
1点測定して行く方法では、視野を制限するアパーチャ
が光軸に対して対称となるように動作するよう構成され
ていたため、測定部位が光軸と一致するようにサンプル
ステージを駆動して測定部位を変更することが必要とさ
れた。この方法は1点測定からの拡張が容易でマッピン
グ領域が広い場合に有効であったものの、サンプルステ
ージの移動によって被測定物がずれてしまい、ステージ
の駆動量と被測定物の位置関係が変化してしまうことが
あり、このような場合には正確なマッピングが行えず、
初めから測定をやり直さなければならなかった。また、
アパーチャによってマッピング測定範囲を制限すると光
軸近辺にある極微小な範囲のマッピングしか行うことは
できず、測定を所望する部位が同じ視野内にあっても、
アパーチャを設定したときにアパーチャの開口範囲に測
定を所望する部位が入るように光軸近辺に配置しなおす
作業が必要とされ、広範囲なマッピング測定を行うこと
に非常に煩雑な作業が必要とされていた。
In a method of driving a sample stage on which an object to be measured is mounted and measuring a point to be measured of the object to be measured one by one, an aperture for limiting a visual field is located on an optical axis. Since it was configured to operate symmetrically with respect to the optical axis, it was necessary to change the measurement site by driving the sample stage so that the measurement site coincided with the optical axis. Although this method is easy to extend from single-point measurement and is effective when the mapping area is large, the object to be measured is shifted by the movement of the sample stage, and the positional relationship between the driving amount of the stage and the object to be measured changes. In such a case, accurate mapping cannot be performed,
The measurement had to be repeated from the beginning. Also,
If the mapping measurement range is limited by the aperture, only a very small range near the optical axis can be mapped, and even if the site desired to be measured is in the same field of view,
When the aperture is set, it is necessary to relocate the aperture near the optical axis so that the portion desired to be measured falls within the aperture range of the aperture, and very complicated work is required to perform a wide range of mapping measurement. I was

【0006】また2次元検出器を用いる方法では2次元
検出器自体が顕微アパーチャの機能を兼ね備えていたた
め、同一視野内のある程度の範囲でマッピングを行うこ
とができ、このため同視野内でのマッピング測定が高速
となるものであった。しかし、2次元検出器は高価であ
り、収差なく検出器面に試料像が結像する必要があるた
め、光学系が難しくなると言う問題があった。さらに広
い領域をマッピングする場合には前記した1点1点測定
して行く方法を兼用する必要がある上、赤外に用いられ
る場合を例にとると、2次元検出器は読み取りスピード
が通常の赤外検出器に比べて遅いため、一般的なFTI
Rの駆動速度でデータをサンプリングすることが困難で
あった。このため一般に2次元検出器を使用する場合
は、ステップスキャン方式により、データをサンプリン
グすると言う方法が採られた。即ち、ステップ駆動が可
能なFTIRが必要とされたのである。
In the method using a two-dimensional detector, since the two-dimensional detector itself also has a function of a micro-aperture, mapping can be performed within a certain range within the same visual field. The measurement speed was high. However, the two-dimensional detector is expensive, and it is necessary to form a sample image on the detector surface without aberration, which causes a problem that the optical system becomes difficult. When mapping a wider area, it is necessary to use the above-described method of measuring one point at a time. In addition, in the case where infrared light is used as an example, a two-dimensional detector has a normal reading speed. Because it is slower than infrared detectors, general FTI
It was difficult to sample data at the driving speed of R. For this reason, when a two-dimensional detector is generally used, a method of sampling data by a step scan method has been adopted. That is, an FTIR capable of step driving was required.

【0007】このように従来の被測定物のマッピングを
行う装置及び方法は、煩雑な作業が必要とされるか、装
置が複雑化し、高価となってしまうと言う問題があっ
た。本発明は前記課題に鑑みなされたものであり、その
目的は、被測定物のマッピングを行うために煩雑な作業
を必要とせず、光学系を複雑化させることなく、比較的
安価なマッピングを行い得る装置を提供し、前記装置を
用いて、比較的簡単にマッピングを行う方法を提供する
ことにある。
As described above, the conventional apparatus and method for mapping an object to be measured have a problem that complicated work is required or the apparatus becomes complicated and expensive. The present invention has been made in view of the above problems, and its object is to perform relatively inexpensive mapping without complicated work required for performing mapping of an object to be measured and without complicating an optical system. It is an object of the present invention to provide a device for obtaining the data, and to provide a method for performing mapping with relative ease using the device.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる顕微装置は、被測定試料のマッピング
測定を行い得る顕微装置において、被測定試料を載置す
るステージと、被測定試料の観察面と共役な面内に配置
され、被測定試料の観察範囲を開口の大きさによって制
限可能なアパーチャを備えており、前記アパーチャは、
被測定試料の観察面と共役な面内で、顕微装置の光軸を
中心としない開口を設定可能であり、前記アパーチャの
開口位置を調整することによって、観察面と平行な面内
でステージを動かすことなく被測定試料の特定範囲のマ
ッピング測定を行うことを特徴とする。
In order to achieve the above object, a microscope according to the present invention is a microscope capable of performing mapping measurement of a sample to be measured. An aperture is disposed in a plane conjugate to the observation plane of the sample, and has an aperture capable of limiting the observation range of the sample to be measured by the size of the opening.
An opening not centered on the optical axis of the microscope can be set in a plane conjugate with the observation plane of the sample to be measured, and the stage is adjusted in a plane parallel to the observation plane by adjusting the opening position of the aperture. It is characterized in that mapping measurement of a specific range of a sample to be measured is performed without moving.

【0009】また本発明の顕微装置において、被測定試
料を拡大観察するための光学系と、被測定試料の観察面
に光を照射するための光源と、被測定試料からの光の検
知を行う検知手段と、マッピングを行う特定範囲をさら
に細分化した部位に分け、前記細分化した部位の一つに
該アパーチャの開口を一致させて、前記検知手段を作動
させる制御手段と、を有し、該制御手段は、細分化され
た全てまたは複数の部位について、順次開口を一致さ
せ、検知手段を作動させることによってマッピングを行
うことが好適である。また本発明の顕微装置において、
該顕微装置が被測定試料の観察面に接触する全反射プリ
ズムを有する全反射測定装置であることが好適である。
Further, in the microscope of the present invention, an optical system for magnifying and observing the sample to be measured, a light source for irradiating the observation surface of the sample with light, and detecting light from the sample to be measured. Detecting means and control means for dividing the specific range for mapping into further subdivided parts, matching the aperture of the aperture to one of the subdivided parts, and operating the detecting means, It is preferable that the control means performs mapping by sequentially aligning the openings of all or a plurality of subdivided parts and operating the detection means. In the microscope of the present invention,
It is preferable that the microscope is a total reflection measuring device having a total reflection prism that comes into contact with the observation surface of the sample to be measured.

【0010】また本発明の顕微装置において、該全反射
プリズムの被測定試料接触面の形状が平面型の全反射プ
リズムであることが好適である。また本発明における被
測定試料のマッピング方法は、前記顕微装置を用いて行
うマッピング方法であって、該アパーチャの開口位置を
調整することによって、観察面と平行な面内でステージ
を動かすことなく被測定試料の特定範囲のマッピング測
定を行うことを特徴とする。
In the microscope of the present invention, it is preferable that the shape of the contact surface of the sample to be measured of the total reflection prism is a flat type total reflection prism. The method for mapping a sample to be measured according to the present invention is a mapping method performed using the above-mentioned microscopic device, wherein the position of the aperture is adjusted without moving the stage in a plane parallel to the observation plane. It is characterized in that a mapping measurement of a specific range of a measurement sample is performed.

【0011】[0011]

【発明の実施の形態】以下、本発明の顕微装置の一実施
形態を用いて、本発明を詳細に説明する。図1に本発明
の一実施形態である顕微装置の断面概要図を記載する。
同図に示すように、本発明における顕微装置2は被測定
試料4を載置するステージ6と、被測定試料4を拡大観
察するためのレンズ8、10、半透過鏡12からなる光
学系14と、被測定試料4の観察面aに光を照射するた
めの光源16と、被測定試料4からの光の検知を行う検
知手段16と、制御手段20とを有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail using an embodiment of the microscope of the present invention. FIG. 1 shows a schematic cross-sectional view of a microscope according to an embodiment of the present invention.
As shown in FIG. 1, the microscope 2 according to the present invention includes a stage 6 on which a sample 4 to be measured is mounted, lenses 8 and 10 for magnifying and observing the sample 4 to be measured, and an optical system 14 including a semi-transmissive mirror 12. And a light source 16 for irradiating the observation surface a of the sample 4 with light, a detecting unit 16 for detecting light from the sample 4 to be measured, and a control unit 20.

【0012】本実施形態においては光源及び検出手段に
は分光光度計(16)が用いられており、分光光度計が
両者の役割を果たしている。またハーフミラー12の反
射光は接眼レンズ18に導入されるようになっており、
被測定試料の拡大像を目視観察可能である。
In this embodiment, a spectrophotometer (16) is used for the light source and the detecting means, and the spectrophotometer plays the role of both. The reflected light of the half mirror 12 is introduced to the eyepiece 18,
The enlarged image of the sample to be measured can be visually observed.

【0013】そして、前記顕微装置2において特徴的な
ことは、被測定試料4の観察面aと共役な面b内に配置
され、被測定試料4の観察範囲を開口の大きさによって
制限可能なアパーチャ22を備えており、前記アパーチ
ャ22は、被測定試料の観察面aと共役な面b内で、顕
微装置2の光軸24を中心としない開口を設定可能であ
り、前記アパーチャ22の開口位置を調整することによ
って、ステージ6を観察面aと平行な面内で動かすこと
なく被測定試料4の特定範囲のマッピング測定を行うこ
とができることである。
A characteristic of the microscope 2 is that it is disposed in a plane b conjugate to the observation plane a of the sample 4 to be measured, and the observation range of the sample 4 to be measured can be limited by the size of the opening. An aperture 22 is provided. The aperture 22 can set an opening that is not centered on the optical axis 24 of the microscope 2 in a plane b conjugate to the observation plane a of the sample to be measured. By adjusting the position, mapping measurement of a specific range of the sample 4 to be measured can be performed without moving the stage 6 in a plane parallel to the observation surface a.

【0014】これは顕微アパーチャが被測定試料4の観
察面aと共役な面b内にあり、顕微アパーチャで光を制
限することは測定する被測定試料の観察領域を制限する
ことと等価であることから可能となっている。
This is because the microscopic aperture is in a plane b conjugate to the observation surface a of the sample 4 to be measured, and limiting light with the microscopic aperture is equivalent to restricting the observation area of the sample to be measured. It is possible from that.

【0015】図2に本実施形態におけるアパーチャの構
成図を記載する。同図(a)に示すように本実施形態に
おけるアパーチャは、4枚の板26、28、30、32
からなっており、左右の板26、28の間隔、及び上下
の板30、32の間隔を調整することによって任意の大
きさの開口が設定可能である。
FIG. 2 shows a configuration diagram of the aperture according to the present embodiment. As shown in FIG. 3A, the aperture according to the present embodiment includes four plates 26, 28, 30, and 32.
An opening of an arbitrary size can be set by adjusting the interval between the left and right plates 26 and 28 and the interval between the upper and lower plates 30 and 32.

【0016】このようなアパーチャの動作説明図を図3
に記載する。従来では図3(a)に示すように円形34
に示した顕微鏡における視野において、中心に位置する
光軸24に対して左右の板26、28及び上下の板3
0、32はそれぞれが対称に動作するように構成されて
いたのである。つまりアパーチャによって設定される開
口は常に光軸を中心として設定することしかできないも
のであった。ところが本発明はそれぞれの板26、2
8、30、32をそれぞれ独立して動作可能とし、図3
(b)のように光軸24を中心としない開口を設定可能
としたのである。
FIG. 3 is a diagram for explaining the operation of such an aperture.
It describes in. Conventionally, as shown in FIG.
The left and right plates 26 and 28 and the upper and lower plates 3 with respect to the optical axis 24 located at the center in the visual field of the microscope shown in FIG.
0 and 32 were each configured to operate symmetrically. That is, the aperture set by the aperture can always be set only with the optical axis as the center. However, in the present invention, each plate 26, 2
8, 30, and 32 can operate independently of each other.
As shown in (b), an opening that does not center on the optical axis 24 can be set.

【0017】これによって光軸を中心としない開口を設
定し、その部位のマッピングを行うことができるため、
ステージを動かすことなく同一視野にある部位またはあ
る特定の範囲のマッピングを行うことができる。
[0017] With this, it is possible to set an aperture not centered on the optical axis, and to map that portion.
It is possible to perform mapping of a part in the same field of view or a specific range without moving the stage.

【0018】なお本実施形態では4枚の板によるアパー
チャを用いているが本発明はこれに限られるものではな
く、図2(b)に記載したような、円形の絞り状のアパ
ーチャなどでもよく、光軸を中心としない開口が設定可
能であればアパーチャの形態に特に限定は無い。
In the present embodiment, an aperture formed by four plates is used, but the present invention is not limited to this, and a circular aperture-shaped aperture as shown in FIG. 2B may be used. There is no particular limitation on the form of the aperture as long as an aperture not centered on the optical axis can be set.

【0019】このような構成によって、マッピング測定
の際に、マッピング測定部位を光軸と一致させるという
煩雑な作業を軽減することができるとともに、通常の検
知器で測定を行うことが可能となるため、装置のコスト
を下げることができるようになる。
With such a configuration, it is possible to reduce the complicated work of matching the mapping measurement site with the optical axis at the time of mapping measurement, and to perform measurement with a normal detector. Thus, the cost of the apparatus can be reduced.

【0020】本発明においてさらに特徴的なことは、制
御手段20がマッピングを行う特定範囲をさらに細分化
した部位に分け、前記細分化した部位の一つに該アパー
チャの開口を一致させて、前記検知手段を作動させるこ
とである。
A further characteristic feature of the present invention is that the specific range in which the control means 20 performs the mapping is divided into further subdivided portions, and the aperture of the aperture is made to coincide with one of the subdivided portions, and Activating the detection means.

【0021】本実施形態において、制御手段20はパー
ソナルコンピュータによって構成されている。この制御
手段20は光源及び検知手段を兼ねる分光光度計16と
双方向で通信可能で、分光光度計から被測定試料に照射
する光の波長の制御し、その制御状態を監視するととも
に、照射した波長で検知される被測定物からの光の強度
を制御手段であるコンピュータのハードディスクに記憶
することが可能となっている。そして、測定結果を解析
し、グラフ化してコンピュータのディスプレイに表示さ
せることも可能である。
In this embodiment, the control means 20 is constituted by a personal computer. The control means 20 can communicate bidirectionally with the spectrophotometer 16 which also serves as a light source and a detection means, controls the wavelength of light emitted from the spectrophotometer to the sample to be measured, monitors the control state, and emits light. It is possible to store the intensity of light from the object to be detected detected by the wavelength on a hard disk of a computer as a control means. Then, it is also possible to analyze the measurement result, make a graph, and display the graph on a computer display.

【0022】また制御手段20はアパーチャ22の動作
を制御することができ、分光光度計の動作状況とあわせ
てアパーチャの開口を設定する位置を制御するように構
成されている。
The control means 20 can control the operation of the aperture 22, and is configured to control the position at which the aperture of the aperture is set in accordance with the operation state of the spectrophotometer.

【0023】このような構成によって該制御手段20
は、細分化された全てまたは複数の部位について、順次
開口を一致させ、検知手段を作動させることによってマ
ッピングを行うことができる。
With such a configuration, the control means 20
Can perform mapping by sequentially aligning the openings of all or a plurality of subdivided portions and activating the detection means.

【0024】図4に制御手段によってマッピングが行わ
れる手順を説明するための説明図を記載する。同図
(a)に示すように、視野36内でマッピングを行いた
い場合には、視野の全範囲において、さらに微小な範囲
群38を設定し、各微小な範囲38にアパーチャの開口
を一致させて測定を行い、微小な範囲38それぞれで順
次測定を行って行きマッピングするのである。
FIG. 4 is an explanatory diagram for explaining a procedure in which mapping is performed by the control means. As shown in FIG. 5A, when it is desired to perform mapping within the visual field 36, a further smaller range group 38 is set in the entire range of the visual field, and the aperture of the aperture is made to coincide with each of the fine ranges 38. Then, measurement is performed sequentially in each of the minute ranges 38 and mapping is performed.

【0025】なお、このように視野内全域のマッピング
でなく、図4(b)に示すように、視野36内の一部に
おいて、マッピング領域40を定め、このマッピング領
域40内において微小な範囲群42にアパーチャの開口
を一致させて測定を行い、微小な範囲42それぞれで順
次測定を行っていきマッピングすることも可能である。
As shown in FIG. 4B, a mapping area 40 is defined in a part of the visual field 36, and a small range group is defined in the mapping area 40. It is also possible to perform the measurement by making the aperture of the aperture coincide with the aperture 42 and to sequentially perform the measurement in each of the minute ranges 42 for mapping.

【0026】このように、マッピング作業にステージの
移動を極力使用することがない本発明の顕微装置は、被
測定試料の観察面に接触する全反射プリズムを有する全
反射測定装置であることが好適である。
As described above, the microscopic apparatus of the present invention, in which the movement of the stage is not used as much as possible in the mapping work, is preferably a total reflection measuring apparatus having a total reflection prism which comes into contact with the observation surface of the sample to be measured. It is.

【0027】全反射測定装置は、試料面にプリズムを接
触させて、プリズム−被測定試料の境界で光を反射さ
せ、その反射光を測定するものである。これによって、
吸光度の大きな測定対象であっても光学的な解析が可能
となる。
In the total reflection measuring device, a prism is brought into contact with the sample surface, light is reflected at the boundary between the prism and the sample to be measured, and the reflected light is measured. by this,
Optical analysis is possible even for a measurement object having a large absorbance.

【0028】このような全反射測定装置では、被測定試
料にプリズムを接触させる必要があり、従来全反射測定
装置でマッピングを行うには、プリズムを被測定試料に
接触させて測定を行った後、プリズムを被測定試料から
離して次の測定点に移動し、再びプリズムを接触させ測
定を行うという手順でマッピングを行っていたが、本発
明の顕微装置であれば、プリズムを一度被測定試料に接
触させれば、特定の広い範囲でマッピングを行うことが
できるためマッピングの測定にかかる時間を大幅に短縮
することができる。
In such a total reflection measuring device, it is necessary to bring a prism into contact with the sample to be measured. Conventionally, in order to perform mapping with a total reflection measuring device, the prism is brought into contact with the sample to be measured and measurement is performed. The mapping was performed in such a manner that the prism was moved away from the sample to be measured to the next measurement point, and the prism was brought into contact with the sample again and measurement was performed. If the contact is made, the mapping can be performed in a specific wide range, so that the time required for the mapping measurement can be greatly reduced.

【0029】また、被測定試料に対して、プリズムの接
触−隔離が繰り返される従来の方法では被測定試料に多
大なダメージを与えてしまうこともあったが、本発明の
顕微装置では被測定試料に与えるダメージを最小限に抑
えることが可能となる。
In the conventional method in which the contact and isolation of the prism are repeated with respect to the sample to be measured, the sample to be measured may be greatly damaged. Can be minimized.

【0030】さらに全反射測定装置では被測定試料への
プリズムの押し付け圧力が測定結果に影響を与えるた
め、従来のように各測定点でプリズムを接触しなおすマ
ッピング測定では、プリズムの押し付け圧力が変わって
しまい、正確な結果が得られないこともあったが、本発
明の顕微装置では一度プリズムを被測定試料に接触させ
ると、特定の広い範囲でマッピングを行うことができる
ためプリズムの押し付け圧力を均一な圧力下でマッピン
グ測定を行うことができる。
Further, in the total reflection measuring apparatus, since the pressing pressure of the prism on the sample to be measured affects the measurement result, in the conventional mapping measurement in which the prism is brought into contact again at each measurement point, the pressing pressure of the prism changes. In some cases, accurate results could not be obtained.However, in the microscope of the present invention, once the prism is brought into contact with the sample to be measured, mapping can be performed in a specific wide range, so that the pressing pressure of the prism is reduced. Mapping measurements can be made under uniform pressure.

【0031】なお、このような全反射測定装置で用いら
れるプリズムには被測定試料に接触する接触面が平面型
のものと、曲面型のものが存在するが、本発明の顕微装
置においては、該全反射プリズムの被測定試料接触面の
形状が平面型の全反射プリズムであることが好適であ
る。
The prism used in such a total reflection measuring device includes a prism having a flat contact surface and a curved surface having a contact surface with the sample to be measured. In the microscope of the present invention, It is preferable that the shape of the sample contact surface of the total reflection prism is a flat type total reflection prism.

【0032】このように平面型の全反射プリズムを使用
るすることによって、プリズムを被測定試料に接触させ
た際に、より広い面にプリズムが接触するため、被測定
試料にプリズムを一度押し付けることで好適にマッピン
グ測定を行うことが可能となる。
By using the flat type total reflection prism as described above, when the prism is brought into contact with the sample to be measured, the prism comes into contact with a wider surface, so that the prism is once pressed against the sample to be measured. It is possible to preferably perform the mapping measurement.

【0033】なお、本実施形態では被測定試料に照射す
る光が赤外光である顕微装置を用いて説明したが、本発
明はこれに限られるものでなく、紫外光や可視光などの
各種光源を使用する装置において適用が可能であり、特
に限定は無い。
Although the present embodiment has been described using a microscope in which the light to be irradiated on the sample to be measured is infrared light, the present invention is not limited to this, and various types of light such as ultraviolet light and visible light may be used. The present invention is applicable to an apparatus using a light source, and is not particularly limited.

【0034】このように本発明の顕微装置は、アパーチ
ャの開口位置を調整することによって、被測定試料の特
定の範囲のマッピングを行い得るため、ステージを被測
定試料の観察面と平行な面内で動かす必要が無い。よっ
て、本発明におけるマッピング方法は、前記顕微装置を
用いて行うマッピング方法であって、該アパーチャの開
口位置を調整することによって、観察面と平行な面内で
ステージを動かすことなく被測定試料の特定範囲のマッ
ピング測定を行うことが好適である。
As described above, the microscope of the present invention can map a specific range of the sample to be measured by adjusting the opening position of the aperture. Therefore, the stage can be moved in a plane parallel to the observation surface of the sample to be measured. There is no need to move with. Therefore, the mapping method according to the present invention is a mapping method performed using the microscope, and by adjusting the opening position of the aperture, the sample to be measured can be moved without moving the stage in a plane parallel to the observation plane. It is preferred to perform a specific range of mapping measurements.

【0035】このようなマッピング方法によって、測定
時間が大幅に短縮されることはもちろん、全反射測定装
置が行い得る本発明の装置で適用すれば、被測定試料に
与えるダメージを最小限に抑えることが可能となる上、
プリズムの押し付け圧力を均一な圧力下でマッピング測
定を行うことができる。
Such a mapping method not only significantly reduces the measurement time, but also minimizes the damage to the sample to be measured when applied to the apparatus of the present invention which can be used by a total reflection measuring apparatus. Becomes possible,
Mapping measurement can be performed under a uniform pressing pressure of the prism.

【0036】[0036]

【発明の効果】以上説明したように、本発明の顕微装置
及びマッピング方法を用いれば、測定時間を大幅に短縮
することが可能となる。
As described above, the use of the microscope and the mapping method of the present invention makes it possible to greatly reduce the measurement time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施形態である顕微装置の断
面概要図である。
FIG. 1 is a schematic sectional view of a microscope apparatus according to an embodiment of the present invention.

【図2】図2は本実施形態におけるアパーチャの構成図
である。
FIG. 2 is a configuration diagram of an aperture according to the embodiment.

【図3】図3は本発明の一実施形態におけるアパーチャ
の動作説明図である。
FIG. 3 is an operation explanatory diagram of an aperture according to an embodiment of the present invention.

【図4】図4は本発明の一実施形態での制御手段による
マッピング手順を説明するための説明図である。
FIG. 4 is an explanatory diagram illustrating a mapping procedure by a control unit according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 顕微装置 4 被測定試料 6 ステージ 8、10 レンズ 12 半透過鏡 14 光学系 16 光源、検知手段(分光光度計) 20 制御手段 2 Microscope 4 Sample to be Measured 6 Stage 8, 10 Lens 12 Semi-Transmissive Mirror 14 Optical System 16 Light Source, Detecting Means (Spectrophotometer) 20 Controlling Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千坂 高雅 東京都八王子市石川町2967番地の5 日本 分光株式会社内 Fターム(参考) 2G059 AA03 BB08 EE01 EE12 FF01 GG09 HH01 HH02 HH03 JJ12 JJ13 JJ22 KK01 KK07 2H052 AC04 AC13 AC29 AD35 AF07 AF21 AF25  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takamasa Chisaka 5F, 2967, Ishikawa-cho, Hachioji-shi, Tokyo F-term in Japan Nippon Bunko Co., Ltd. (reference) 2G059 AA03 BB08 EE01 EE12 FF01 GG09 HH01 HH02 HH03 JJ12 JJ13 JJ22 KK01 KK07 2H052 AC04 AC13 AC29 AD35 AF07 AF21 AF25

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料のマッピング測定を行い得る
顕微装置において、 被測定試料を載置するステージと、 被測定試料の観察面と共役な面内に配置され、被測定試
料の観察範囲を開口の大きさによって制限可能なアパー
チャを備えており、 前記アパーチャは、被測定試料の観察面と共役な面内
で、顕微装置の光軸を中心としない開口を設定可能であ
り、 前記アパーチャの開口位置を調整することによって、観
察面と平行な面内でステージを動かすことなく被測定試
料の特定範囲のマッピング測定を行うことを特徴とする
顕微装置。
1. A microscope capable of performing mapping measurement of a sample to be measured, comprising: a stage on which the sample to be measured is mounted; and a stage arranged on a plane conjugate with an observation surface of the sample to be measured. An aperture that can be limited by the size of the opening is provided, and the aperture can set an opening that is not centered on the optical axis of the microscope within a plane conjugate with the observation surface of the sample to be measured. A microscope apparatus which performs mapping measurement of a specific range of a sample to be measured without adjusting a stage in a plane parallel to an observation plane by adjusting an opening position.
【請求項2】 請求項1に記載の顕微装置において、 被測定試料を拡大観察するための光学系と、 被測定試料の観察面に光を照射するための光源と、 被測定試料からの光の検知を行う検知手段と、 マッピングを行う特定範囲をさらに細分化した部位に分
け、前記細分化した部位の一つに該アパーチャの開口を
一致させて、前記検知手段を作動させる制御手段と、を
有し、 該制御手段は、細分化された全てまたは複数の部位につ
いて、順次開口を一致させ、検知手段を作動させること
によってマッピングを行うことを特徴とする顕微装置。
2. The microscopic apparatus according to claim 1, wherein an optical system for magnifying and observing the sample to be measured, a light source for irradiating the observation surface of the sample with light with light, and light from the sample to be measured. Control means for dividing the specific range to be mapped into further subdivided parts, making the aperture of the aperture coincide with one of the subdivided parts, and operating the detection means, Wherein the control means performs mapping by sequentially aligning apertures of all or a plurality of subdivided parts and operating the detection means.
【請求項3】 請求項2に記載の顕微装置において、 該顕微装置が被測定試料の観察面に接触する全反射プリ
ズムを有する全反射測定装置であることを特徴とする顕
微装置。
3. The microscopic device according to claim 2, wherein the microscopic device is a total reflection measuring device having a total reflection prism that comes into contact with an observation surface of a sample to be measured.
【請求項4】 請求項3に記載の顕微装置において、該
全反射プリズムの被測定試料接触面の形状が平面型の全
反射プリズムであることを特徴とする顕微装置。
4. The microscopic device according to claim 3, wherein the shape of the contact surface of the sample to be measured of the total reflection prism is a flat type total reflection prism.
【請求項5】 請求項1乃至4のいずれかに記載の顕微
装置を用いて行うマッピング方法であって、該アパーチ
ャの開口位置を調整することによって、観察面と平行な
面内でステージを動かすことなく被測定試料の特定範囲
のマッピング測定を行うことを特徴とする被測定試料の
マッピング方法。
5. A mapping method performed by using the microscope according to claim 1, wherein the stage is moved in a plane parallel to the observation plane by adjusting an opening position of the aperture. A method for mapping a sample to be measured, wherein a mapping measurement of a specific range of the sample to be measured is performed without the need.
JP2000351414A 2000-11-17 2000-11-17 Microscope capable of mapping measurement and mapping method Expired - Fee Related JP4511713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351414A JP4511713B2 (en) 2000-11-17 2000-11-17 Microscope capable of mapping measurement and mapping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351414A JP4511713B2 (en) 2000-11-17 2000-11-17 Microscope capable of mapping measurement and mapping method

Publications (2)

Publication Number Publication Date
JP2002156328A true JP2002156328A (en) 2002-05-31
JP4511713B2 JP4511713B2 (en) 2010-07-28

Family

ID=18824479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351414A Expired - Fee Related JP4511713B2 (en) 2000-11-17 2000-11-17 Microscope capable of mapping measurement and mapping method

Country Status (1)

Country Link
JP (1) JP4511713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208016A (en) * 2005-01-25 2006-08-10 Jasco Corp Total reflection measuring instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153546A (en) * 1984-12-26 1986-07-12 Canon Inc Particle analyzer
JPH08233562A (en) * 1995-02-24 1996-09-13 Shimadzu Corp Micro-atr mapping measuring device
JP2000009640A (en) * 1998-06-24 2000-01-14 Shimadzu Corp Infrared microscope
JP2000121553A (en) * 1998-10-12 2000-04-28 Shimadzu Corp Infrared microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153546A (en) * 1984-12-26 1986-07-12 Canon Inc Particle analyzer
JPH08233562A (en) * 1995-02-24 1996-09-13 Shimadzu Corp Micro-atr mapping measuring device
JP2000009640A (en) * 1998-06-24 2000-01-14 Shimadzu Corp Infrared microscope
JP2000121553A (en) * 1998-10-12 2000-04-28 Shimadzu Corp Infrared microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208016A (en) * 2005-01-25 2006-08-10 Jasco Corp Total reflection measuring instrument
JP4515927B2 (en) * 2005-01-25 2010-08-04 日本分光株式会社 Total reflection measuring device

Also Published As

Publication number Publication date
JP4511713B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
US4844617A (en) Confocal measuring microscope with automatic focusing
US5943122A (en) Integrated optical measurement instruments
JP5172204B2 (en) Optical characteristic measuring apparatus and focus adjustment method
US20030151742A1 (en) Confocal macroscope
US7230697B2 (en) Method and apparatus for multi-mode spectral imaging
WO2005017489A2 (en) Film mapping system
WO2002079760A2 (en) Polarimetric scatterometer for critical dimension measurements of periodic structures
US6806965B2 (en) Wavefront and intensity analyzer for collimated beams
PT736759E (en) WAVE FRONT DETECTOR WITH MICRO-MIRROR FOR SELF-REFERENCE AND ITS ALIGNMENT
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
JP3287517B2 (en) Measurement method and apparatus using interference fringes
JP4909480B2 (en) Layer and surface property optical measurement method and apparatus
KR100849921B1 (en) Device for measuring spatial distribution of the spectral emission of an object
US11782088B2 (en) Devices, methods and sample holder for testing photonic integrated circuits and photonic integrated circuits
JPS62266439A (en) Spectral temporary optical analyzer
EP2098849B1 (en) Test apparatus usable to measure stray light in electro-optical apparatuses
JP2002156328A (en) Microscopic device capable of mapping measurement and mapping method
JP3219462B2 (en) Thin film measuring instrument
US20210349298A1 (en) Method and microscope for determining the thickness of a cover slip or slide
WO2019134064A1 (en) Spectral measurement system
KR100479938B1 (en) Method for analyzing protein microarray by using surface plasmon resonance spectroscopic imaging technology
CN113050379A (en) Focus detection signal modulation device and method
CN113465739B (en) Image slicer detection device and method
JP3867652B2 (en) Chart device for MTF measurement
JP3829663B2 (en) Spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4511713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees