JP2002153736A - Cleaning method of membrane module and membrane separation apparatus - Google Patents
Cleaning method of membrane module and membrane separation apparatusInfo
- Publication number
- JP2002153736A JP2002153736A JP2000352946A JP2000352946A JP2002153736A JP 2002153736 A JP2002153736 A JP 2002153736A JP 2000352946 A JP2000352946 A JP 2000352946A JP 2000352946 A JP2000352946 A JP 2000352946A JP 2002153736 A JP2002153736 A JP 2002153736A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- membrane
- treated
- membrane module
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、膜モジュールの洗
浄方法および膜分離装置に関し、特に、糖化液からのS
S分離、発酵液からの菌体分離、日本酒、ビール、ワイ
ンなどの仕上げろ過などの医薬、食品製造プロセスでの
膜ろ過に用いられる膜モジュールに好適に適用できる洗
浄方法および膜分離装置に関する。詳しくは、十分な洗
浄効果を得ることができる膜モジュールの洗浄方法およ
び膜分離装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a membrane module and a membrane separation apparatus, and more particularly to a method for removing sulfur from a saccharified solution.
The present invention relates to a washing method and a membrane separation device which can be suitably applied to a membrane module used for membrane filtration in a pharmaceutical or food manufacturing process, such as S separation, separation of bacterial cells from a fermented solution, and finish filtration of sake, beer, and wine. More specifically, the present invention relates to a membrane module cleaning method and a membrane separation device capable of obtaining a sufficient cleaning effect.
【0002】[0002]
【従来の技術】膜モジュールを用いて膜分離処理を行う
際には、処理を長時間にわたって行うと、被処理液が濃
縮するとともに、被処理液側の分離膜面に固形分が付着
し、膜モジュールの透過流束が低くなり分離性能が低下
する。このため、膜分離性能の回復を図ることを目的と
して、透過液や圧縮空気を透過液側から被処理液側に向
けて分離膜を透過させる逆流洗浄が行われている。2. Description of the Related Art When performing a membrane separation treatment using a membrane module, if the treatment is performed for a long time, the liquid to be treated is concentrated, and solids adhere to the separation membrane surface on the liquid to be treated side, The permeation flux of the membrane module is reduced and the separation performance is reduced. For this reason, for the purpose of recovering the membrane separation performance, backwashing is performed in which a permeated liquid or compressed air is permeated through the separation membrane from the permeated liquid side to the liquid to be treated side.
【0003】[0003]
【発明が解決しようとする課題】特に医薬、食品製造プ
ロセスにおける糖化液や発酵液などの高懸濁物質濃度の
被処理液の膜分離処理を行う場合には、透過流束を高く
設定する高負荷運転を行うと、膜面に懸濁物質が堆積し
やすく、この懸濁物質が圧密した状態となりやすい。こ
のような場合、上記従来の洗浄方法では、洗浄効果が不
十分となりやすく、膜モジュールの処理効率を十分に回
復させることができないことがあった。本発明は、上記
事情に鑑みてなされたもので、膜モジュールの処理効率
を十分に回復させることができる洗浄方法を提供するこ
とを目的とする。In particular, in the case of performing membrane separation of a liquid to be treated having a high concentration of a suspended substance such as a saccharified liquid or a fermentation liquid in a pharmaceutical or food production process, a high permeation flux is set. When the load operation is performed, the suspended substance is easily deposited on the film surface, and the suspended substance tends to be in a compact state. In such a case, the conventional cleaning method described above tends to have an insufficient cleaning effect, and cannot sufficiently recover the processing efficiency of the membrane module. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cleaning method capable of sufficiently recovering the processing efficiency of a membrane module.
【0004】[0004]
【課題を解決するための手段】本発明の膜モジュールの
洗浄方法は、被処理液をクロスフロー方式により膜分離
処理し濃縮液と透過液を得る膜モジュールを洗浄する方
法であって、該膜モジュールの透過液側に、被処理液側
内圧を越える圧力となるように洗浄液を供給する洗浄液
供給工程と、前記膜モジュールにおける被処理液の流速
を変動させる流速変動工程とを有することを特徴とす
る。洗浄液としては、前記透過液を用いるのが好まし
い。本発明の膜分離装置は、被処理液をクロスフロー方
式により膜分離処理し濃縮液と透過液を得る膜モジュー
ルと、該膜モジュールの透過液側に、洗浄液を供給する
洗浄液供給経路と、該経路を通して供給される洗浄液の
圧力を高める加圧手段と、前記膜モジュールにおける被
処理液の流速を変動させる流速変動手段とを有すること
を特徴とする。The method for cleaning a membrane module according to the present invention is a method for cleaning a membrane module in which a liquid to be treated is subjected to membrane separation by a cross-flow method to obtain a concentrated solution and a permeate. On the permeate side of the module, there is provided a cleaning liquid supply step of supplying a cleaning liquid so as to have a pressure exceeding the internal pressure of the liquid to be treated, and a flow rate changing step of varying the flow rate of the liquid to be treated in the membrane module. I do. As the washing liquid, it is preferable to use the above-mentioned permeate. The membrane separation device of the present invention is a membrane module for obtaining a concentrated solution and a permeate by subjecting a liquid to be treated to membrane separation by a cross flow method, a cleaning solution supply path for supplying a cleaning solution to a permeate side of the membrane module, It is characterized by comprising pressure means for increasing the pressure of the cleaning liquid supplied through the passage, and flow rate changing means for changing the flow rate of the liquid to be treated in the membrane module.
【0005】[0005]
【発明の実施の形態】図1は、本発明の膜分離装置の一
実施形態を示すもので、ここに示す膜分離装置1は、被
処理液を貯留する被処理液貯留槽2と、貯留槽2からの
被処理液を膜分離処理する膜モジュール3とを備えてい
る。この膜分離装置1は、膜モジュール3の被処理液側
3aに被処理液を供給する被処理液供給経路4と、被処
理液側3a内の被処理液を貯留槽2に返送する被処理液
返送経路5と、透過液を透過液側3bから導出する透過
液導出経路6と、透過液を洗浄液として透過液側3bに
導入する洗浄液供給経路である透過液導入経路7と、こ
の導入経路7に設けられて透過液の圧力を高める加圧手
段である加圧ポンプP2と、返送経路5内の被処理液の
流速を高めるバイパス経路8とを備えている。符号V1
〜V6は各経路に設けられたバルブを示す。符号P1
は、被処理液供給経路4に設けられた送液ポンプを示
す。FIG. 1 shows an embodiment of a membrane separation apparatus according to the present invention. The membrane separation apparatus 1 shown here comprises a liquid storage tank 2 for storing a liquid to be processed and a storage tank 2 for storing the liquid. A membrane module 3 for subjecting the liquid to be treated from the tank 2 to a membrane separation treatment. The membrane separation apparatus 1 includes a processing liquid supply path 4 for supplying a processing liquid to a processing liquid side 3a of the membrane module 3 and a processing liquid for returning the processing liquid in the processing liquid side 3a to the storage tank 2. A liquid return path 5, a permeated liquid lead-out path 6 for drawing out the permeated liquid from the permeated liquid side 3b, a permeated liquid introduction path 7 which is a cleaning liquid supply path for introducing the permeated liquid to the permeated liquid side 3b as a cleaning liquid, and this introduction path 7, a pressurizing pump P2 which is a pressurizing means for increasing the pressure of the permeated liquid, and a bypass path 8 for increasing the flow rate of the liquid to be treated in the return path 5. Code V1
To V6 indicate valves provided in each path. Code P1
Denotes a liquid feed pump provided in the liquid supply path 4 to be processed.
【0006】膜モジュール3は、外容器3c内に分離膜
3dを備えて構成されている。この分離膜3dとして
は、有機系材料(酢酸セルロース、ポリアミド、ポリス
ルフォン、ポリプロピレン、ポリフッ化エチレン、ポリ
フッ化ビニリデン、ポリカーボネイトなど)、無機系材
料(金属、セラミックなど)からなるものが使用可能で
ある。なかでも特に、無機系材料からなる膜を用いる
と、高圧での運転や、アルカリ、酸による薬液洗浄を頻
繁に行う場合でも分離性能の低下を防ぐことができるた
め好ましい。特に、ステンレス表面をチタンで被覆した
チタン被覆ステンレスからなるものを用いると、急激な
圧力変動が起きる場合でも分離膜が破損しにくいため好
ましい。The membrane module 3 is provided with a separation membrane 3d in an outer container 3c. As the separation membrane 3d, a material composed of an organic material (eg, cellulose acetate, polyamide, polysulfone, polypropylene, polyfluorinated ethylene, polyvinylidene fluoride, polycarbonate) or an inorganic material (eg, metal, ceramic) can be used. . Among them, it is particularly preferable to use a membrane made of an inorganic material since a decrease in separation performance can be prevented even when operation is performed at a high pressure or when a chemical solution is frequently washed with an alkali or an acid. In particular, it is preferable to use titanium-coated stainless steel in which the stainless steel surface is coated with titanium because the separation membrane is hardly damaged even when a sudden pressure fluctuation occurs.
【0007】分離膜3dの形状としては、管状、中空糸
状、プリーツ状、スパイラル状、プレートアンドフレー
ム状などを採用することができる。特に、管状膜は、固
形分を多く含む被処理液に適用した場合でも分離性能の
低下が起こりにくく、しかも耐圧性に優れているため好
ましい。The shape of the separation membrane 3d may be tubular, hollow fiber, pleated, spiral, plate and frame, or the like. In particular, the tubular membrane is preferable because even if it is applied to a liquid to be treated containing a large amount of solid content, the separation performance hardly decreases and the pressure resistance is excellent.
【0008】バイパス経路8は、流速変動手段となるも
ので、返送経路5に設けられたバルブV6に対し上流側
および下流側に接続され、返送経路5において、バルブ
V6上流側の被処理液を、バルブV6を通さずにバルブ
V6下流側に流すことができるようになっている。送液
ポンプP1としては、多段タービンポンプを用いること
ができる。加圧ポンプP2としては、高揚程を得るた
め、プランジャーポンプを用いるのが好ましい。なおこ
こに示す装置では、加圧手段として加圧ポンプP2を用
いたが、別途密閉式の透過液貯留槽(図示略)を設け、
この貯留槽をコンプレッサなどによって加圧し、透過液
を膜モジュール3に供給できる構成としてもよい。[0008] The bypass passage 8 serves as a flow rate variation means, and is connected upstream and downstream with respect to the valve V6 provided in the return passage 5. In the return passage 5, the liquid to be treated on the upstream side of the valve V6 is passed. , And can flow downstream of the valve V6 without passing through the valve V6. A multi-stage turbine pump can be used as the liquid sending pump P1. It is preferable to use a plunger pump as the pressurizing pump P2 in order to obtain a high head. In the apparatus shown here, the pressurizing pump P2 was used as the pressurizing means, but a separate sealed permeate storage tank (not shown) was provided separately.
The storage tank may be configured to be pressurized by a compressor or the like so that the permeated liquid can be supplied to the membrane module 3.
【0009】次に、上記膜分離装置1を用いて被処理液
の膜分離処理を行う方法を説明する。本発明において膜
モジュールの処理対象(被処理液)としては、医薬、食
品製造プロセスにおける糖化液、発酵液、飲料(日本
酒、ビール、ワインなど)中間製品などを挙げることが
できる。これら被処理液には、通常、タンパク質、糖
類、微生物などからなる固形分が含まれる。Next, a method for performing a membrane separation process on a liquid to be treated by using the membrane separation apparatus 1 will be described. In the present invention, examples of the treatment target (liquid to be treated) of the membrane module include pharmaceutical products, saccharified liquids, fermented liquids, and intermediate products of beverages (sake, beer, wine, etc.) in a food production process. These liquids to be treated usually contain solids composed of proteins, sugars, microorganisms and the like.
【0010】被処理液の膜分離処理を行うには、被処理
液貯留槽2内の被処理液を、ポンプP1を用いて被処理
液供給経路4を通して膜モジュール3の被処理液側3a
に導入する。この膜分離処理においては、被処理液が分
離膜3dの表面に対して平行に流れるクロスフロー方式
でろ過処理が行われる。被処理液の一部は分離膜3dを
透過し、透過液として透過液側3b、透過液導出経路6
を経て系外に導出され、残りの他部は、濃縮液として被
処理液返送経路5を通して被処理液貯留槽2に返送さ
れ、この過程を繰り返して循環する。この際、バルブV
4、V6は開、バルブV1、V2、V3、V5を閉とす
る。経路6から導出された透過液は、透過液貯留槽(図
示略)に貯留しておくのが好ましい。この際、返送経路
5に設けられたバルブV6の開度を適宜設定することに
よって、被処理液側3a内の被処理液の圧力を、常圧を
越える値に設定するのが好ましい。In order to carry out the membrane separation treatment of the liquid to be treated, the liquid to be treated in the liquid to be treated storage tank 2 is passed through the liquid to be treated supply path 4 using the pump P1 and the liquid to be treated 3a of the membrane module 3 is treated.
To be introduced. In this membrane separation process, a filtration process is performed by a cross-flow method in which the liquid to be treated flows parallel to the surface of the separation membrane 3d. Part of the liquid to be treated permeates through the separation membrane 3d, and as a permeate, the permeate side 3b, the permeate outlet path 6
The remaining part is returned to the processing liquid storage tank 2 through the processing liquid return path 5 as a concentrated liquid, and is circulated by repeating this process. At this time, the valve V
4, V6 is open and valves V1, V2, V3, V5 are closed. The permeated liquid derived from the passage 6 is preferably stored in a permeated liquid storage tank (not shown). At this time, the pressure of the liquid to be treated in the liquid to be treated 3a is preferably set to a value exceeding the normal pressure by appropriately setting the opening of the valve V6 provided in the return path 5.
【0011】上記膜分離処理を長時間にわたって行う
と、被処理液が濃縮されるとともに、分離膜3dの被処
理液側3aの面に、被処理液中の固形分が付着し、分離
膜3dの透過流束が低下する。このため、以下に示す洗
浄方法によって分離膜3dを洗浄する。この洗浄は、膜
分離処理において透過流速が所定の値以下となった時点
で行うことができる(定圧ろ過の場合)。また被処理液
側3a内圧が所定の値以上になった時点で行うこともで
きる(定流量ろ過の場合)。When the above-mentioned membrane separation treatment is performed for a long time, the liquid to be treated is concentrated, and the solid content in the liquid to be treated adheres to the surface of the liquid to be treated 3a of the separation membrane 3d. The permeation flux of Therefore, the separation membrane 3d is cleaned by the cleaning method described below. This washing can be performed when the permeation flow rate becomes equal to or less than a predetermined value in the membrane separation process (in the case of constant pressure filtration). Further, it can be performed when the internal pressure of the liquid to be treated 3a becomes a predetermined value or more (in the case of constant flow rate filtration).
【0012】以下、上記膜分離装置1を用いた場合を例
として、本発明の膜モジュールの洗浄方法の一実施形態
を説明する。本実施形態の洗浄方法は、以下に示す2つ
の工程を有する。An embodiment of the method for cleaning a membrane module according to the present invention will be described below, taking the case where the above-mentioned membrane separation apparatus 1 is used as an example. The cleaning method of this embodiment has the following two steps.
【0013】(1)洗浄液供給工程(第1工程) バルブV6の開度を維持したまま、ポンプP1を用いて
被処理液を経路4、5および膜モジュール3を循環させ
た状態で、バルブV4を閉、バルブV3を開とするとと
ともに、加圧ポンプP2を駆動させ、上記膜分離処理に
おいて系外に導出された透過液を、経路7、6を通して
洗浄液として透過液側3bに供給する。この工程におい
ては、透過液側3b内の透過液の圧力が、被処理液側3
a内の被処理液の圧力を越えるように、透過液の供給を
行う。(1) Cleaning Liquid Supplying Step (First Step) While the opening degree of the valve V6 is maintained, the liquid to be treated is circulated through the paths 4, 5 and the membrane module 3 using the pump P1, and the valve V4 is supplied. Is closed, the valve V3 is opened, and the pressurizing pump P2 is driven to supply the permeate drawn out of the system in the membrane separation process to the permeate side 3b as a cleaning solution through the passages 7 and 6. In this step, the pressure of the permeated liquid in the permeated liquid side 3b increases
The permeate is supplied so as to exceed the pressure of the liquid to be treated in a.
【0014】この洗浄液供給工程においては、洗浄液が
透過液側3b(高圧側)から被処理液側3a(低圧側)
に流れるため、分離膜3dを逆流洗浄し、膜面および膜
孔内の付着物を、剥離させるかまたは剥離しやすい状態
とすることができる。In this cleaning liquid supply step, the cleaning liquid is transferred from the permeate liquid side 3b (high pressure side) to the liquid side 3a (low pressure side).
Therefore, the separation membrane 3d is back-flow-cleaned, and the deposits on the membrane surface and in the pores can be peeled off or in a state where they can be easily peeled off.
【0015】(2)流速変動工程(第2工程) バイパス経路8に設けられたバルブV2を開き、返送経
路5内のバルブV6上流側の被処理液をバルブV6下流
側に流し、貯留槽2に返送される被処理液の流量を高
め、経路4、5を通して循環する被処理液の流速を高め
る。これによって、膜モジュール3における被処理液の
流速が高められる。この洗浄方法では、上記洗浄液供給
工程(第1工程)において、洗浄液によって付着物に透
過液側3bから被処理液側3aに向けた力を加えるだけ
でなく、流速変動工程(第2工程)において、この付着
物に、被処理液によって被処理液側3aから剪断力を加
えることができる。このため、この付着物に互いに異な
る2つの方向から力を加え、分離膜3dから剥離しやす
くすることができる。この流速変動工程では、必要に応
じて適宜バルブV2を開閉または開度調節し、被処理液
の流速を複数回にわたって変動させ、付着物剥離効果を
高めることができる。(2) Flow Velocity Fluctuation Step (Second Step) The valve V2 provided in the bypass path 8 is opened, and the liquid to be treated upstream of the valve V6 in the return path 5 is caused to flow downstream of the valve V6. And the flow rate of the liquid to be circulated through the passages 4 and 5 is increased. Thereby, the flow rate of the liquid to be treated in the membrane module 3 is increased. In this cleaning method, in the above-mentioned cleaning liquid supply step (first step), not only a force from the permeate liquid side 3b to the liquid to be treated side 3a is applied to the deposit by the cleaning liquid, but also a flow velocity fluctuation step (second step). A shearing force can be applied to the deposit from the liquid side 3a by the liquid to be treated. For this reason, a force can be applied to the attached matter from two different directions to facilitate separation from the separation membrane 3d. In this flow rate changing step, the valve V2 can be opened and closed or the opening degree adjusted as needed, and the flow rate of the liquid to be treated can be changed a plurality of times to enhance the adhered matter peeling effect.
【0016】この流速変動工程は、上記洗浄液供給工程
を行った後に実施してもよいし、洗浄液供給工程を行い
つつ実施してもよい。洗浄液供給工程と流速変動工程を
同時に行う場合には、付着物に、透過液側3bから被処
理液側3aに向けた力を加えるとともに、被処理液側3
aから膜面に平行な方向の剪断力を加えることができ
る。このため、この付着物に2方向から同時に力を加
え、分離膜3dから剥離しやすくすることができる。ま
た、これら2つの工程からなる洗浄を、必要に応じて複
数回にわたって行うこともできる。The flow rate changing step may be performed after the cleaning liquid supply step is performed, or may be performed while the cleaning liquid supply step is performed. When the cleaning liquid supply step and the flow rate fluctuation step are performed simultaneously, a force is applied to the adhered substance from the permeate liquid side 3b toward the liquid to be treated 3a, and
From a, a shearing force in a direction parallel to the film surface can be applied. For this reason, a force is simultaneously applied to the adhered substance from two directions, so that the adhered substance can be easily separated from the separation membrane 3d. Further, the washing including these two steps can be performed a plurality of times as necessary.
【0017】上記2つの工程からなる洗浄が終了した
後、バルブV2を閉じ、バルブV4を開として上記膜分
離処理を再開する。After the cleaning consisting of the above two steps is completed, the valve V2 is closed and the valve V4 is opened to restart the membrane separation process.
【0018】本実施形態の膜モジュールの洗浄方法で
は、次に示す効果を得ることができる。 1)洗浄液供給工程において、膜モジュール3の透過液
側3bに、被処理液側3a内圧を越える圧力で洗浄液を
供給するので、洗浄液を透過液側3bから被処理液側3
aに流して分離膜3dを逆流洗浄し、膜面および膜孔内
の付着物を、剥離させるかまたは剥離しやすい状態とす
ることができる。このため、膜分離処理再開時における
分離膜3dの透過流束を高めることができる。 2)流速変動工程において、膜モジュール3における被
処理液の流速を変動させるので、この被処理液によって
分離膜3dの付着物に剪断力を加え、この付着物の剥離
を促すことができる。このため、膜分離処理再開時にお
ける分離膜3dの透過流束をいっそう高めることができ
る。 上記1)、2)より、分離膜3dの付着物剥離効果を向
上させ、被処理液中の懸濁物質濃度が高い場合でも、膜
モジュール3の処理効率を十分に回復させることができ
る。また短時間で十分な洗浄効果を得ることができるた
め、洗浄に要する時間を短縮し、生産効率の向上を図る
ことができる。According to the method for cleaning a membrane module of the present embodiment, the following effects can be obtained. 1) In the cleaning liquid supply step, the cleaning liquid is supplied to the permeated liquid side 3b of the membrane module 3 at a pressure exceeding the internal pressure of the liquid to be treated 3a.
a, the separation membrane 3d is back-flow-cleaned, and the deposits on the membrane surface and in the membrane pores can be peeled off or can be easily peeled off. For this reason, the permeation flux of the separation membrane 3d at the time of restarting the membrane separation process can be increased. 2) In the flow rate changing step, the flow rate of the liquid to be treated in the membrane module 3 is changed, so that the liquid to be treated applies a shearing force to the deposit on the separation membrane 3d, thereby facilitating the detachment of the deposit. For this reason, the permeation flux of the separation membrane 3d at the time of restarting the membrane separation processing can be further increased. From the above 1) and 2), the effect of removing the deposits on the separation membrane 3d can be improved, and the processing efficiency of the membrane module 3 can be sufficiently recovered even when the concentration of the suspended substance in the liquid to be processed is high. Further, since a sufficient cleaning effect can be obtained in a short time, the time required for cleaning can be reduced, and the production efficiency can be improved.
【0019】また、洗浄液として透過液を用いるので、
別途洗浄液を用意する必要がなく、洗浄コストを低く抑
えることができる。Further, since a permeate is used as the cleaning liquid,
There is no need to prepare a separate cleaning liquid, and the cleaning cost can be kept low.
【0020】また流速変動工程において、バイパス経路
8を用いて被処理液の返送流量を増減させることで被処
理液の流速を変化させるので、バルブV6の開度を変化
させることなく、被処理液の返送流量を最大限に高め、
高い被処理液流速を得ることができる。このため、優れ
た洗浄効果を得ることができる。また膜分離処理時にお
ける被処理液側3a内圧の調節に用いられるバルブV6
を操作する必要がないため、洗浄終了後、膜分離処理を
再開する際の操作が容易となる。なお、本実施形態で
は、洗浄液として透過液を用いたが、これに限らず、水
などを洗浄液として用いることもできる。In the flow rate changing step, the flow rate of the liquid to be treated is changed by increasing or decreasing the return flow rate of the liquid to be treated by using the bypass path 8, so that the liquid to be treated can be changed without changing the opening of the valve V6. To maximize the return flow of
A high liquid flow rate can be obtained. Therefore, an excellent cleaning effect can be obtained. A valve V6 used for adjusting the internal pressure of the liquid to be treated 3a during the membrane separation process.
It is not necessary to perform the above operation, so that the operation for restarting the membrane separation process after the completion of the washing becomes easy. In the present embodiment, the permeating liquid is used as the cleaning liquid. However, the present invention is not limited to this, and water or the like can be used as the cleaning liquid.
【0021】上記実施形態の洗浄方法では、流速変動工
程において、バイパス経路8を用いて被処理液の返送流
量を増減させることで被処理液の流速を変化させる方法
を採用したが、本発明では、これに限らず、次に示す方
法によって被処理液の流速を変化させることもできる。 i)供給経路4と返送経路5とを接続する短絡経路10に
設けられたバルブV1を開くことによって、供給経路4
内の被処理液の一部を、短絡経路10を通して、膜モジ
ュール3を経由させずに被処理液貯留槽2に返送するこ
とができる。このため、バルブV1の開閉によって、膜
モジュール3に流入する被処理液の流量を増減させ、膜
モジュール3内の被処理液流速を変化させることができ
る。この場合には、短絡経路10が流速変動手段に相当
する。この方法を採る場合には、簡単なバルブ操作によ
って被処理液の流速を変化させることができるため、操
作が容易となる。 ii)返送経路5に設けられたバルブV6を開閉または開
度調節することによって、返送経路5内を流れる被処理
液の流量を増減させ、膜モジュール3内の被処理液流速
を変化させる。この場合には、バルブV6が流速変動手
段に相当する。この方法を採る場合には、新たにバルブ
や経路を設ける必要がないため、装置構成を簡略化で
き、設備コストを低く抑えることができる。 iii)供給経路4に流速変動手段としてバルブ(図示略)
を設け、このバルブを開閉または開度調節することによ
って、供給経路4内を流れる被処理液の流量を増減さ
せ、膜モジュール3内の被処理液流速を変化させる。こ
の方法を採る場合には、簡単なバルブ操作によって被処
理液の流速を変化させることができるため、操作が容易
となる。 iv)送液ポンプP1の駆動/停止制御または駆動力調節
によって、供給経路4から供給される被処理液の流量を
増減させ、膜モジュール3内の被処理液流速を変化させ
る。この場合には、送液ポンプP1が流速変動手段に相
当する。この方法を採る場合には、新たにバルブや経路
を設ける必要がないため、装置構成を簡略化でき、設備
コストを低く抑えることができる。 v)供給経路4に、加圧空気供給手段となる加圧空気供給
経路(図示略)を接続し、加圧空気を、供給量を調節し
つつ膜モジュール3に供給することもできる。この加圧
空気供給を行うことによって、加圧空気と被処理液の混
合流体を被処理液側3aに供給し、被処理液側3a内を
流れる被処理液の流速を高く設定できる。この加圧空気
の供給量を適宜設定することによって、被処理液側3a
内を流れる被処理液の流速を変化させることができる。
この場合には、加圧空気供給経路が流速変動手段に相当
する。この方法を採る場合には、加圧空気によって分離
膜3dの付着物への剪断力を高め、優れた付着物剥離効
果を得ることができる。In the cleaning method of the above embodiment, in the flow rate changing step, a method of changing the flow rate of the liquid to be processed by increasing or decreasing the return flow rate of the liquid to be processed by using the bypass path 8 is adopted. However, the present invention is not limited to this, and the flow rate of the liquid to be treated can be changed by the following method. i) By opening the valve V1 provided in the short-circuit path 10 connecting the supply path 4 and the return path 5, the supply path 4
A part of the liquid to be treated can be returned to the liquid to be treated storage tank 2 through the short circuit path 10 without passing through the membrane module 3. Therefore, by opening and closing the valve V1, the flow rate of the liquid to be treated flowing into the membrane module 3 can be increased or decreased, and the flow rate of the liquid to be treated in the membrane module 3 can be changed. In this case, the short-circuit path 10 corresponds to a flow speed changing unit. When this method is adopted, the flow rate of the liquid to be treated can be changed by a simple valve operation, so that the operation becomes easy. ii) The flow rate of the liquid to be processed flowing in the return path 5 is increased or decreased by opening and closing or adjusting the opening degree of the valve V6 provided in the return path 5 to change the flow rate of the liquid to be processed in the membrane module 3. In this case, the valve V6 corresponds to a flow speed changing unit. When this method is adopted, it is not necessary to newly provide a valve or a path, so that the apparatus configuration can be simplified and the equipment cost can be reduced. iii) A valve (not shown) as a flow rate variation means in the supply path 4
The flow rate of the liquid to be processed flowing in the supply path 4 is increased or decreased by changing the opening / closing or opening degree of the valve, and the flow rate of the liquid to be processed in the membrane module 3 is changed. When this method is adopted, the flow rate of the liquid to be treated can be changed by a simple valve operation, so that the operation becomes easy. iv) The flow rate of the liquid to be processed supplied from the supply path 4 is increased / decreased by driving / stopping control or driving force adjustment of the liquid feed pump P1 to change the flow rate of the liquid to be processed in the membrane module 3. In this case, the liquid sending pump P1 corresponds to a flow rate changing unit. When this method is adopted, it is not necessary to newly provide a valve or a path, so that the apparatus configuration can be simplified and the equipment cost can be reduced. v) A pressurized air supply path (not shown) serving as pressurized air supply means may be connected to the supply path 4 to supply the pressurized air to the membrane module 3 while adjusting the supply amount. By supplying the pressurized air, a mixed fluid of the pressurized air and the liquid to be processed is supplied to the liquid to be processed 3a, and the flow rate of the liquid to be processed flowing in the liquid to be processed 3a can be set high. By appropriately setting the supply amount of the pressurized air, the liquid to be treated 3a
The flow rate of the liquid to be processed flowing through the inside can be changed.
In this case, the pressurized air supply path corresponds to the flow velocity changing unit. When this method is employed, the shearing force of the separation membrane 3d on the deposits is increased by the pressurized air, and an excellent effect of removing the deposits can be obtained.
【0022】[0022]
【実施例】以下、本発明の効果を具体例を挙げて明確化
する。 (実施例1)図1に示す膜分離装置1を用いて、糖化液
のSS分離を行った。膜モジュール3の分離膜3dに
は、内面をチタンコーティングしたステンレス膜(内径
19mm、長さ3000mmの筒状膜を4本使用。総膜
面積0.7m2、孔径0.1μm)を用いた。貯留槽2
内に500Lの糖化液(乾燥SS濃度0.5%)を入
れ、この糖化液を、ポンプP1を用いて被処理液として
経路4、膜モジュール3、経路5を経て循環させつつク
ロスフロー方式の膜分離処理を行った(流量270L/
min)。この処理では、バルブV1、V2、V3、V
5を閉、バルブV4を開とした。バルブV6の開度は、
被処理液側3aに1MPaの圧力が加えられるように設
定した。The effects of the present invention will be clarified below with reference to specific examples. Example 1 SS separation of a saccharified solution was performed using the membrane separation device 1 shown in FIG. As the separation membrane 3 d of the membrane module 3, a stainless steel membrane (inner diameter: 19 mm, length: 3000 mm, four cylindrical membranes, total membrane area: 0.7 m 2 , pore diameter: 0.1 μm) was used. Storage tank 2
500 L of a saccharified solution (dry SS concentration 0.5%) is placed in the inside, and the saccharified solution is circulated as a liquid to be treated via a path 4, a membrane module 3, and a path 5 using a pump P <b> 1 while a cross-flow system is used. A membrane separation treatment was performed (flow rate 270 L /
min). In this process, the valves V1, V2, V3, V
5 was closed and the valve V4 was opened. The opening of the valve V6 is
It was set so that a pressure of 1 MPa was applied to the liquid side 3a to be treated.
【0023】透過流束が400L/m2/Hr(処理開
始時)から300L/m2/Hrにまで低下した時点で
次に示す洗浄を行った。バルブV4を閉じ、加圧ポンプ
P2を稼働させるとともにバルブV3を開き、透過液を
経路7、6を通して透過液側3bに供給した(洗浄液供
給工程)。透過液側3bの内圧が3MPaに達した時点
で、バルブV2を開き、被処理液をバイパス経路8に導
くとともに、バルブV3を閉じ、ポンプP2を停止した
(流速変動工程)。次いでバルブV4を開くとともにバ
ルブV2を閉じて膜分離処理を再開した。上記洗浄開始
から膜分離処理再開までに要した時間は約10秒間であ
った。上記膜分離処理および洗浄を複数回繰り返した。
その間の透過流束の経時変化を図2に示す。なお洗浄
(逆洗)を実施した時点を矢印で示した。When the permeation flux decreased from 400 L / m 2 / Hr (at the start of the treatment) to 300 L / m 2 / Hr, the following washing was performed. The valve V4 was closed, the pressure pump P2 was operated, and the valve V3 was opened, so that the permeate was supplied to the permeate side 3b through the paths 7 and 6 (washing liquid supply step). When the internal pressure on the permeate side 3b reached 3 MPa, the valve V2 was opened to guide the liquid to be processed into the bypass path 8, the valve V3 was closed, and the pump P2 was stopped (flow velocity variation step). Next, the valve V4 was opened and the valve V2 was closed to restart the membrane separation process. The time required from the start of the washing to the restart of the membrane separation treatment was about 10 seconds. The above membrane separation treatment and washing were repeated a plurality of times.
FIG. 2 shows the change over time of the permeation flux during that time. The point at which washing (backwashing) was performed is indicated by an arrow.
【0024】(比較例1)実施例1と同様にして糖化液
の膜分離処理を行い、透過流束が400L/m2/Hr
(処理開始時)から300L/m2/Hrにまで低下し
た時点で次に示す洗浄を行った。バルブV4を閉じ、加
圧ポンプP2を稼働させるとともにバルブV3を開き、
透過液を経路7、6を通して透過液側3bに供給した。
透過液側3bの内圧が3MPaに達した時点で、バルブ
V3を閉じ、加圧ポンプP2を停止した。次いでバルブ
V4を開いて膜分離処理を再開した。上記洗浄開始から
膜分離処理再開までに要した時間は約10秒間であっ
た。上記膜分離処理および洗浄を複数回繰り返した。そ
の間の透過流束の経時変化を図2に併せて示す。なお洗
浄(逆洗)を実施した時点を矢印で示した。Comparative Example 1 A saccharified solution was subjected to membrane separation in the same manner as in Example 1, and the permeation flux was 400 L / m 2 / Hr.
The following cleaning was performed at the time when the temperature was lowered from (at the start of the treatment) to 300 L / m 2 / Hr. Close the valve V4, operate the pressurizing pump P2 and open the valve V3,
The permeate was supplied to the permeate side 3b through the passages 7 and 6.
When the internal pressure on the permeate side 3b reached 3 MPa, the valve V3 was closed and the pressure pump P2 was stopped. Next, the valve V4 was opened to restart the membrane separation process. The time required from the start of the washing to the restart of the membrane separation treatment was about 10 seconds. The above membrane separation treatment and washing were repeated a plurality of times. FIG. 2 also shows the temporal change of the permeation flux during that time. The point at which washing (backwashing) was performed is indicated by an arrow.
【0025】図2より、比較例1に比べ、実施例1で
は、洗浄後、膜分離処理再開時の透過流束の回復率が高
いことがわかる。FIG. 2 shows that the recovery rate of the permeation flux when restarting the membrane separation process after cleaning is higher in Example 1 than in Comparative Example 1.
【0026】[0026]
【発明の効果】以上説明したように、本発明の膜モジュ
ールの洗浄方法では、次に示す効果を得ることができ
る。 1)洗浄液供給工程において、膜モジュールの透過液側
に、被処理液側内圧を越える圧力で洗浄液を供給するの
で、洗浄液を透過液側から被処理液側に流して分離膜を
逆流洗浄し、膜面および膜孔内の付着物を、剥離させる
かまたは剥離しやすい状態とすることができる。このた
め、膜分離処理再開時における透過流束を高めることが
できる。 2)流速変動工程において、膜モジュールにおける被処
理液の流速を変動させるので、分離膜の付着物に剪断力
を加え、この付着物の剥離を促すことができる。このた
め、膜分離処理再開時における分離膜の透過流束をいっ
そう高めることができる。 上記1)、2)より、付着物剥離効果を向上させ、被処
理液中の懸濁物質濃度が高い場合でも、膜モジュールの
処理効率を十分に回復させることができる。また短時間
で十分な洗浄効果を得ることができるため、洗浄に要す
る時間を短縮し、生産効率の向上を図ることができる。As described above, the following effects can be obtained by the method for cleaning a membrane module of the present invention. 1) In the cleaning liquid supply step, the cleaning liquid is supplied to the permeated liquid side of the membrane module at a pressure exceeding the internal pressure of the liquid to be treated, so that the cleaning liquid flows from the permeated liquid side to the liquid to be treated to backwash the separation membrane. The deposits on the membrane surface and in the membrane pores can be peeled off or can be easily peeled off. For this reason, the permeation flux at the time of restarting the membrane separation process can be increased. 2) In the flow rate changing step, since the flow rate of the liquid to be treated in the membrane module is changed, a shearing force is applied to the deposit on the separation membrane, and the detachment of the deposit can be promoted. For this reason, the permeation flux of the separation membrane at the time of restarting the membrane separation processing can be further increased. According to the above 1) and 2), it is possible to improve the adhered substance peeling effect and sufficiently recover the processing efficiency of the membrane module even when the suspended substance concentration in the liquid to be treated is high. Further, since a sufficient cleaning effect can be obtained in a short time, the time required for cleaning can be reduced, and the production efficiency can be improved.
【図1】 本発明の膜モジュールの洗浄方法の一実施
形態を実施するのに好適な膜分離装置を示す概略構成図
である。FIG. 1 is a schematic configuration diagram showing a membrane separation apparatus suitable for carrying out one embodiment of a membrane module cleaning method of the present invention.
【図2】 試験結果を示すグラフである。横軸は時間
を示し、縦軸は透過流束を示す。FIG. 2 is a graph showing test results. The horizontal axis indicates time, and the vertical axis indicates permeation flux.
1・・・膜分離装置、2・・・被処理液貯留槽、3・・・膜モジ
ュール、3a・・・被処理液側、3b・・・透過液側、7・・・
透過液導入経路(洗浄液供給経路)、8・・・バイパス経
路(流速変動手段)、P2・・・加圧ポンプ(加圧手段)DESCRIPTION OF SYMBOLS 1 ... Membrane separation apparatus, 2 ... Treatment liquid storage tank, 3 ... Membrane module, 3a ... Treatment liquid side, 3b ... Permeate liquid side, 7 ...
Permeate introduction path (cleaning liquid supply path), 8: bypass path (flow rate changing means), P2 ... pressurizing pump (pressurizing means)
Claims (3)
分離処理し濃縮液と透過液を得る膜モジュール(3)を洗
浄する方法であって、 該膜モジュールの透過液側(3b)に、被処理液側(3a)内圧
を越える圧力となるように洗浄液を供給する洗浄液供給
工程と、 前記膜モジュールにおける被処理液の流速を変動させる
流速変動工程とを有することを特徴とする膜モジュール
の洗浄方法。1. A method for washing a membrane module (3) for subjecting a liquid to be treated to membrane separation by a cross-flow method to obtain a concentrated solution and a permeate, wherein a permeate solution side (3b) of the membrane module is provided. Cleaning of a membrane module, comprising: a cleaning liquid supply step of supplying a cleaning liquid so as to have a pressure exceeding the internal pressure of the processing liquid (3a); and a flow rate changing step of changing a flow rate of the liquid to be processed in the membrane module. Method.
とを特徴とする請求項1記載の膜モジュールの洗浄方
法。2. The method for cleaning a membrane module according to claim 1, wherein the permeate is used as a cleaning liquid.
分離処理し濃縮液と透過液を得る膜モジュール(3)と、 該膜モジュールの透過液側(3b)に、洗浄液を供給する洗
浄液供給経路(7)と、 該経路を通して供給される洗浄液の圧力を高める加圧手
段(P2)と、 前記膜モジュールにおける被処理液の流速を変動させる
流速変動手段(8)とを有することを特徴とする膜分離装
置(1)。3. A membrane module (3) for obtaining a concentrated liquid and a permeate by subjecting a liquid to be treated to membrane separation by a cross flow method, and a cleaning liquid supply path for supplying a cleaning liquid to a permeate side (3b) of the membrane module. (7), a pressurizing means (P2) for increasing the pressure of the cleaning liquid supplied through the path, and a flow rate varying means (8) for varying the flow rate of the liquid to be treated in the membrane module. Membrane separation device (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000352946A JP2002153736A (en) | 2000-11-20 | 2000-11-20 | Cleaning method of membrane module and membrane separation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000352946A JP2002153736A (en) | 2000-11-20 | 2000-11-20 | Cleaning method of membrane module and membrane separation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002153736A true JP2002153736A (en) | 2002-05-28 |
Family
ID=18825777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000352946A Withdrawn JP2002153736A (en) | 2000-11-20 | 2000-11-20 | Cleaning method of membrane module and membrane separation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002153736A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012055890A (en) * | 2004-12-24 | 2012-03-22 | Siemens Water Technologies Corp | Simple gas scouring method and apparatus |
-
2000
- 2000-11-20 JP JP2000352946A patent/JP2002153736A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012055890A (en) * | 2004-12-24 | 2012-03-22 | Siemens Water Technologies Corp | Simple gas scouring method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2460576C2 (en) | Filtration with inner loading control | |
Strathmann | Membrane separation processes | |
JPS62502108A (en) | Method and apparatus for concentrating fine solids in suspension | |
JPS62502452A (en) | Variable volume filter or concentrator | |
IE913483A1 (en) | Membrane separation system and methods of operating and¹cleaning such a system | |
JPH11309351A (en) | Washing of hollow fiber membrane module | |
JP2001232158A (en) | Diafiltration method | |
US20070158256A1 (en) | Apparatus and method for micro or ultrafiltration | |
JP3577992B2 (en) | Membrane separation method | |
Cassano et al. | Membranes for industrial microfiltration and ultrafiltration | |
JP6618708B2 (en) | Method for operating hollow fiber membrane module and filtration device | |
JP2002153736A (en) | Cleaning method of membrane module and membrane separation apparatus | |
JP6653154B2 (en) | Cleaning method and filtration device for hollow fiber membrane module | |
CN111957209B (en) | Spiral microfiltration ultrafiltration continuous separation method and system | |
Kulozik et al. | Membrane fractionation of dairy proteins by means of microfiltration | |
CN203002094U (en) | Beer ceramic membrane filtration system device | |
US20210069647A1 (en) | Filtration device | |
JP2008221178A (en) | Cleaning method of hollow fiber membrane module | |
JP2005161179A (en) | Method of cleaning hollow-fiber membrane module | |
JP2001079361A (en) | Membrane separation method of bacteria-containing liquid and device therefore | |
JPH05329339A (en) | Filtering apparatus | |
CN110327784B (en) | Security filter and sterilization method of reverse osmosis membrane | |
JP2002153735A (en) | Cleaning method of membrane module and membrane separation apparatus | |
Baysan et al. | Frequently Used Membrane Processing Techniques for Food Manufacturing Industries | |
JP2001029755A (en) | Washing method of hollow fiber membrane module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080205 |