JPH02132868A - Load supporting equipment - Google Patents

Load supporting equipment

Info

Publication number
JPH02132868A
JPH02132868A JP63285813A JP28581388A JPH02132868A JP H02132868 A JPH02132868 A JP H02132868A JP 63285813 A JP63285813 A JP 63285813A JP 28581388 A JP28581388 A JP 28581388A JP H02132868 A JPH02132868 A JP H02132868A
Authority
JP
Japan
Prior art keywords
cylinder
load
heat insulating
heat
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63285813A
Other languages
Japanese (ja)
Inventor
Tsukasa Wada
司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63285813A priority Critical patent/JPH02132868A/en
Publication of JPH02132868A publication Critical patent/JPH02132868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To improve a load support of this design in both strength and heat insulating property by a method wherein a part between two points different from each other in temperature is constituted in a multilayer structure, a part between one end of a layer and another layer is formed in a heat insulating structure, and a bearing section supporting a shock load is provided between the layers. CONSTITUTION:When a support 1 side is cooled down, a first cylinder 9 of a strength member shrinks more than a cylinder 11 of an insulating member, because the thermal conductivity of the cylinder 9 is larger than that of the cylinder 11, so that a free end 9a of the cylinder 9 becomes free separating from a step 11a of the cylinder 11 and a load applied onto the cylinder 11 can be beared by the cylinder 9 connected to a joint 15b. And, in this state, the cylinder 9 is not conducive to a heat flow and heat is conducted to the cylinder 11 small in thermal conductivity, so that a load support of this design can be improved in heat insulating property. Moreover, when a large load is temporarily applied in a direction of compression, the cylinder 9 bears the load as the cylinder 11 is made to shrink and the step 11a of the cylinder 11 is made to bear on the free end 9a of the cylinder 9, so that a load support of this design can bear a large load.

Description

【発明の詳細な説明】 し発明の目的] 《産業上の利用分野》 この発明は、例えば超伝導マグネット等の支持に用いら
れる折返し構造の荷重支持器に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION <<Industrial Application Field>> The present invention relates to a load supporter with a folded structure used for supporting, for example, a superconducting magnet.

(従来の技術》 従来の荷重支持器としては、例えば第3図に示したよう
なものが知られている。これは、例えば4.2Kの液体
ヘリウムに浸漬している超伝導マグネットを支持具10
1側に支持し、室温である真空容器に係合具103を支
持させるもので、支持具101側と係合具103側とを
結ぶ同心円状の円筒109,111.113を設け、こ
れら円筒109,111.113のそれぞれの片端を交
互に接続した折返し構造としている。すなわち、熱の流
れは低温側と高温側とを結ぶ材料の熱伝導率と所面積に
比例し、その距離に反比例する。そこで、上記折返し構
造を採用して熱の流れとしては実質上温度差のある低温
端《支持具101》と、この低温端より高温である高温
@(係金具103)との距離よりも長くなるように構成
するものである。
(Prior art) As a conventional load support device, for example, the one shown in Fig. 3 is known. 10
1 side and supports the engaging tool 103 in a vacuum container that is at room temperature.Concentric cylinders 109, 111, and 113 connecting the supporting tool 101 side and the engaging tool 103 side are provided, and these cylinders 109 , 111 and 113 are connected alternately to form a folded structure. That is, the flow of heat is proportional to the thermal conductivity and area of the material connecting the low-temperature side and the high-temperature side, and inversely proportional to the distance. Therefore, by adopting the folded structure described above, the heat flow becomes longer than the distance between the low temperature end (support 101), which has a substantial temperature difference, and the high temperature @ (locking metal fitting 103), which is higher than this low temperature end. It is configured as follows.

前記円筒109,111,113には、熱伝導率の小さ
い材料であるステンレス鋼やFRP(繊維強化プラスチ
ック》が使用される。第3図の従来例のものは、例えば
低温側の円筒109をCFRP(カーボン繊維強化プラ
スチック》を使用し、他の円筒111.113にはG 
F R P. (ガラス繊維強化プラスッチク)を使用
している。これら円筒109,111.113の折返し
部115の接合部117は、それぞれねじ係合と接着剤
とを併用する手段等によって接合している。また、円筒
109と端部取合治具107との接合部117も同様に
接合されている。
The cylinders 109, 111, 113 are made of materials with low thermal conductivity such as stainless steel or FRP (fiber reinforced plastic).In the conventional example shown in FIG. 3, for example, the cylinder 109 on the low temperature side is made of CFRP. (carbon fiber reinforced plastic), and the other cylinders 111 and 113 are made of G
F.R.P. (Glass fiber reinforced plastic) is used. The joint portions 117 of the folded portions 115 of these cylinders 109, 111, and 113 are jointed by a combination of screw engagement and adhesive, respectively. Further, a joint 117 between the cylinder 109 and the end joining jig 107 is joined in the same manner.

ところで、このような構造の荷重支持器では、例え短時
間にしか加わらない地震による衝撃荷重等であっても、
その荷重に耐えられなければならない。このため、従来
は荷重支持器で支持する例えば超伝導マグネットから加
えられる定常荷車以上の衝撃荷重に耐え得るように各円
筒109.1ii.113のそれぞれの肉厚を厚く設定
する等している。これは、強度は断面積に比例し、長さ
に反比例するからである。
By the way, a load support with such a structure can withstand shock loads caused by earthquakes, etc., which are applied only for a short period of time.
It must be able to withstand that load. For this reason, conventionally, each cylinder 109.1ii. For example, the thickness of each of the parts 113 is set thick. This is because strength is proportional to cross-sectional area and inversely proportional to length.

しかしながら、このような荷重支持器では、定常荷重に
対しては堅固すぎるものになっていることが多く、また
、円筒109,111.113の断面積が大きくなると
多くの熱が流れることになり、熱の流れをできるだけ少
なくしようとする目的に反するという問題がある。
However, such load supports are often too rigid for steady loads, and the larger the cross-sectional area of the cylinders 109, 111, 113, the more heat will flow through them. There is a problem in that this defeats the purpose of minimizing heat flow.

〈発明が解決しようとする課題》 上記のように従来の荷重支持器にあっては、折返し構造
をとるも強度と断熱性能とを同時に向上させることは極
めて困難であった。
<Problems to be Solved by the Invention> As described above, in the conventional load support device, it is extremely difficult to simultaneously improve strength and heat insulation performance even though the folded structure is adopted.

そこで、この発明は、強度と断熱性能とを共に向上させ
ることができる荷重支持器の提供を目的としている。
Therefore, an object of the present invention is to provide a load supporter that can improve both strength and heat insulation performance.

[発明の構成コ 《課題を解決するための手段》 上記目的を達成するために、この発明は、温度差がある
2点間を接続して荷重を支持する折返し構造の荷重支持
器において、前記2点間で少なくとも一部を多層構造と
し、少なくとも一つの層の一端側と他の層との間を断熱
構造とし、両層間に衝撃荷重を受ける当接部を設ける構
成とした。
[Structure of the Invention <Means for Solving the Problems>> In order to achieve the above object, the present invention provides a load supporter with a folded structure that supports a load by connecting two points having a temperature difference. At least a part of the structure between two points has a multilayer structure, a heat insulating structure is formed between one end side of at least one layer and another layer, and an abutment part that receives an impact load is provided between both layers.

また断熱構造は、両層間の隙間で構成した。In addition, the insulation structure was constructed from the gap between the two layers.

さらに多層構造を熱膨脹率の異なる材料で構成し、2点
間の断熱用部材と衝撃荷重作用時の強度部材とした。
Furthermore, the multilayer structure is made of materials with different coefficients of thermal expansion, and serves as a heat insulating member between two points and a strength member when an impact load is applied.

(作用〉 このような構造では、多層の少なくとも一の層以外の層
を熱が流れて断熱性能が向上し、一時的に衝撃荷重が加
わったときには当接部を介して前記一の苦も荷重を受け
ることになる。
(Function) In such a structure, heat flows through layers other than at least one of the multilayers, improving insulation performance, and when a temporary impact load is applied, the load is absorbed through the abutment part. will receive.

断熱構造が両層間の隙間であるときは、定常荷重時、こ
の隙間によって少なくともーの層へ熱が流れるのを抑制
し、衝撃荷重作用時は層の変形で隙間がなくなり、当接
部が当接して荷重を受ける。
When the insulation structure has a gap between the two layers, this gap suppresses the flow of heat to at least the - layer when a steady load is applied, and when an impact load is applied, the gap disappears due to the deformation of the layers and the abutting part Contact and receive load.

多層構造を、熱膨脹率の異なる材料で構成し、断熱用部
材と強度部材としたときは、定常荷重時、熱は断熱用部
材を流れ、衝撃荷重時に強度部材が働く。
When a multilayer structure is constructed of materials with different coefficients of thermal expansion, and a heat insulating member and a strength member are used, heat flows through the heat insulating member during a steady load, and the strength member acts during an impact load.

(実施例》 以下、この発明の実施例を図面に基づいて説明する。(Example" Embodiments of the present invention will be described below based on the drawings.

?1図は、この発明の一実施例に係る低温荷重支持器の
断面図を示すものである。
? FIG. 1 shows a cross-sectional view of a low-temperature load supporter according to an embodiment of the present invention.

この荷重支持器は、上記同様超伝導マグネットの支持に
使用しているもので、4.2Kの液体ヘリウムに浸漬し
ている超伝導マグネットを室温である真空容器から支持
している。
This load supporter is used to support the superconducting magnet as described above, and supports the superconducting magnet immersed in 4.2K liquid helium from a vacuum container at room temperature.

前記液体ヘリウム側が支持具1で、室温である真空容器
側が係合具3となっている。
The liquid helium side is the supporting tool 1, and the vacuum container side which is at room temperature is the engaging tool 3.

低温側の同心円状の第1の円筒9と第2の円筒11が設
けられている。この第1の円筒9と第2の円筒11は折
返部13aによって最内側となっている。
A concentric first cylinder 9 and a second cylinder 11 on the low temperature side are provided. The first cylinder 9 and the second cylinder 11 are located at the innermost side by the folded portion 13a.

この発明の実施例は、この部分に実施されており、第1
の円筒9と第2の円筒11とを熱膨張率の■異なる2樺
類の材料を使用して構成している。
The embodiment of this invention is implemented in this part, and the first
The cylinder 9 and the second cylinder 11 are constructed using two birch-like materials having different coefficients of thermal expansion.

すなわち第1の円筒9を強度部材として熱膨張率が大き
くかつ、強度も大きなGFRPを使用して一時的に大荷
重(衝撃荷重)に耐,え得るように肉厚等を構成し、第
2の円筒11を断熱用部材として熱伝導率の小さなCF
RPを使用して定常時の荷重には耐え得るように肉厚等
を構成している。
That is, the first cylinder 9 is made of GFRP which has a high coefficient of thermal expansion and high strength as a strength member, and the wall thickness etc. are configured so that it can temporarily withstand a large load (impact load). The cylinder 11 is made of CF having a low thermal conductivity as a heat insulating member.
By using RP, the wall thickness etc. are configured so that it can withstand the load during steady state.

そして、第1の円筒9と第2の円筒11とは折返部13
aにおいて、例えばねじ係合と接着剤とを併合した接合
手段等による接合部15aで互いに接続されている。ま
た、第2の円筒11は、低温側の支持具1に接合部15
bで同様に接続されている。さらに第1の円筒9の自由
19aは第2の円筒11の段差部11aに当接して組立
てられ、この実施例の当接部を構成している。従って、
この荷重支持器は、温度差のある2点間で少なくとも一
部が多居構造となっている。
The first cylinder 9 and the second cylinder 11 are connected to the folded part 13.
In a, they are connected to each other at a joint 15a using a joining means combining screw engagement and adhesive, for example. Further, the second cylinder 11 is connected to the support 1 on the low temperature side at the joint 15.
Similarly connected at b. Furthermore, the free portion 19a of the first cylinder 9 is assembled in contact with the stepped portion 11a of the second cylinder 11, and constitutes the abutting portion of this embodiment. Therefore,
This load supporter has a multi-occupancy structure at least in part between two points with a temperature difference.

なお、第1の円筒9、第2の円筒11に形成する肉厚部
分と薄肉部分とはそれぞれ円筒9,11の全長に亘って
形成する必要はなく、長手方向間の一部に形成しただけ
でも同様な効果を得ることができる。
Note that the thick and thin parts formed in the first cylinder 9 and the second cylinder 11 do not need to be formed over the entire length of the cylinders 9 and 11, respectively, but are only formed in a part between them in the longitudinal direction. But you can get the same effect.

また、第1の円筒9の折返部13aの外周には、第3の
円筒17が接合部15cで同様に接続されている。この
第3の円筒17は寸法と強度の制約からステンレス鋼を
使用している。この第3の円筒17には折返部13bで
第4の円筒19が接合部15dで同様に接続されており
、この第4の円筒19の^温側は端部取合治具21と接
合部15eで同様に接続されている。前記第4の円筒1
9は径が大きく肉厚を薄くしても断面積を広く形成する
ことが可能なため、GFRPを使用している。
Further, a third cylinder 17 is similarly connected to the outer periphery of the folded portion 13a of the first cylinder 9 at a joint portion 15c. This third cylinder 17 is made of stainless steel due to size and strength constraints. A fourth cylinder 19 is similarly connected to this third cylinder 17 at a joint part 15d at a folded part 13b, and the warm side of this fourth cylinder 19 is connected to an end joining jig 21 and a joint part 15d. 15e are connected in the same way. Said fourth cylinder 1
9 uses GFRP because it has a large diameter and can be formed with a wide cross-sectional area even if the wall thickness is thinned.

つぎに、このような構造の荷重支持器の作用について述
べる。
Next, the operation of a load supporter having such a structure will be described.

支持具1側が冷えると、強度部材である第1の円筒9の
熱伝導率が断熱用部材である第2の円筒11の熱伝導率
より大きいため、第1の円筒9が第2の円筒11よりも
縮んで第1の円筒9の自由端9aが第2の円筒11の段
差部11aから離れてフリーとなる。そのため、第2の
円筒11に定常的な荷重、すなわら、超伝導マグネット
のm世による引張り力が加わるが、この荷重には第1の
円筒11で耐えることができる。そして、このような状
態では、強度部材である第1の円筒9は熱の流れに寄与
せず、熱は熱伝導率の小さい断熱用部材である第2の円
筒11を流れる。従って、断熱性能が向上する。
When the support 1 side cools down, the thermal conductivity of the first cylinder 9, which is a strength member, is higher than that of the second cylinder 11, which is a heat insulating member, so that the first cylinder 9 becomes the second cylinder 11. The free end 9a of the first cylinder 9 is separated from the stepped portion 11a of the second cylinder 11 and becomes free. Therefore, a steady load, ie, a tensile force due to the mth generation of the superconducting magnet, is applied to the second cylinder 11, but this load can be withstood by the first cylinder 11. In such a state, the first cylinder 9, which is a strength member, does not contribute to the flow of heat, and the heat flows through the second cylinder 11, which is a heat insulating member with low thermal conductivity. Therefore, the heat insulation performance is improved.

また、超伝導マグネットの輪送中や地震のときには、一
時的に大きな圧縮方向の荷重が荷歪支持器に加わる。こ
の場合には、断熱用部材である第2の円筒11が荷重に
よって縮められ、強度部材である第1の円筒9の自山端
9aに第2の円筒11の段差部11aが当接する。そし
て、第1の円筒9も荷重を受け、荷重支持器は大きな荷
重にも耐えることがでぎ、この荷重が取り去られたとき
には第1の円筒9の自由端9aと第2の円筒11の段差
部11aとの当接が解かれ、再び高い断熱性能を得るこ
とができる。
Furthermore, during transport of the superconducting magnet or during an earthquake, a large load in the compressive direction is temporarily applied to the load strain supporter. In this case, the second cylinder 11, which is a heat insulating member, is contracted by the load, and the stepped portion 11a of the second cylinder 11 comes into contact with the self-height end 9a of the first cylinder 9, which is a strength member. The first cylinder 9 is also subjected to a load, and the load supporter is able to withstand a large load, and when this load is removed, the free end 9a of the first cylinder 9 and the second cylinder 11 are The contact with the stepped portion 11a is released, and high heat insulation performance can be obtained again.

第2図はこの発明の他の実施例を示すものである。FIG. 2 shows another embodiment of the invention.

なお、上記実施例と同一要素には同一符号を付して説明
する。
Note that the same elements as those in the above embodiment will be described with the same reference numerals.

この実施例は、強度部材としての第1の円筒9の自由1
9aと断熱用部材としての第2の円筒11の段差部11
aとの間に当初から隙間23を形成している。
In this embodiment, the free 1 of the first cylinder 9 as a strength member is
9a and the stepped portion 11 of the second cylinder 11 as a heat insulating member
A gap 23 is formed from the beginning between the

このような構造では荷重支持器に定常的な荷重が加わっ
ている状態では第1の円筒9は自由端9aがフリーとな
っているため、熱の流れに寄与せず熱は第2の円筒11
のみを流れる。従って、高い断熱性能を得ることができ
る。
In such a structure, when a steady load is applied to the load supporter, the free end 9a of the first cylinder 9 is free, so it does not contribute to the flow of heat and the heat is transferred to the second cylinder 11.
Flows only. Therefore, high heat insulation performance can be obtained.

また、荷重支持器に一時的に大きな荷重が加わった場合
には、第2の円筒11が荷重のために縮んで、第2の円
筒11の段差部11aが第1の円筒9の自由端9aと当
接し、第1の円筒9も荷重を受ける。そのため、荷重支
持器1は大きな荷mにも耐えることができ、この荷重が
取り去られたときには、再び高い所熱性能を得ることが
できる。
Further, when a large load is temporarily applied to the load supporter, the second cylinder 11 contracts due to the load, and the stepped portion 11a of the second cylinder 11 becomes the free end 9a of the first cylinder 9. The first cylinder 9 also receives a load. Therefore, the load supporter 1 can withstand even a large load m, and when this load is removed, high local heat performance can be obtained again.

さらにこの実施例では第1の円筒9等の長手寸法の設定
が容易となる。
Furthermore, in this embodiment, the longitudinal dimensions of the first cylinder 9, etc. can be easily set.

この発明の実施例に係る荷重支持器は、従来の方法で製
作したものと比較して、CFRPにより断熱用部材とし
て構成した第2の円811の部分程度しか外径寸法が大
きくなっていないため、外観上は殆ど同じ大きなもので
あり乍ら、定常時の熱の流れは二桁程度小さくなり断熱
性能が向上した。
The load supporter according to the embodiment of the present invention has an outer diameter larger than that manufactured by a conventional method by only the second circle 811 made of CFRP as a heat insulating member. Although the external appearance is almost the same and large, the heat flow during steady state is reduced by about two orders of magnitude, and the insulation performance is improved.

なお、この発明は超伝導マグネットの支持に限らず、温
度差のある2点間での荷垂支持に広く応用することがで
きるものである。
Note that this invention is not limited to supporting superconducting magnets, but can be widely applied to supporting a load between two points with a temperature difference.

[発明の効果1 以上の説明より明らかなように、この発明の荷重支持器
の構造によれば、大きな荷重に耐える強度を得ることが
できると共に断熱性能を向上することができる。
[Effect of the Invention 1] As is clear from the above description, according to the structure of the load supporter of the present invention, strength to withstand a large load can be obtained, and the heat insulation performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る荷重支持器の断面図
、第2図はこの発明の他の実施例に係る荷重支持器の断
面図、第3図は従来例による荷重支持器の断面図である
。 1・・・支持具(低温側) 3・・・係合具(高温側)
9・・・第1の円筒(強度部材) 11・・・第2の円筒(断熱用部材)
Fig. 1 is a sectional view of a load supporter according to an embodiment of the present invention, Fig. 2 is a sectional view of a load supporter according to another embodiment of the invention, and Fig. 3 is a sectional view of a load supporter according to a conventional example. FIG. 1... Support tool (low temperature side) 3... Engagement tool (high temperature side)
9... First cylinder (strength member) 11... Second cylinder (insulation member)

Claims (3)

【特許請求の範囲】[Claims] (1) 温度差がある2点間を接続して荷重を支持する
折返し構造の荷重支持器において、前記2点間で少なく
とも一部を多層構造とし、少なくとも一の層の一端側と
他の層との間を断熱構造とし、両層間に衝撃荷重を受け
る当接部を設けたことを特徴とする荷重支持器。
(1) In a load supporter with a folded structure that supports a load by connecting two points with a temperature difference, at least a part of the structure between the two points has a multilayer structure, and one end side of at least one layer and one end side of the other layer are formed between the two points. A load supporter characterized by having a heat insulating structure between the layers and an abutting part that receives an impact load between the two layers.
(2) 前記断熱構造は、両層間の隙間であることを特
徴とする請求項1記載の荷重支持器。
(2) The load support device according to claim 1, wherein the heat insulating structure is a gap between both layers.
(3) 前記多層構造を熱膨脹率の異なる材料で構成し
、2点間の断熱用部材と衝撃荷重作用時の強度部材とし
たことを特徴とする請求項1又は2記載の荷重支持器。
(3) The load support device according to claim 1 or 2, wherein the multilayer structure is made of materials having different coefficients of thermal expansion, and serves as a heat insulating member between two points and a strength member when an impact load is applied.
JP63285813A 1988-11-14 1988-11-14 Load supporting equipment Pending JPH02132868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285813A JPH02132868A (en) 1988-11-14 1988-11-14 Load supporting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285813A JPH02132868A (en) 1988-11-14 1988-11-14 Load supporting equipment

Publications (1)

Publication Number Publication Date
JPH02132868A true JPH02132868A (en) 1990-05-22

Family

ID=17696420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285813A Pending JPH02132868A (en) 1988-11-14 1988-11-14 Load supporting equipment

Country Status (1)

Country Link
JP (1) JPH02132868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367823A (en) * 2001-06-08 2002-12-20 Hitachi Ltd Load support of superconducting magnet and superconducting magnet device
JP6980924B1 (en) * 2020-02-05 2021-12-15 三菱電機株式会社 Superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367823A (en) * 2001-06-08 2002-12-20 Hitachi Ltd Load support of superconducting magnet and superconducting magnet device
JP6980924B1 (en) * 2020-02-05 2021-12-15 三菱電機株式会社 Superconducting magnet

Similar Documents

Publication Publication Date Title
KR20110009199A (en) Cryogenic vacuum break thermal coupler with cross-axial actuation
CN109312975B (en) Method of forming a thermal switch
US4781034A (en) Cryogenic support system
JP5044310B2 (en) Low temperature liquefied gas storage tank
US4696169A (en) Cryogenic support member
JPH02132868A (en) Load supporting equipment
US4184665A (en) Thermally actuated wedge block
WO2024050987A1 (en) Decoupling design method for sealing and bearing structure, and support structure
JP3855648B2 (en) Superconducting magnet load support and superconducting magnet device
JPS60245899A (en) Heat insulating support device of ultralow temperature vessel
JP3349539B2 (en) Insulated support device
JPH0826958B2 (en) Vacuum insulation support method, vacuum insulation container and vacuum insulation panel using the same
JPS6254982A (en) Cryostat
JPS63261706A (en) Cryogenic apparatus
Jones Design and manufacture of composite struts for aerospace applications
Zhu et al. Geometrical non-linear thermal stress analysis of threaded-adhesive joints applied in non-magnetic dewar
CN114694914A (en) Temperature deformation compensation support device and superconducting magnet
JPS6327874B2 (en)
Huang et al. Neutral Layer Design for Flexible Electronics
JPH01131748A (en) Pipy structure member
JP2022071417A (en) Heat transmission structure, cryogenic device, and manufacturing method of heat transmission structure
JPS6227758Y2 (en)
JPH01312298A (en) High heat insulating piping
JPS58137205A (en) Superconductive magnet
JPH02179735A (en) Sandwich panel