JP2002151319A - Load-supporting body for superconducting magnet, and the superconducting magnet - Google Patents
Load-supporting body for superconducting magnet, and the superconducting magnetInfo
- Publication number
- JP2002151319A JP2002151319A JP2000350549A JP2000350549A JP2002151319A JP 2002151319 A JP2002151319 A JP 2002151319A JP 2000350549 A JP2000350549 A JP 2000350549A JP 2000350549 A JP2000350549 A JP 2000350549A JP 2002151319 A JP2002151319 A JP 2002151319A
- Authority
- JP
- Japan
- Prior art keywords
- reinforced plastic
- fiber reinforced
- load support
- coil
- metal frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 69
- 239000011151 fibre-reinforced plastic Substances 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims abstract description 36
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 239000000112 cooling gas Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 239000004033 plastic Substances 0.000 abstract 1
- 229920003023 plastic Polymers 0.000 abstract 1
- 230000005284 excitation Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 101150000715 DA18 gene Proteins 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、極低温で使用され
る超伝導磁石を支持する荷重支持体と、その荷重支持体
を用いた超伝導磁石装置に係わり、それらは、加速器,
磁気分離装置,医療用装置等に用いられる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load support for supporting a superconducting magnet used at a very low temperature, and a superconducting magnet device using the load support.
Used for magnetic separation devices, medical devices, etc.
【0002】[0002]
【従来の技術】超伝導磁石は、超伝導導体を冷媒ととも
に低温容器に収容した超伝導コイルを断熱性の高い荷重
支持体を介して液体窒素温度または室温環境下の構造物
と締結されているのが通例である。2. Description of the Related Art In a superconducting magnet, a superconducting coil in which a superconducting conductor is housed in a low-temperature container together with a refrigerant is fastened to a structure under a liquid nitrogen temperature or room temperature environment via a load support having high heat insulation. It is customary.
【0003】たとえば図8に示すような超伝導コイル1
を棒状の繊維強化プラスチック構造の荷重支持体2で外
部構造物に支持する構成となる。荷重支持体2は、超伝
導コイル1の冷却時の熱収縮による変形と超伝導コイル
1の自重および励磁後の電磁力に強度的に耐え、且つ外
部熱の侵入量を極力少なくしなければならない。For example, a superconducting coil 1 as shown in FIG.
Is supported on an external structure by a load support 2 having a rod-shaped fiber reinforced plastic structure. The load support 2 must withstand the deformation due to the thermal contraction of the superconducting coil 1 during cooling, the weight of the superconducting coil 1 and the electromagnetic force after excitation, and minimize the amount of external heat infiltration. .
【0004】このため荷重支持体2の構成材料は、熱伝
導率が小さく強度が高い繊維強化プラスチック、たとえ
ばガラス繊維や炭素繊維を強化繊維としてエポキシ樹脂
をマトリックスとする繊維強化プラスチックなどが使用
されている。For this reason, the material of the load support 2 is a fiber reinforced plastic having a low thermal conductivity and a high strength, such as a fiber reinforced plastic having glass fiber or carbon fiber as a reinforcing fiber and an epoxy resin as a matrix. I have.
【0005】従来の超伝導コイル等の極定温装置の荷重
支持装置は、特開平8−56021号公報に記載のよう
に繊維強化樹脂製円筒と金属製円筒を径方向に多重に組
み合わせた多重円筒方式で、繊維強化樹脂製円筒に圧縮
荷重を金属製円筒に引張荷重が加わる構造であった。[0005] A conventional load supporting device for an extremely constant temperature device such as a superconducting coil is a multi-cylinder in which a fiber-reinforced resin cylinder and a metal cylinder are multiplexed in the radial direction as described in JP-A-8-56021. In this method, a compressive load was applied to a fiber-reinforced resin cylinder and a tensile load was applied to a metal cylinder.
【0006】このような構造では断熱距離を長くするこ
とができる代わりにその構造が複雑な構造をとらなけれ
ばならない。また、繊維強化樹脂に圧縮応力が生じるた
め繊維強化樹脂の座屈に対して十分な安全率をとらなけ
ればならない。In such a structure, the heat insulating distance can be increased, but the structure must take a complicated structure. Further, since a compressive stress is generated in the fiber reinforced resin, it is necessary to secure a sufficient safety factor against buckling of the fiber reinforced resin.
【0007】また、特願平8−8108号公報に記載の
ように、棒状の繊維強化プラスチックと円筒状に成形さ
れた繊維強化プラスチックとこれらを連結する金属製金
具で構成された荷重支持体とすることにより、コイル冷
却時の熱変形を吸収しながら支持することができる。Further, as described in Japanese Patent Application No. 8-8108, a load support made up of a rod-shaped fiber reinforced plastic, a fiber reinforced plastic formed in a cylindrical shape, and a metal fitting for connecting these. By doing so, it is possible to support the coil while absorbing thermal deformation during cooling.
【0008】この荷重支持体に関しても2重の円筒と棒
を組み合わせた複雑な構造である。また、荷重支持体の
繊維強化プラスチック部のロッドを超伝導コイルの内槽
に直接取り付ける構造のため、コイルの変形により繊維
強化プラスチックのロッドに曲げ変形が生じるため、一
部に圧縮応力が生じる。This load support also has a complicated structure combining a double cylinder and a rod. In addition, since the rod of the fiber reinforced plastic part of the load support is directly attached to the inner tank of the superconducting coil, bending deformation occurs in the fiber reinforced plastic rod due to deformation of the coil, so that a compressive stress is partially generated.
【0009】[0009]
【発明が解決しようとする課題】しかし、繊維強化プラ
スチックは引張強度に比べて圧縮強度が低いため、繊維
強化プラスチックに圧縮応力が生じる状態で使用する場
合には断面積を大きくする必要があり、断熱距離を大き
くするために繊維強化プラスチックの長さを増加させる
と座屈を生じ易く、初期不整などによる座屈強度の減少
を考慮すると安全率を大きくとる必要があった。However, since fiber-reinforced plastic has a lower compressive strength than tensile strength, it is necessary to increase the cross-sectional area when the fiber-reinforced plastic is used in a state where compressive stress is generated. If the length of the fiber-reinforced plastic is increased to increase the heat insulation distance, buckling is likely to occur, and it is necessary to increase the safety factor in consideration of the decrease in buckling strength due to initial irregularities.
【0010】本発明は複雑な多重円筒構造とすることな
く繊維強化プラスチックに座屈が生じない荷重支持体と
することを目的とする。他の目的は、その荷重支持体を
用いた超伝導磁石装置を提供することである。[0010] It is an object of the present invention to provide a load support that does not cause buckling of fiber-reinforced plastic without having a complicated multi-cylindrical structure. Another object is to provide a superconducting magnet device using the load support.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に、金属フレームと繊維強化プラスチックより構成し、
超伝導コイル側を金属フレーム,外部構造物側を繊維強
化プラスチックになるように配置した。In order to achieve the above object, the present invention comprises a metal frame and a fiber reinforced plastic,
The superconducting coil was placed so that the metal frame and the external structure side were made of fiber-reinforced plastic.
【0012】また、端部にテーパを有する繊維強化プラ
スチックを金属フレームの溝に挿入して締結したもので
ある。Further, a fiber reinforced plastic having a tapered end is inserted into a groove of a metal frame and fastened.
【0013】さらに、締結部における繊維強化プラスチ
ックの破損防止ために繊維強化プラスチックを2軸強化
の積層構造としたものである。Further, in order to prevent breakage of the fiber reinforced plastic at the fastening portion, the fiber reinforced plastic has a biaxially reinforced laminated structure.
【0014】さらに、強固な締結のためにテーパ部表面
に組立前に摩擦低減材を塗布し、繊維強化プラスチック
の底部より圧力を与えたものである。Further, a friction reducing material is applied to the surface of the tapered portion before assembling for strong fastening, and pressure is applied from the bottom of the fiber reinforced plastic.
【0015】これらの荷重支持体を採用した超伝導磁石
装置は、これらの荷重支持体が、超伝導コイルを内蔵
し、ヘリウムガス等の冷却ガスが通されるコイル容器を
断熱支持していて、その荷重支持体の金属フレームは伝
熱によりコイル容器と同様に低温になっているので、そ
の金属フレームとコイル容器とは断熱容器によって周囲
から断熱された構成を有する。In the superconducting magnet device employing these load supports, the load supports have a built-in superconducting coil and insulate and support a coil container through which a cooling gas such as helium gas is passed. Since the metal frame of the load support has a low temperature similarly to the coil container due to heat transfer, the metal frame and the coil container have a configuration insulated from the surroundings by the heat insulating container.
【0016】[0016]
【発明の実施の形態】以下、図面を参照して本発明の各
実施例につき説明する。図1に示す第1実施例による超
伝導コイルの荷重支持体を採用した超伝導磁石装置の縦
断面図を示す。図1において、超伝導コイル1はコイル
容器13内に内蔵されている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a longitudinal sectional view of a superconducting magnet device employing the superconducting coil load support according to the first embodiment shown in FIG. 1. In FIG. 1, the superconducting coil 1 is built in a coil container 13.
【0017】その超伝導コイル1はコイル容器13内を
流通するヘリウムガス12を冷却ガスとして冷却されて
いる。このコイル容器13は荷重支持体2によって外部
構造材5から支持され、荷重支持体2は超伝導コイル1
を間接的に支持している。コイル容器13と荷重支持体
2の金属フレーム3部分と同じく繊維強化プラスチック
4の下部一部分は断熱容器14に囲われて外部から断熱
されている。この断熱容器14は荷重支持体2の金属フ
レーム3や繊維強化プラスチック4に支持されるもので
はなく、別の部分から支持されている。そのため、繊維
強化プラスチック4の部分は断熱容器14に対して相対
的移動が可能に取り合っている。The superconducting coil 1 is cooled by using a helium gas 12 flowing through a coil container 13 as a cooling gas. The coil container 13 is supported from the external structural material 5 by the load support 2, and the load support 2 is
Is indirectly supported. The lower part of the fiber reinforced plastic 4 as well as the coil frame 13 and the metal frame 3 of the load support 2 is surrounded by a heat insulating container 14 and is insulated from the outside. The heat insulating container 14 is not supported by the metal frame 3 or the fiber reinforced plastic 4 of the load support 2, but is supported by another part. Therefore, the portion of the fiber reinforced plastic 4 is relatively movable with respect to the heat insulating container 14.
【0018】前述の通り、荷重支持体2は、金属フレー
ム3と繊維強化プラスチック4より構成されている。そ
の金属フレーム3は、中央で上方向(超伝導コイル1の
ある方向)に突き出た丸棒の部分と、その丸棒の部分と
一体とされていて締結のための円盤状のベース部分9よ
り成る。As described above, the load support 2 is composed of the metal frame 3 and the fiber reinforced plastic 4. The metal frame 3 has a round bar portion protruding upward (in the direction where the superconducting coil 1 is located) at the center, and a disc-shaped base portion 9 integrated with the round bar portion for fastening. Become.
【0019】一方、繊維強化プラスチック4は外部構造
材5とベース部分9との間を締結し、荷重支持体2が超
伝導コイル1の自重および励磁時の電磁力を外部構造材
5に伝達することが出来るようにする。On the other hand, the fiber reinforced plastic 4 fastens the outer structural member 5 and the base portion 9, and the load support 2 transmits the weight of the superconducting coil 1 and the electromagnetic force at the time of excitation to the outer structural member 5. To be able to
【0020】ここで、荷重支持体2は励磁時の超伝導コ
イルの電磁力を支えるように配置する。例えば図1で
は、電磁力は図中上方から下方に向かって働く。超伝導
コイル1が超伝導コイル1の自重と電磁力によって金属
フレーム3は下方に押し下げられ、それによって圧縮応
力を生じる。一方、繊維強化プラスチック4は金属フレ
ーム3に引張られて引張応力を生じる。Here, the load support 2 is arranged to support the electromagnetic force of the superconducting coil at the time of excitation. For example, in FIG. 1, the electromagnetic force acts downward from above in the figure. The metal frame 3 is pushed down by the superconducting coil 1 by its own weight and electromagnetic force, thereby generating a compressive stress. On the other hand, the fiber reinforced plastic 4 is pulled by the metal frame 3 to generate a tensile stress.
【0021】金属フレーム3と繊維強化プラスチック4
および繊維強化プラスチック4と外部構造材5の接合部
は、接着やボルト締結などで行われる。Metal frame 3 and fiber reinforced plastic 4
The joint between the fiber reinforced plastic 4 and the external structural member 5 is performed by bonding, bolting, or the like.
【0022】このように本実施例によれば、繊維強化プ
ラスチック4は主に引張負荷を受けることとなる。これ
によって、繊維強化プラスチックに圧縮応力が生じる状
態で使用する場合に比べて断面積を小さくでき、断熱距
離を大きくするために繊維強化プラスチックの長さを増
加させた場合にも座屈は生じ難い。As described above, according to this embodiment, the fiber reinforced plastic 4 mainly receives a tensile load. As a result, the cross-sectional area can be reduced as compared with the case where the fiber-reinforced plastic is used in a state where a compressive stress is generated, and buckling hardly occurs even when the length of the fiber-reinforced plastic is increased in order to increase the insulation distance. .
【0023】繊維強化プラスチック4の形状は棒状のも
のを金属フレーム3の中心と同心の円状(ベース部分9
の円盤縁沿い)に複数個配置したものであってもよい
し、図2のように、円筒状のものであってもよい。The fiber-reinforced plastic 4 has a rod-like shape which is concentric with the center of the metal frame 3 (a base portion 9).
(Along the edge of the disk), or a cylindrical shape as shown in FIG.
【0024】図2は図1の構造を応用した荷重支持体2
の全体斜視図である。ただし、コイル容器13や超伝導
コイル1や断熱容器14は備えられてはいるが省略表示
している。金属フレーム3は、図1のように、超伝導コ
イル1に連結される丸棒の部分と締結のための円盤状の
ベース部分9より成り、円筒形の繊維強化プラスチック
4の下端部分がそのベース部分9に、同じく上端部分が
外部構造物5に締結されている。金属フレーム3および
繊維強化プラスチック4の形状は、丸棒や円筒状に限ら
ず角柱や板状でもよい。FIG. 2 shows a load support 2 to which the structure of FIG. 1 is applied.
FIG. Although the coil container 13, the superconducting coil 1, and the heat insulating container 14 are provided, they are omitted. As shown in FIG. 1, the metal frame 3 comprises a round bar portion connected to the superconducting coil 1 and a disk-shaped base portion 9 for fastening. At the part 9, the upper end part is also fastened to the external structure 5. The shape of the metal frame 3 and the fiber-reinforced plastic 4 is not limited to a round bar or a cylindrical shape, but may be a prism or a plate.
【0025】図3は図1,図2の繊維強化プラスチック
4の接続部での変形例を示しており、繊維強化プラスチ
ック4の端部に機械加工で設けたテーパ部6を金属フレ
ーム3に設けたテーパ部を有する溝11に挿入して締結
する。この事は、外部構造物5と繊維強化プラスチック
4の上端との締結部においても同様である。この変形例
でも断熱容器14は図1と同様に備えられてはいるが省
略表示している。FIG. 3 shows a modification of the connection portion of the fiber reinforced plastic 4 shown in FIGS. 1 and 2. A tapered portion 6 provided by machining at the end of the fiber reinforced plastic 4 is provided on the metal frame 3. And inserted into the groove 11 having the tapered portion. This is the same in the fastening portion between the external structure 5 and the upper end of the fiber reinforced plastic 4. In this modified example, the heat insulating container 14 is provided similarly to FIG.
【0026】励磁により電磁力が生じた場合、繊維強化
プラスチック4が引張られることでテーパ部6と溝11
との間に締結面圧が生じ、強固に締結される。When an electromagnetic force is generated by the excitation, the fiber reinforced plastic 4 is pulled, so that the tapered portion 6 and the groove 11 are formed.
, A fastening surface pressure is generated, and the fastening is firmly performed.
【0027】たとえば、図2の円筒形状の繊維強化プラ
スチック4に図3の構造を適用する場合は、円筒形の繊
維強化プラスチック4を半割りにし、同様に半割りにし
た金属フレーム3のベース部9に設けた溝11に差し込
む形で締結する。For example, when the structure shown in FIG. 3 is applied to the cylindrical fiber reinforced plastic 4 shown in FIG. 2, the cylindrical fiber reinforced plastic 4 is divided in half and the base part of the metal frame 3 similarly divided in half. 9 into the groove 11 provided.
【0028】その後、金属フレーム3のベース部9に棒
状の支持部8を溶接,ボルト締結または拡散接合などで
取付ける。半割りされたベース部9同士も溶接,ボルト
締結または拡散接合などで接合する。以上の構成とする
ことで簡単な締結構造とすることができる効果がある。Thereafter, the rod-shaped support portion 8 is attached to the base portion 9 of the metal frame 3 by welding, bolting or diffusion bonding. The halved base portions 9 are also joined together by welding, bolting, diffusion bonding, or the like. With the above configuration, there is an effect that a simple fastening structure can be obtained.
【0029】金属フレーム3と繊維強化プラスチック4
の締結部において、繊維強化プラスチック4のテーパ部
6に応力が集中し、特に1軸繊維強化プラスチックで
は、層間せん断破壊を生じ易い。Metal frame 3 and fiber reinforced plastic 4
Stress concentrates on the tapered portion 6 of the fiber reinforced plastic 4, and in particular, uniaxial fiber reinforced plastic is liable to cause interlayer shear failure.
【0030】そこで、層間せん断破壊を防止するため
に、図4に示すように繊維強化プラスチック4を2軸強
化の積層構造とし、積層方向が金属フレームの溝11に
対して交差する方向に配置することで、テーパ部6の層
間せん断破壊を回避することができる。In order to prevent interlaminar shear fracture, the fiber reinforced plastic 4 is formed into a biaxially reinforced laminated structure as shown in FIG. 4, and the laminated direction is arranged in a direction crossing the groove 11 of the metal frame. Thereby, the interlayer shear failure of the tapered portion 6 can be avoided.
【0031】図5に金属フレーム3と繊維強化プラスチ
ック4の締結部の引張試験結果を示す。図5中のaで示
す特性を有する1軸繊維強化プラスチックを使用した場
合には、層間せん断破壊を生じ易くて、低荷重で破損す
る。一方図5中のbで示す特性を有する繊維強化プラス
チック4を用いた場合は、層間せん断破壊を生じ難いた
めに破壊強度が高い。FIG. 5 shows a tensile test result of a fastening portion between the metal frame 3 and the fiber reinforced plastic 4. When a uniaxial fiber reinforced plastic having the characteristic indicated by a in FIG. 5 is used, interlaminar shear failure is likely to occur and breakage occurs with a low load. On the other hand, when the fiber reinforced plastic 4 having the characteristic shown by b in FIG. 5 is used, the breaking strength is high because the interlayer shear failure is unlikely to occur.
【0032】たとえば、本発明を図2の構造に適用する
ためには、以下のように製作を行う。金属フレーム3の
ベース部9を最低2分割最大36分割し、ベース部9に
はテーパ状の溝11を機械加工する。For example, in order to apply the present invention to the structure shown in FIG. 2, manufacturing is performed as follows. The base part 9 of the metal frame 3 is divided into at least two parts and at most 36 parts, and the base part 9 is machined with a tapered groove 11.
【0033】また、繊維強化プラスチック4は、2軸織
り繊維強化プラスチックの積層平板から、円筒を径方向
に12から36分割した部品10を機械加工により採取
する。その部品10の採取方向は、図4に示すように織
り面が径方向となるようにする。The fiber reinforced plastic 4 is obtained by machining a part 10 obtained by dividing a cylinder into 12 to 36 pieces in the radial direction from a laminated flat plate of biaxial woven fiber reinforced plastic. The direction in which the component 10 is collected is such that the weave surface is in the radial direction as shown in FIG.
【0034】その部品10の端部にはテーパ部6を設け
る。その部品10のテーパ部6をベース部9の溝11に
挿入した後、金属フレーム3のベース部9を溶接,ボル
ト締結または拡散接合で締結し、その後棒部8を同様の
方法で接続し、図2の形状とする。At the end of the component 10, a tapered portion 6 is provided. After inserting the tapered portion 6 of the component 10 into the groove 11 of the base portion 9, the base portion 9 of the metal frame 3 is fastened by welding, bolting or diffusion bonding, and then the rod portion 8 is connected in the same manner. The shape is as shown in FIG.
【0035】分割した繊維強化プラスチックの部品10
同士は接合しない。また、分割された繊維強化プラスチ
ックは、全周に配置する必要はなく、間隙をもって配置
してもよい。このように組み立てると繊維強化プラスチ
ック4の積層方向と溝11の交差角を60度から80度
とすることができる。Part 10 of divided fiber reinforced plastic
They do not join. Further, the divided fiber reinforced plastics need not be arranged on the entire circumference, but may be arranged with a gap. By assembling in this manner, the intersection angle between the lamination direction of the fiber reinforced plastic 4 and the groove 11 can be set to 60 to 80 degrees.
【0036】以上の構成とすることで、締結部の繊維強
化プラスチック4のせん断破損を防止することができ
る。また、繊維強化プラスチック4が分割されているこ
とで、荷重支持体の径方向の変形に対して柔な構造とな
り、繊維強化プラスチック4の破損を防止することがで
きる。この事は、外部構造物5と繊維強化プラスチック
4の上端との締結部においても同様である。With the above configuration, it is possible to prevent shear damage of the fiber reinforced plastic 4 at the fastening portion. In addition, since the fiber reinforced plastic 4 is divided, the structure becomes flexible against radial deformation of the load support, so that damage to the fiber reinforced plastic 4 can be prevented. This is the same in the fastening portion between the external structure 5 and the upper end of the fiber reinforced plastic 4.
【0037】図6に示すように、締結部となるテーパ部
6の表面に締結組立前に摩擦低減剤を塗布し、繊維強化
プラスチック4の底部よりボルトを金属フレームにねじ
込む。そのボルトによって繊維強化プラスチック4の端
部は押し込まれて圧力を受け、締結部に面圧を残留さ
せ、冷却収縮によるガタをなくせ、強固な締結が可能と
なる。この事は、外部構造物5と繊維強化プラスチック
4の上端との締結部においても同様である。As shown in FIG. 6, a friction reducing agent is applied to the surface of the tapered portion 6 serving as a fastening portion before fastening assembly, and a bolt is screwed into the metal frame from the bottom of the fiber reinforced plastic 4. The ends of the fiber reinforced plastic 4 are pushed in by the bolts to receive pressure, and a surface pressure is left at the fastening portion, so that there is no play due to cooling shrinkage, and a strong fastening is possible. This is the same in the fastening portion between the external structure 5 and the upper end of the fiber reinforced plastic 4.
【0038】図7の一定の面圧をテーパ部6に残留させ
るために必要な締結応力とデーパ角度の関係に示すよう
に一定の面圧を残留させるのに必要な底部より与える圧
力は、摩擦係数が小さいほど、またテーパ角度が小さい
ほど小さい圧力を負荷すればよい。As shown in FIG. 7, the pressure applied from the bottom to maintain a constant surface pressure in the tapered portion 6 from the bottom required to maintain the constant surface pressure as shown by the relationship between the fastening stress and the data angle. A smaller pressure may be applied as the coefficient is smaller and the taper angle is smaller.
【0039】高い面圧を得るためにはテーパ角を小さく
すればよいが、その場合繊維強化プラスチック4が抜け
てしまう可能性がある。また、締結金具の破損を防ぐた
めにも降伏応力を超えた締結応力を負荷することは避け
たい。To obtain a high surface pressure, the taper angle may be reduced, but in this case, the fiber reinforced plastic 4 may come off. Also, it is desirable to avoid applying a fastening stress exceeding the yield stress in order to prevent damage to the fastener.
【0040】したがって、摩擦低減剤を用いて締結面の
摩擦係数を減少させることで、繊維強化プラスチック4
が抜けないのに十分なテーパ角の採用ができ、また、締
結金具の破損を生じないで高い面圧を残留させることが
できる。Therefore, by reducing the friction coefficient of the fastening surface using the friction reducing agent, the fiber reinforced plastic 4
It is possible to employ a taper angle sufficient to prevent the fastener from coming off, and to leave a high surface pressure without damaging the fastener.
【0041】[0041]
【発明の効果】本発明は、以上説明したように、繊維強
化プラスチックの圧縮応力による破損が生じない超伝導
磁石の荷重支持体とすることができるという効果を奏す
る。As described above, the present invention has an effect that a load support for a superconducting magnet can be provided which does not cause breakage due to the compressive stress of the fiber reinforced plastic.
【0042】また、その超伝導磁石の荷重支持体を採用
した超伝導磁石装置は、超伝導磁石の荷重支持体部分の
破損が生じ無い分、信頼性が良くなる。Further, the superconducting magnet apparatus employing the superconducting magnet load support has improved reliability because the load support portion of the superconducting magnet is not damaged.
【図1】本発明の荷重支持体の一実施形態を示す断面図
である。FIG. 1 is a sectional view showing an embodiment of a load support of the present invention.
【図2】本発明の荷重支持体の一実施形態を示す斜視図
である。FIG. 2 is a perspective view showing an embodiment of the load support of the present invention.
【図3】本発明の荷重支持体の一実施形態を示す断面図
である。FIG. 3 is a sectional view showing an embodiment of the load support of the present invention.
【図4】本発明の荷重支持体の締結部の一実施形態を示
す斜視図である。FIG. 4 is a perspective view showing an embodiment of a fastening portion of the load support of the present invention.
【図5】荷重支持体の締結部の荷重と変位の関係を示す
特性図である。FIG. 5 is a characteristic diagram showing a relationship between a load and a displacement of a fastening portion of a load support.
【図6】本発明の荷重支持体の締結部の一実施形態を示
す断面図である。FIG. 6 is a cross-sectional view showing one embodiment of a fastening portion of the load support of the present invention.
【図7】本発明において、一定の面圧を締結部のテーパ
部に残留させるために必要な締結応力とテーパ角度の関
係を示す特性図である。FIG. 7 is a characteristic diagram showing a relationship between a fastening stress and a taper angle required to cause a constant surface pressure to remain in a tapered portion of a fastening portion in the present invention.
【図8】従来の荷重支持体を示す断面図である。FIG. 8 is a sectional view showing a conventional load support.
1…超伝導コイル、2…荷重支持体、3…金属フレー
ム、4…繊維強化プラスチック、5…外部構造物、6…
テーパ部、7…ボルト、8…棒状部、9…ベース部。DESCRIPTION OF SYMBOLS 1 ... Superconducting coil, 2 ... Load support, 3 ... Metal frame, 4 ... Fiber reinforced plastic, 5 ... External structure, 6 ...
Tapered part, 7 bolt, 8 rod-shaped part, 9 base part.
フロントページの続き (72)発明者 宇佐美 三郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 4M114 AA27 CC03 CC15 DA09 DA18 DA53 Continued on the front page (72) Inventor Saburo Usami 502, Kandachicho, Tsuchiura-shi, Ibaraki F-term in Machine Research Laboratory, Hitachi, Ltd. 4M114 AA27 CC03 CC15 DA09 DA18 DA53
Claims (5)
定の長さの支持体を有して超伝導コイルを断熱支持する
荷重支持体において、前記荷重支持体は互いに連結され
た金属フレームと繊維強化プラスチックとで構成され、
前記超伝導コイル側に前記金属フレームが、前記外部構
造物側に前記繊維強化プラスチックが接続されるように
し、前記金属フレームはベース部とそのベース部から突
き出た部分とを有し、前記ベース部と前記外部構造物の
間を前記繊維強化プラスチックで接続し、前記繊維強化
プラスチックは前記ベース部に対して前記突き出た部分
と同方向に向けられて接続されることによって、前記繊
維強化プラスチックを外部構造物に釣り下げたことを特
徴とする超伝導磁石の荷重支持体。1. A load support for suspending a superconducting coil and an external structure, having a support of a predetermined length, and thermally insulating and supporting the superconducting coil, wherein the load support is a metal connected to each other. It is composed of a frame and fiber reinforced plastic,
The metal frame is connected to the superconducting coil side, and the fiber reinforced plastic is connected to the external structure side. The metal frame has a base portion and a portion protruding from the base portion, And the external structure are connected by the fiber reinforced plastic, and the fiber reinforced plastic is connected to the base in the same direction as the protruding portion, thereby connecting the fiber reinforced plastic to the outside. A superconducting magnet load support characterized by being suspended from a structure.
テーパを金属フレームに設けたテーパを有する溝に挿入
して締結することを特徴とする請求項1に記載の超伝導
磁石の荷重支持体。2. The superconducting magnet load support according to claim 1, wherein a taper provided at an end of said fiber reinforced plastic is inserted into a tapered groove provided in a metal frame and fastened. .
層構造とし、積層方向が金属フレームの溝の方向が交差
することを特徴とする請求項1または請求項2に記載の
超伝導磁石の荷重支持体。3. The load of the superconducting magnet according to claim 1, wherein the fiber reinforced plastic has a biaxially reinforced laminated structure, and the laminating direction intersects the direction of the groove of the metal frame. Support.
塗布し、繊維強化プラスチックの底部より圧力を与えて
締結を行うことを特徴とする請求項2に記載の超伝導磁
石の荷重支持体。4. The superconducting magnet according to claim 2, wherein a friction-reducing agent is applied to the surface of the tapered portion before assembly, and fastening is performed by applying pressure from the bottom of the fiber-reinforced plastic. body.
ガスが通されるコイル容器と、前記超伝導コイルを前記
コイル容器を介して断熱支持する前記請求項1から請求
項4までのいずれか一項に記載の超伝導磁石の荷重支持
体と、前記コイル容器と前記荷重支持体の金属フレーム
部分を囲う断熱容器とを備えた超伝導磁石装置。5. A superconducting coil, a coil container surrounding the coil and through which a cooling gas is passed, and the superconducting coil is heat-insulated and supported through the coil container. A superconducting magnet device comprising: the superconducting magnet load support according to claim 1; and a heat insulating container surrounding the coil container and a metal frame portion of the load support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350549A JP3855648B2 (en) | 2000-11-13 | 2000-11-13 | Superconducting magnet load support and superconducting magnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350549A JP3855648B2 (en) | 2000-11-13 | 2000-11-13 | Superconducting magnet load support and superconducting magnet device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002151319A true JP2002151319A (en) | 2002-05-24 |
JP3855648B2 JP3855648B2 (en) | 2006-12-13 |
Family
ID=18823756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000350549A Expired - Fee Related JP3855648B2 (en) | 2000-11-13 | 2000-11-13 | Superconducting magnet load support and superconducting magnet device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3855648B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324706A (en) * | 2001-04-26 | 2002-11-08 | Hitachi Ltd | Inner tank supporting device of superconducting magnet |
JP2002367823A (en) * | 2001-06-08 | 2002-12-20 | Hitachi Ltd | Load support of superconducting magnet and superconducting magnet device |
JP2013537273A (en) * | 2010-09-08 | 2013-09-30 | スネクマ | Statically fixed truss with connecting rod |
JP2019502889A (en) * | 2015-12-04 | 2019-01-31 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Cryogenic cooling system |
-
2000
- 2000-11-13 JP JP2000350549A patent/JP3855648B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324706A (en) * | 2001-04-26 | 2002-11-08 | Hitachi Ltd | Inner tank supporting device of superconducting magnet |
JP2002367823A (en) * | 2001-06-08 | 2002-12-20 | Hitachi Ltd | Load support of superconducting magnet and superconducting magnet device |
JP2013537273A (en) * | 2010-09-08 | 2013-09-30 | スネクマ | Statically fixed truss with connecting rod |
JP2019502889A (en) * | 2015-12-04 | 2019-01-31 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Cryogenic cooling system |
US11274857B2 (en) | 2015-12-04 | 2022-03-15 | Koninklijke Philips N.V. | Cryogenic cooling system with temperature-dependent thermal shunt |
Also Published As
Publication number | Publication date |
---|---|
JP3855648B2 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090272127A1 (en) | Cryogenic vacuum break thermal coupler with cross-axial actuation | |
US10539372B2 (en) | Apparatus and method for mounting heat pipes to panels | |
US20200299960A1 (en) | Structurally reinforced insulated panel | |
JP2002151319A (en) | Load-supporting body for superconducting magnet, and the superconducting magnet | |
US6002315A (en) | Inner cold-warm support structure for superconducting magnets | |
CN214428421U (en) | Temperature deformation compensation support device and superconducting magnet | |
JP2002367823A (en) | Load support of superconducting magnet and superconducting magnet device | |
CN108806917B (en) | Superconducting magnet low-temperature structure supporting rod | |
JP3104268B2 (en) | Superconducting magnet application equipment | |
GB2396255A (en) | Support member for a superconducting magnet assembly | |
JP2000335500A (en) | Heat insulating structure | |
JP5475066B2 (en) | Heat insulation equipment | |
JP2002324706A (en) | Inner tank supporting device of superconducting magnet | |
CN221668604U (en) | Heat insulation supporting device for superconducting magnet and superconducting magnet | |
JPH0541546A (en) | Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application | |
Sondericker et al. | Alternative concepts for structurally supporting the cold mass of a superconducting accelerator magnet | |
JPH104221A (en) | Cryogenic temperature tank | |
JPH02132868A (en) | Load supporting equipment | |
CN114694914A (en) | Temperature deformation compensation support device and superconducting magnet | |
JP2635208B2 (en) | Superconducting magnet load support structure, load support and magnetic levitation train | |
JPH07201556A (en) | Superconductive magnet device, its cryogenic tank support device, and its manufacture | |
JPS63115999A (en) | Heat insulated supporting device for cryogenic body | |
JPS61220313A (en) | Frp rod with end metal fitting | |
CN116280602A (en) | Deformation compensation supporting structure suitable for under cryogenic environment | |
JP2022128758A (en) | Cryogenic device, heat transfer structure for cryogenic device, and initial cooling method for cryogenic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060403 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060904 |
|
LAPS | Cancellation because of no payment of annual fees |