JP2002147725A - Operation method for external circulating fluidized bed incinerator used for incinerator of wastes with high moisture content and volatile substance content such as sewage sludge - Google Patents

Operation method for external circulating fluidized bed incinerator used for incinerator of wastes with high moisture content and volatile substance content such as sewage sludge

Info

Publication number
JP2002147725A
JP2002147725A JP2000339382A JP2000339382A JP2002147725A JP 2002147725 A JP2002147725 A JP 2002147725A JP 2000339382 A JP2000339382 A JP 2000339382A JP 2000339382 A JP2000339382 A JP 2000339382A JP 2002147725 A JP2002147725 A JP 2002147725A
Authority
JP
Japan
Prior art keywords
fluidized bed
air
amount
furnace
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000339382A
Other languages
Japanese (ja)
Other versions
JP3790418B2 (en
Inventor
Hiroki Honda
裕姫 本多
Yoshihito Shimizu
義仁 清水
Tsuneki Yamauchi
恒樹 山内
Masatomo Henmi
眞知 逸見
Shiro Sasaya
史郎 笹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000339382A priority Critical patent/JP3790418B2/en
Publication of JP2002147725A publication Critical patent/JP2002147725A/en
Application granted granted Critical
Publication of JP3790418B2 publication Critical patent/JP3790418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an operation method for a compact and low cost type circulating fluidized bed incinerator capable of the combustion with a low degree of environmental pollution of sewage and sludge having a high moisture content and a high volatile substance content with high efficiency in the circulating fluidized incinerator. SOLUTION: In a circulating fluidized incinerator forming a bubble fluidized bed from the primary air supplied from the lower side of the fluidized bed and introducing the secondary air to a splash area to reflux the particles conveyed with the particles blowing up outside the furnace by the secondary air through a freeboard to the bubble fluidized bed area through an external circulating part, the amount of the primary air is made to be 10 to 40%, by volume, of the total air amount in distributing the total supplied air amount into the primary air and secondary air. It is characterized by the primary air amount that is 0.15 to 0.5 times the theoretical amount of air required for the complete combustion of an object to be incinerated, and moreover the location at which the secondary air is blown into the bubble fluidized bed area has the height of 1.2 m or higher from a fluidized bed air dispersion plate. The fluid medium with the mean particle diameter of 0.5 mm or smaller is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥、都市ご
み又は産業排気物等の燃焼媒体を完全燃焼し、一酸化炭
素、ダイオキシン類等の発生を低減することのできる循
環流動層炉に係り、特に含水率が高く、可燃物中の揮発
分が多い、下水汚泥等を低CO、低DXN、低NOx、
低NO等など、低公害にて安定的に焼却処理する下水
汚泥等の高含水率・高揮発性の廃棄物焼却炉に用いる外
部循環流動層焼却炉の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating fluidized bed furnace capable of completely burning a combustion medium such as sewage sludge, municipal solid waste or industrial exhaust and reducing the generation of carbon monoxide, dioxins and the like. In particular, the water content is high, the volatile matter in the combustibles is high, and the sewage sludge and the like have low CO, low DXN, low NOx,
The present invention relates to an operation method of an external circulating fluidized bed incinerator used for a waste incinerator having a high water content and a high volatility such as sewage sludge which is stably incinerated with low pollution such as low N 2 O.

【0002】[0002]

【従来の技術】従来より、下水汚泥、都市ゴミ又は産業
廃棄物等の処理には流動層焼却炉が広く用いられてい
る。流動層焼却炉は瞬時に廃棄物を乾燥、焼却できるこ
とが最大の特徴であり、また炉床部が定常的には高温に
保持されており、かつ十分に蓄熱されていることから廃
棄物の供給の瞬時変動に安定である、等の利点により、
廃棄物の中でも、特に高含水率の下水汚泥に適してい
る。
2. Description of the Related Art Conventionally, fluidized bed incinerators have been widely used for treating sewage sludge, municipal waste, industrial waste, and the like. The most distinctive feature of fluidized bed incinerators is that they can dry and incinerate waste instantaneously, and because the hearth is constantly kept at a high temperature and has sufficient heat storage to supply waste. Is stable against instantaneous fluctuations of
Among wastes, it is particularly suitable for sewage sludge with a high water content.

【0003】かかる流動層焼却炉は都市ゴミや脱水汚泥
等の焼却炉に多く見られる気泡流動層炉と石炭炊き発電
ボイラや一部廃棄物との混焼用焼却炉に見られる循環流
動層炉とに分類される。前者の気泡流動層炉の構造を簡
単に説明するに、該気泡流動層炉は、炉底に砂等の流動
媒体を充填してその下方から高圧空気の吹込みにより流
動状態にして該流動媒体中に投入した廃棄物を瞬時に乾
燥、焼却するものである。これにより、流動媒体を高温
に維持して連続瞬時燃焼を可能にし、また流動媒体の持
つ熱容量が非常に大きいため、停止時の放熱が少なく、
間欠運転にも適するという特徴を持っており、さらに該
流動媒体の熱伝達率が速いため、汚泥の乾燥能力も高
い。
[0003] Such fluidized bed incinerators include bubble fluidized bed furnaces often found in incinerators for municipal garbage and dewatered sludge, and circulating fluidized bed incinerators found in coal-fired power boilers and incinerators for mixed incineration of some wastes. are categorized. In order to briefly explain the structure of the former bubble fluidized-bed furnace, the bubble-fluidized-bed furnace is filled with a fluid medium such as sand at the bottom of the furnace, and is brought into a fluidized state by blowing high-pressure air from underneath the fluid medium. The waste put in is dried and incinerated instantly. As a result, the fluid medium is maintained at a high temperature to enable continuous instantaneous combustion, and since the fluid medium has a very large heat capacity, the heat radiation at the time of stoppage is small,
It has the characteristic of being suitable for intermittent operation, and has a high heat transfer coefficient of the fluidized medium, and therefore has a high sludge drying ability.

【0004】しかしながら、近年の汚泥性状の変化によ
り、汚泥中の揮発分が炉内上部のフリーボードで活発な
燃焼を起こす問題が生じており、炉内温度の均一化、ま
た、排ガス量の低下等の目的から、吹き込み空気の速度
を上げることにより流動媒体が炉内を循環する循環流動
層炉が多用される傾向にある。かかる循環流動層炉は、
炉底から吹き込む一次空気の供給量を全供給空気量の5
0%以上とし、投入された汚泥と該流動媒体とが激しく
混合しながら飛散し、該飛散した流動媒体や汚泥等を二
次空気の吹き込みによりフリーボードへ同伴して、燃焼
しながら系内を循環しており、汚泥中水分の乾燥負荷が
高く取れるという特徴があった。
However, due to the recent change in sludge properties, there has been a problem that volatile components in the sludge cause active combustion on the freeboard in the upper part of the furnace, and the temperature in the furnace becomes uniform and the amount of exhaust gas decreases. For such purposes, a circulating fluidized bed furnace in which a fluidized medium is circulated in the furnace by increasing the speed of the blowing air tends to be frequently used. Such a circulating fluidized bed furnace,
The supply amount of primary air blown from the furnace bottom is 5 times the total supply air amount.
0% or more, the injected sludge and the fluidized medium are violently mixed and scattered, and the scattered fluidized medium and sludge are entrained in the free board by blowing secondary air, and burned in the system while burning. It was circulating, and the characteristic feature was that the sludge had a high drying load of moisture.

【0005】ところが、前記流動層炉から排出する排ガ
ス中には一酸化炭素やHCN、NH 等の有害物質の濃
度が高く、また、地球温暖化の温室効果ガスとして注目
を浴びている亜酸化窒素(NO)の濃度が高いという
問題点がある。特に、循環流動床炉の場合、従来の気泡
流動炉と比較して空塔速度が大きい為、十分な滞留時間
が確保できず、サイクロン出口における、一酸化炭素に
代表される未燃ガス濃度が高値であった。
However, the exhaust gas discharged from the fluidized bed furnace is
Carbon monoxide, HCN, NH 3Concentration of harmful substances such as
High degree of attention and attention as a greenhouse gas for global warming
Nitrous oxide (N2O) concentration is high
There is a problem. In particular, in the case of a circulating fluidized bed furnace, the conventional bubble
Sufficient residence time due to high superficial velocity compared to fluidized furnace
Could not be secured, and carbon monoxide at the cyclone exit
The representative unburned gas concentration was high.

【0006】これは、廃棄物の燃料比(固定炭素分/揮
発分)に深く係わり、汚泥等の含水率の比率の高い物質
が焼却される際に、燃焼物のうち大部分がガス化して流
動層上方のフリーボードで燃焼することとなるため、未
燃ガスの周囲の物質交換がままならず酸素が十分に供給
されず、フリーボード中で燃焼が完結しないという課題
がある。一方、前記、循環流動層炉にて同廃棄物を焼却
処理する場合、一次空気及び二次空気混合後の空塔速度
が速いため、ガス化途中の汚泥粒子(チャー粒子)まで
が、ライザー部(フリーボード部)を上昇することにな
り、未燃チャーから発生する一酸化炭素が燃焼する為の
十分な滞留時間が確保できず、前記のようにサイクロン
出口における未燃ガス濃度が高くなるといる問題点を有
している。即ち、従来の循環流動層では、一次空気量が
比較的多くライザー下部での空塔速度が大きいため、汚
泥粒子や、乾燥過程の汚泥粒子や、乾燥・ガス化後に生
成するチャー粒子の大径物などが吹き上げられ、燃焼時
間の確保ができないという問題があった。
[0006] This is closely related to the fuel ratio of waste (fixed carbon content / volatile content), and when substances having a high water content ratio such as sludge are incinerated, most of the combustion products are gasified. Since combustion occurs on the free board above the fluidized bed, there is a problem that the mass exchange around the unburned gas does not remain, oxygen is not sufficiently supplied, and combustion is not completed in the free board. On the other hand, when the waste is incinerated in the circulating fluidized bed furnace, since the superficial velocity after mixing the primary air and the secondary air is high, the sludge particles (char particles) during gasification are reduced to the riser section. (Free board portion), and a sufficient residence time for burning carbon monoxide generated from the unburned char cannot be secured, and the unburned gas concentration at the cyclone outlet is increased as described above. Has problems. That is, in the conventional circulating fluidized bed, since the primary air amount is relatively large and the superficial velocity at the lower part of the riser is large, the large diameter of sludge particles, sludge particles in the drying process, and char particles generated after drying and gasification are large. There was a problem that the combustion time could not be secured due to the blow-up of things.

【0007】また、ライザー下部の空塔速度が大きい
と、砂の吹き上げられる量が多くなる為、ライザー下部
における砂濃度が小さくなり、高水分汚泥の乾燥に必要
な熱量確保が困難となりライザー下部の温度低下などを
きたすという問題点があった。更に、全体の燃焼空気量
を一定(空気比一定)とした場合、一次空気量が比較的
多い(通常、全体の50%以上)ため、二次空気量が少
なくなり(二次空気吹込み流速が小さくなり)、ライザ
ー部(フリーボート部)での未燃ガスと空気の混合・撹
拌力が小さくなるという傾向があった。そのため、サイ
クロン出口(炉出口)におけるCOやDXN類等の未燃
ガスやNOxやNOなどの窒素酸化物が増大するとい
う問題があった。
[0007] When the superficial velocity at the lower part of the riser is high, the amount of sand blown up is increased, so that the sand concentration at the lower part of the riser is reduced, and it becomes difficult to secure the heat quantity required for drying high-moisture sludge. There is a problem that the temperature is lowered. Furthermore, when the whole combustion air amount is constant (constant air ratio), since the primary air amount is relatively large (usually 50% or more of the whole), the secondary air amount is reduced (secondary air blowing flow rate). And the mixing / stirring power of the unburned gas and air in the riser section (free boat section) tends to be small. Therefore, there is a problem that unburned gas such as CO and DXN and nitrogen oxides such as NOx and N 2 O increase at a cyclone outlet (furnace outlet).

【0008】[0008]

【発明が解決しようとする課題】従って本発明はかかる
従来技術の課題に鑑み、循環流動層炉において、高含水
率でかつ高揮発分の下水汚泥を高効率で、低公害燃焼を
可能とせしめる循環流動層炉の運転方法の提供を目的と
する。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above-mentioned problems in the prior art, and enables sewage sludge having a high water content and a high volatile content to be efficiently combusted in a circulating fluidized bed furnace with low pollution. An object of the present invention is to provide a method for operating a circulating fluidized bed furnace.

【0009】[0009]

【課題を解決するための手段】本発明はかかる課題を解
決するために、ライザ下方から供給する一次空気により
流動層を形成させる一次空気供給手段と、該流動層上方
のライザ炉壁に設けられ、二次空気の吹き込みによりフ
リーボードに気流層を形成させる二次空気供給手段とを
具えた循環流動層炉において、流動層の下方から供給す
る一次空気により気泡流動層(濃厚層部)を形成させ、
該気泡流動層(濃厚層部)領域の流動砂層面の気泡の破
裂に伴なって流動媒体の粒子が吹き上げられるスプラッ
シュ領域に二次空気を導入し、該二次空気により前記吹
上げ粒子をフリーボードを介して炉外に同伴輸送し、同
伴輸送した粒子を外部循環部を介して前記気泡流動領域
へ還流させる外部循環流動層炉を下水汚泥等の高含水率
・高揮発性の廃棄物焼却炉に外部循環流動層炉を用いた
点を第1の要旨とする。
In order to solve the above-mentioned problems, the present invention provides a primary air supply means for forming a fluidized bed by primary air supplied from below a riser, and a primary air supply means provided on a riser furnace wall above the fluidized bed. In a circulating fluidized bed furnace equipped with secondary air supply means for forming an airflow layer on a freeboard by blowing secondary air, a bubble fluidized bed (rich layer portion) is formed by primary air supplied from below the fluidized bed. Let
Secondary air is introduced into the splash area where the particles of the fluid medium are blown up by the rupture of the bubbles on the surface of the fluidized sand layer in the bubble fluidized bed (dense layer portion) area, and the blow-up particles are freed by the secondary air. An external circulating fluidized bed furnace that entrains and transports the entrained particles out of the furnace through the board and recirculates the entrained particles to the bubble flow area through an external circulating section is incinerated with a high moisture content and highly volatile waste such as sewage sludge. The first point is that an external circulating fluidized bed furnace is used for the furnace.

【0010】そして請求項1記載の発明において、全供
給空気量を前述の一次空気と二次空気とに分配するにあ
たり、一次空気量を全供給空気量の10〜40%(体積
比)とするとともに、前記一次空気量が、焼却対象物の
完全燃焼物の完全燃焼に必要な理論空気量の0.15〜
0.5倍に設定し、気泡流動層領域を還元雰囲気に維持
して熱分解を行わしめることを特徴とする。
According to the first aspect of the present invention, in distributing the total supply air amount to the primary air and the secondary air, the primary air amount is set to 10 to 40% (volume ratio) of the total supply air amount. At the same time, the primary air amount is 0.15 to stoichiometric air amount required for complete combustion of the complete combustion of the incineration target.
It is characterized in that it is set to 0.5 times and thermal decomposition is performed while maintaining the bubble fluidized bed region in a reducing atmosphere.

【0011】即ち本発明は、ライザ下方から供給する一
次空気量を全空気量の10〜40%と低減させて安定な
濃厚層部を形成せしめ、粗大な乾燥汚泥やチャー粒子の
フリーボード側への飛散を抑制するとともに、一次空気
量が焼却対象物の完全燃焼に必要な理論空気量の0.1
5〜0.5倍とすることにより当該濃厚層部である一次
燃焼域での下水汚泥の乾燥と還元燃焼によるガス化を積
極的に生起せしめ、フリーボード部での二次燃焼域を多
段ガス燃焼の場とすることにより燃焼の安定化、効率化
を図り、低公害燃焼を達成し得るものである。
That is, according to the present invention, the amount of primary air supplied from below the riser is reduced to 10 to 40% of the total air amount to form a stable dense layer portion, and coarse dry sludge and char particles are discharged to the free board side. And the primary air amount is 0.1% of the theoretical air amount necessary for complete combustion of the incineration object.
By making the ratio 5 to 0.5 times, gasification by the drying and reduction combustion of the sewage sludge in the primary combustion region, which is the rich layer, is positively generated, and the secondary combustion region in the freeboard portion is multi-stage gas. By setting it as a combustion field, it is possible to stabilize and improve the efficiency of combustion and achieve low-pollution combustion.

【0012】従って本発明によれば、一次空気の供給量
を全供給空気量の10〜40%とすることにより、気泡
流動層部(濃厚層部)を安定的に形成せしめ、粗大な乾
燥汚泥や熱分解チャー粒子の二次燃焼部(フリーボード
部)への飛散を抑制して燃焼し、かつ、高温砂が循環す
るため、気泡流動層部(濃厚層部)での熱量の確保が出
来、汚泥中水分の高負荷乾燥が達成され、一次燃焼域で
のチャーの燃焼微細化が可能となり、炉出口での燃焼ガ
ス濃度の大幅低減化、すなわち、完全燃焼を達成するこ
とが可能である。更に本発明は、一次空気量が焼却対象
物の完全燃焼に必要な理論空気量の0.15〜0.5倍
とすることにより当該濃厚層部である一次燃焼域での下
水汚泥の乾燥と還元燃焼によるガス化を積極的に生起せ
しめ、一次燃焼部でのガス化燃焼が促進される。下水汚
泥のガス化は、高温による揮発性可燃物の熱分解ガス化
と、以下に示す下水汚泥から発生した水蒸気とチャーに
よる水生ガス化反応が同時に生じることになる。水生ガ
ス化反応:C+HO→CO+H その結果、ライザ下
方の一次燃焼域(濃厚層部)から二次燃焼域であるフリ
ーボード部へは、主に、可燃ガスが移行し、ライザ下方
からの飛び出すチャー量が著しく減少した。
Therefore, according to the present invention, the supply amount of primary air
To 10 to 40% of the total supply air volume,
The fluidized bed (dense layer) is formed stably,
Secondary sludge of dry sludge and pyrolysis char particles (free board
Part) and burn while suppressing high-speed sand circulation.
As a result, the amount of heat in the bubble fluidized bed (dense bed) can be secured.
High load drying of water in sludge has been achieved,
The combustion of the char of the furnace can be miniaturized, and the combustion gas
To significantly reduce the gas concentration, that is, to achieve complete combustion.
It is possible. In addition, the present invention is intended for
0.15 to 0.5 times the theoretical air volume required for complete combustion of objects
The lower part in the primary combustion zone
Proactively generate gasification by water sludge drying and reduction combustion
In other words, gasification combustion in the primary combustion section is promoted. Sewage pollution
Mud gasification is the pyrolysis gasification of volatile combustibles due to high temperatures.
And the steam and char generated from the sewage sludge shown below
Aquatic gasification reaction occurs simultaneously. Aquatic moth
Reaction: C + H2O → CO + H2 As a result, under the riser
From the primary combustion zone (rich layer) to the secondary combustion zone
-Combustible gas is mainly transferred to the
The amount of char that jumps out of the ship has been significantly reduced.

【0013】請求項2記載の発明は、前記一次空気の供
給量と二次空気量との和である全空気量が、補助燃料を
含めた全焼却物に対する理論燃焼空気量の1.15〜
1.45倍に設定するとともに、該全供給空気量を前述
の一次空気と二次空気とに分配するにあたり、一次空気
量を全供給空気量の10〜40%(体積比)としたこと
を特徴とする。
According to a second aspect of the present invention, the total amount of air, which is the sum of the amount of supply of the primary air and the amount of secondary air, is 1.15 to 1.15 of the theoretical amount of combustion air with respect to all incinerated materials including auxiliary fuel.
When the total supply air amount is set to 1.45 times and the total supply air amount is distributed to the primary air and the secondary air, the primary air amount is set to 10 to 40% (volume ratio) of the total supply air amount. Features.

【0014】即ち本発明は、ライザ下方から供給する一
次空気量を全空気量の10〜40%と低減させて安定な
濃厚層部を形成せしめ、粗大な乾燥汚泥やチャー粒子の
フリーボード側への飛散を抑制するとともに、前記一次
空気の供給量と二次空気量との和である全空気量が、補
助燃料を含めた全焼却物に対する理論燃焼空気量の1.
15〜1.45倍に設定することにより即ち、一次燃焼
域での還元燃焼による前記メリットと二次燃焼域での空
気量の増大を図って多段ガス燃焼とにより、完全燃焼と
高負荷燃焼が達成され、サイクロン出口(炉出口)にお
けるCOやDXN類等の未燃ガスやNoxやNOなど
の窒素酸化物が大幅に抑制される。
That is, according to the present invention, the amount of primary air supplied from below the riser is reduced to 10 to 40% of the total amount of air to form a stable dense layer portion, and coarse dry sludge and char particles are discharged to the freeboard side. And the total air amount, which is the sum of the supply amount of the primary air and the secondary air amount, is 1.1 of the theoretical combustion air amount for all incinerated materials including the auxiliary fuel.
By setting the ratio to 15 to 1.45 times, that is, the above-mentioned advantage by the reduction combustion in the primary combustion region and the multi-stage gas combustion by increasing the amount of air in the secondary combustion region, complete combustion and high load combustion can be achieved. This is achieved, and unburned gases such as CO and DXNs and nitrogen oxides such as Nox and N 2 O at the cyclone outlet (furnace outlet) are greatly suppressed.

【0015】請求項3記載の発明は、 前記二次空気の
気泡流動層領域への吹込み位置が流動層空気分散板から
1.2m以上のスプラッシュ領域に近い高さに設定する
とともに、平均粒径0.5m以下の流動媒体を用い、一
次空気及び二次空気混合後のフリーボード部(ライザー
部)での排ガスの空塔速度が3〜10m/sであること
を特徴とする。
According to a third aspect of the present invention, the position of the secondary air to be injected into the bubble fluidized bed region is set at a height close to a splash region of 1.2 m or more from the fluidized bed air dispersion plate, and the average particle size is adjusted. The method is characterized in that a superficial velocity of exhaust gas in a freeboard section (riser section) after mixing primary air and secondary air is 3 to 10 m / s using a fluid medium having a diameter of 0.5 m or less.

【0016】即ち、本発明は、二次空気の気泡流動層領
域(濃厚層部)への吹き込みの高さが空気分散板又は空
気分散ノズルから1.2m以上のスプラッシュ領域に近
い高さであり、かつ、平均粒径0.2m以下の流動媒体
を用いることにより、一次空気の空塔速度を低減して
も、砂循環の安定化を図り、下水汚泥等の高含水率でか
つ高揮発分の焼却物を高効率で低公害燃焼を達成し得る
ものである。
That is, according to the present invention, the height of the blowing of the secondary air into the bubble fluidized bed region (dense layer portion) is close to the splash region of 1.2 m or more from the air dispersion plate or the air dispersion nozzle. In addition, by using a fluid medium having an average particle size of 0.2 m or less, even if the superficial velocity of the primary air is reduced, the sand circulation is stabilized, and a high water content and a high volatile content such as sewage sludge are obtained. It is possible to achieve low-pollution combustion with high efficiency of the incinerated material.

【0017】かかる発明によれば、二次空気吹き込み高
さを空気分散板またはノズルから1.2m以上とし、平
均粒径0.2mm以下の流動媒体を使用することによ
り、砂濃度の高い濃厚層領域が十分に確保されるため、
高温砂による乾燥・ガス化が促進される。また、従来の
ように二次空気吹き込み高さが低い場合には、飛散する
チャーも、二次空気吹き込み高さを高くすることでその
飛散量を大幅低減することが可能となる。
According to the invention, the secondary air blowing height is set to 1.2 m or more from the air dispersion plate or the nozzle, and by using a fluid medium having an average particle diameter of 0.2 mm or less, the dense layer having high sand concentration can be obtained. Because there is enough space,
Drying and gasification by high-temperature sand is promoted. Further, when the secondary air blowing height is low as in the conventional case, the amount of scattered char can be significantly reduced by increasing the secondary air blowing height.

【0018】以下、本発明を図に示した実施例を用いて
詳細に説明する。但し、この実施例に記載される構成部
品の寸法、材質、形状、その相対配置などは特に特定的
な記載がない限り、この発明の範囲をそれのみに限定す
る趣旨ではなく単なる説明例に過ぎない。図1は本発明
の実施形態にかかる下水汚泥等の高含水率・高揮発性の
廃棄物焼却炉に用いられる外部循環流動層炉の全体概略
構成図を示す。
Hereinafter, the present invention will be described in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention but to merely illustrative examples. Absent. FIG. 1 is an overall schematic configuration diagram of an external circulating fluidized bed furnace used in a waste incinerator having a high water content and a high volatility such as sewage sludge according to an embodiment of the present invention.

【0019】図1において、外部循環流動層炉は、下水
汚泥の燃焼反応が行われるライザ1と流動媒体を捕集す
るサイクロン11と、ダウンカマー12と炉内未燃ガス
のサイクロンへの吹き抜けを防止するシールポット13
とからなる。前記ライザ1の炉床部には、ライザ風箱2
から導入される一次空気17により該ライザ下部4に充
填されている流動媒体が流動化されて気泡流動媒層(濃
厚層)18を、更に該気泡流動層領域(濃厚層部)の流
動砂層面の気泡の破裂に伴なって流動媒体の粒子が吹き
上げられるスプラッシュ領域29を形成している。
In FIG. 1, the external circulating fluidized bed furnace includes a riser 1 in which a combustion reaction of sewage sludge is performed, a cyclone 11 for collecting a fluid medium, a downcomer 12 and a blow-through of unburned gas in the furnace to the cyclone. Seal pot 13 to prevent
Consists of In the hearth of the riser 1, a riser-like box 2
The fluid medium filled in the lower part 4 of the riser is fluidized by the primary air 17 introduced from the air, and the bubble fluid medium layer (rich layer) 18 is further formed on the fluidized sand layer surface of the bubble fluid bed region (rich layer portion). A splash area 29 is formed in which particles of the fluid medium are blown up with the bursting of the bubbles.

【0020】前記ライザ1に汚泥投入口5から投入され
る下水汚泥19は、前記流動層18にて混合、撹拌され
ながら流動媒体との衝突を繰り返して微粒化されるとと
もに、乾燥、熱分化される。そして、前記流動層18か
ら飛散する含水率や未燃ガス、軽い汚泥粒子は二次空気
供給口6から導入される二次空気20により前記流動媒
体と共にフリーボード部8に同伴輸送され、該フリーボ
ード部8にて燃焼する。該フリーボード部8を通過する
流動媒体は、ここで過熱され高温化し、サイクロン11
にて捕集され、ダウンカマ−12を経てシールポット1
3に移送され、該シールポット下方風箱14から供給さ
れる空気により移動層を形成し、前記ライザ2の流動層
7に還流される。
The sewage sludge 19 introduced into the riser 1 from the sludge introduction port 5 is repeatedly mixed and agitated in the fluidized bed 18 while repeatedly colliding with the fluidized medium to be atomized, dried and thermally differentiated. You. Then, the water content, unburned gas, and light sludge particles scattered from the fluidized bed 18 are transported together with the fluidized medium to the free board section 8 by the secondary air 20 introduced from the secondary air supply port 6, and the free It burns in the board section 8. The fluid medium passing through the free board section 8 is heated here to a high temperature, and the cyclone 11
, Collected via downcomer-12 and sealed pot 1
3 and is formed into a moving bed by the air supplied from the seal pot lower wind box 14, and is returned to the fluidized bed 7 of the riser 2.

【0021】以下が従来技術と同様の循環流動層炉であ
るが、本実施形態では、図3及び図4に示すように、投
入下水汚泥の性状、量若しくは炉内燃焼状態により、前
記一次空気17及び二次空気20の分配比を調整し、一
次空気量が全空気量の10〜40%(体積比)とするこ
とにより、安定な流動層18(濃厚層部)を形成せし
め、その結果、ライザ下部の一次燃焼域(濃厚層部)か
ら二次燃焼域であるフリーボード部8へは、主に、可燃
ガスが移行し、ライザ下部からの飛び出す粗大な乾燥汚
泥やチャー粒子量が著しく減少した。即ち、図3に示す
ように、一次空気比(一次空気量/理論空気量)が0.
2、0.3いずれの場合でも炉下部に十分なる濃厚層が
形成されているが、空気比0.6では濃厚層がほとんど
形成されず、ライザ全域に亘って50〜70kg/m
の懸濁密度が形成されることとなり、チャー粒子のフリ
ーボード部8への飛散を抑制出来ない。一次空気比0.
2は(一次空気量/全空気量)で表すと15%、0.3
で23%、0.6で46%、であるから余裕を見て(一
次空気量/全空気量)は10〜40%に設定するのがよ
いことが理解できる。図2はCO濃度と炉高さとの関係
を示す。本図では一次空気比(一次空気量/理論空気量)
が0.3でCO濃度が十分低下しているが、一次空気比
が0.1(一次空気量/全空気量:8%)0.6(一次
空気量/全空気量:46%)0.7(一次空気量/全空
気量:55%)ではいずれもCO濃度が十分低下しな
い。かかる点もからも(一次空気量/全空気量)は10
〜40%に設定するのがよいことが理解できる。これに
より、気泡流動層部(濃厚層部)を安定的に形成せし
め、粗大な乾燥汚泥や熱分解チャー粒子の二次燃焼部
(フリーボード部)への飛散を抑制して燃焼し、かつ、
高温砂が循環するため、気泡流動層部(濃厚層部)での
熱量の確保が出来、汚泥中水分の高負荷乾燥が達成さ
れ、一次燃焼域でのチャーの燃焼微細化が可能となり、
フリーボード部8へ移行したガス化ガスは、ここへ供給
される二次空気の増大(60〜90%)により混合・撹
拌力の向上が図れ、よりHCN、DXN等の生成量を大
幅に低減する事ができ、即ち、完全燃焼を達成すること
が可能である。
The following is a circulating fluidized-bed furnace similar to that of the prior art. In this embodiment, as shown in FIGS. 3 and 4, the primary air is changed depending on the properties and amount of the sewage sludge introduced or the combustion state in the furnace. By adjusting the distribution ratio of the primary air 17 and the secondary air 20 to make the primary air amount 10 to 40% (volume ratio) of the total air amount, a stable fluidized bed 18 (rich layer portion) is formed. As a result, The combustible gas mainly migrates from the primary combustion zone (rich portion) at the lower part of the riser to the freeboard part 8 as the secondary combustion zone, and the amount of coarse dry sludge and char particles that jump out from the lower part of the riser is remarkable. Diminished. That is, as shown in FIG. 3, the primary air ratio (primary air amount / theoretical air amount) is equal to 0.
In both cases of 2 and 0.3, a sufficiently thick layer was formed in the lower part of the furnace, but when the air ratio was 0.6, almost no thick layer was formed, and the air layer had a thickness of 50 to 70 kg / m 3 over the entire riser.
Therefore, the scattering of the char particles into the free board portion 8 cannot be suppressed. Primary air ratio
2 is 15% when expressed as (primary air amount / total air amount), 0.3
It is understood that it is better to set the (primary air amount / total air amount) to 10 to 40% in view of the allowance. FIG. 2 shows the relationship between the CO concentration and the furnace height. In this figure, primary air ratio (primary air amount / theoretical air amount)
Is 0.3 and the CO concentration is sufficiently reduced, but the primary air ratio is 0.1 (primary air amount / total air amount: 8%) 0.6 (primary air amount / total air amount: 46%) 0 At 0.7 (primary air amount / total air amount: 55%), the CO concentration did not decrease sufficiently. From this point (primary air amount / total air amount) is 10
It can be understood that it is better to set to に 40%. As a result, a bubble fluidized bed portion (thick layer portion) is formed stably, and coarse dry sludge and pyrolysis char particles are prevented from scattering to the secondary combustion portion (free board portion) and burned.
Because high-temperature sand circulates, the amount of heat in the bubble fluidized bed (dense layer) can be secured, high-load drying of moisture in sludge can be achieved, and the combustion of char in the primary combustion zone can be miniaturized.
The gasified gas transferred to the free board unit 8 can improve the mixing / stirring power by increasing the secondary air supplied to the free board unit (60 to 90%), and greatly reduce the generation of HCN, DXN, etc. That is, it is possible to achieve complete combustion.

【0022】また、本実施形態によれば、一次空気量が
焼却対象物の完全燃焼に必要な理論空気量の0.15〜
0.5倍とすることにより当該濃厚層部である一次燃焼
域での下水汚泥の乾燥と還元燃焼によるガス化を積極的
に生起せしめ、一方、高温による揮発性可燃物の熱分解
ガス化とともに、以下に示す下水汚泥から発生した水蒸
気とチャーによる水生ガス化反応を同時に生起させ、ガ
ス燃焼と比べて遅いチャー燃焼(固体燃焼)の加速化を
図ることが可能となる。 水生ガス化反応:C(チャー)+HO(水蒸気)→C
O+H その結果、フリーボード部の二次燃焼域を多量の二次空
気にて積極的に混合・撹拌し、ガス燃焼の促進を図るこ
とにより、燃焼の安定化、高効率化、低公害燃焼を達成
し得る。
According to the present embodiment, the primary air amount is
0.15 of the theoretical air volume required for complete combustion of the incineration object
By making it 0.5 times, the primary combustion in the rich layer
Of sewage sludge drying and gasification by reduction combustion in the area
Thermal decomposition of volatile combustibles due to high temperatures
Along with gasification, the following steam generated from sewage sludge
The aquatic gasification reaction is simultaneously generated by
To accelerate char combustion (solid combustion), which is slower than
It becomes possible to plan. Aquatic gasification reaction: C (char) + H2O (steam) → C
O + H2  As a result, a large amount of secondary air is
Mix and stir actively with air to promote gas combustion.
Achieves stable combustion, high efficiency, and low-pollution combustion
I can do it.

【0023】次に、本実施形態によれば、二次空気の吹
き込み高さを空気分散板またはノズルから1.2m以上
のスプラッシュ領域に近い濃厚層部位置とし、且つ平均
粒径0.5mm以下の流動媒体を使用することにより、
一次空気の空塔速度を低減しても、砂循環の安定化を図
ることが可能となり砂濃度の高い濃厚層領域が十分に確
保されるため、高温砂による汚泥などの焼却対象物の乾
燥・ガス化が促進され、つまり、下水汚泥等の含水率で
かつ高揮発分の焼却物でさえも高効率で低公害燃焼を達
成し得る。実証試験で、二次吹き込み位置を1.2mと
1.2m以上のスプラッシュ領域に近い濃厚層部位置に
設けたが、後者の場合炉下部の圧力勾配が大きく、砂濃
度が濃厚層で高く、CO濃度も20ppmと1.2mの
場合の60ppmに比較して大幅に向上している事が理
解できる。また、二次空気吹き込み高さが1.2m以上
と高くすることでその飛散量を大幅低減することが可能
となる。
Next, according to this embodiment, the height of the secondary air to be blown is set at the position of the dense layer close to the splash area of 1.2 m or more from the air distribution plate or nozzle, and the average particle diameter is 0.5 mm or less. By using the fluid medium of
Even if the superficial velocity of the primary air is reduced, it is possible to stabilize the sand circulation and sufficiently secure a dense layer with high sand concentration. Gasification is promoted, that is, even low-pollution incineration with high water content and high volatility such as sewage sludge can be achieved with high efficiency. In the demonstration test, the secondary injection position was set at 1.2 m and the dense layer position near the splash area of 1.2 m or more, but in the latter case, the pressure gradient at the bottom of the furnace was large, and the sand concentration was high in the dense layer, It can be understood that the CO concentration is also significantly improved as compared with 60 ppm in the case of 20 ppm and 1.2 m. In addition, by making the secondary air blowing height as high as 1.2 m or more, the scattering amount can be significantly reduced.

【0024】又本実施形態では、未燃ガスの完全燃焼を
達成し、炉出口排ガス量の低減化を図るためには、一次
空気と二次空気とを合わせた全供給空気量が、補助燃料
を含めた全焼却物に対する理論燃焼空気量の1.15〜
1.45倍、好ましくは1.25〜1.35倍とした。
即ち図5より明らかなように、理論燃焼空気量の1.1
5倍では炉出口CO濃度が40ppm、1.3倍では炉
出口CO濃度が20ppmと大幅に低下するとともに、
一方Nox濃度は理論燃焼空気量の1.45倍以上では
大幅に増加することが理解される。
In this embodiment, in order to achieve complete combustion of the unburned gas and to reduce the amount of exhaust gas from the furnace, the total supply air amount including the primary air and the secondary air must be reduced by the auxiliary fuel. 1.15-Theoretical combustion air amount for all incinerated materials including
1.45 times, preferably 1.25 to 1.35 times.
That is, as is apparent from FIG.
At 5 times, the furnace outlet CO concentration is 40 ppm, and at 1.3 times, the furnace outlet CO concentration is greatly reduced to 20 ppm.
On the other hand, it is understood that the Nox concentration increases significantly at 1.45 times or more of the theoretical combustion air amount.

【0025】また、炉の運転、特に、砂循環を安定化さ
せるためには、一次空気および二次空気混合後のフリー
ボード部8での排ガスの空塔速度が3〜10m/s、好
ましくは、4〜7m/sになるように制御する。これに
より、排ガス量の低減化による排ガス処理設備のコンパ
クト化、高効率燃焼による炉のコンパクト化、砂循環の
安定化及び運転操作性の安定化・簡素化が達成させる。
Further, in order to stabilize the operation of the furnace, particularly the sand circulation, the superficial velocity of the exhaust gas in the freeboard section 8 after mixing the primary air and the secondary air is 3 to 10 m / s, preferably Is controlled to be 4 to 7 m / s. As a result, the exhaust gas treatment facility can be made compact by reducing the amount of exhaust gas, the furnace can be made compact by high-efficiency combustion, the sand circulation can be stabilized, and the operation operability can be stabilized and simplified.

【0026】[0026]

【発明の効果】以下記載のごとく本発明によれば、一次
空気量を全空気量の10〜40%と低減することによ
り、一次空気の吹き上げ流速を低減させ、乾燥中の汚泥
や熱分解チャーの粗大粒子のフリーボード部(二次燃焼
部)への吹上げを抑制することにより未燃焼ガス等の完
全燃焼が促進されるため、一酸化炭素、HCN、NH
及びダイオキシン類等の大幅な低減が可能となる。ま
た、一次空気量を焼却対象物の完全燃焼に必要な理論空
気量の0.15〜0.5倍とすることにより、一次燃焼
場での乾燥・熱分解ガス化反応が促進されるとともに、
水性ガス化反応をも併発せしめ、二次空気による二次燃
焼部の混合・撹拌を促進させ、ガス燃焼の高効率化、安
定化が達成され低公害燃焼が達成される。更に、二次空
気の気泡流動層領域(濃厚層部)への吹き込み高さを空
気分散板または空気分散ノズルからスプラッシュ領域に
近い1.2m以上とし、特に平均粒径0.5mm以下の
流動媒体を使用することにより、上述の一次空気量の低
減化への対応に裕度ができ、かつ、砂循環の安定化流速
範囲の拡大を図ることが可能となり汚泥などの焼却対象
物の乾燥・ガス化が促進され、つまり、下水汚泥等の高
含水率でかつ高揮発分の焼却物でさえも高効率で低公害
燃焼を達成し得る。かかる発明の運転操作において、全
供給空気量が、理論燃焼空気量の1.15〜1.45
倍、好ましくは、1.3倍とし、また、フリーボード部
での排ガスの空塔速度が3〜10m/s、好ましくは、
4〜7m/sになるように制御するとにより、排ガス量
の低減化による排ガス処理設備のコンパクト化、高効率
燃焼による炉のコンパクト化、砂循環の安定化及び運転
操作性の安定化・簡素化が達成される。このように、流
動層炉の制御が簡単であるとともに、高含水率の下水汚
泥の燃焼においても燃焼速度を損なうことなく、高効率
・低公害燃焼が可能となり、ひいては焼却炉のコンパク
ト化、及び排ガス量の低減化に寄与する。
As described below, according to the present invention, the primary air flow rate is reduced to 10 to 40% of the total air flow rate, so that the primary air blow-up flow rate is reduced and sludge and pyrolysis charcoal during drying are reduced. By suppressing the blowing of coarse particles into the freeboard section (secondary combustion section), complete combustion of unburned gas and the like is promoted, so that carbon monoxide, HCN, NH 3
And significant reduction of dioxins and the like. Further, by making the primary air amount 0.15 to 0.5 times the theoretical air amount necessary for complete combustion of the incineration object, the drying and pyrolysis gasification reaction in the primary combustion field is promoted,
The water gasification reaction is also caused to occur, and the mixing and agitation of the secondary combustion section by the secondary air are promoted, so that the gas combustion is made more efficient and stable, and low-pollution combustion is achieved. Further, the height of the secondary air blown into the bubble fluidized bed region (dense layer portion) is at least 1.2 m close to the splash region from the air dispersion plate or the air dispersion nozzle, and particularly a fluid medium having an average particle size of 0.5 mm or less. By using, it is possible to have a margin for the above-mentioned reduction of the primary air amount, and it is possible to expand the range of flow velocity for stabilizing the sand circulation. Therefore, even incineration products having a high water content and a high volatile content such as sewage sludge can achieve low-pollution combustion with high efficiency. In the operation of the invention, the total supply air amount is 1.15 to 1.45 of the theoretical combustion air amount.
Times, preferably 1.3 times, and the superficial velocity of the exhaust gas in the freeboard section is 3 to 10 m / s, preferably,
By controlling so as to be 4 to 7 m / s, exhaust gas treatment equipment can be made compact by reducing the amount of exhaust gas, furnaces can be made compact by high-efficiency combustion, sand circulation can be stabilized, and operation operability can be stabilized and simplified. Is achieved. As described above, the control of the fluidized bed furnace is simple, and even in the combustion of sewage sludge having a high water content, high efficiency and low pollution combustion can be achieved without impairing the combustion speed, and thus the incinerator can be made more compact, and Contributes to reduction of exhaust gas volume.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態にかかる外部循環流動体層
炉の全体概略構成を示す模式図である。
FIG. 1 is a schematic diagram showing an overall schematic configuration of an external circulating fluidized bed furnace according to an embodiment of the present invention.

【図2】 前記部循環流動体層炉を用いた一次空気比に
おける炉内軸方向のCO温度分布である。
FIG. 2 is a CO temperature distribution in a furnace axial direction at a primary air ratio using the partial circulation fluidized bed furnace.

【図3】 前記部循環流動体層炉を用いた一次空気比に
おける炉内軸方向の懸濁密度分布である。
FIG. 3 is a distribution of suspended density in a furnace axial direction at a primary air ratio using the partial circulation fluidized bed furnace.

【図4】 前記部循環流動体層炉を用いた二次空気吹き
込み高さと炉内軸方向圧力分布を示す分布図である。
FIG. 4 is a distribution diagram showing a secondary air blowing height and an axial pressure distribution in the furnace using the partially circulating fluidized bed furnace.

【図5】 前記部循環流動体層炉を用いた空気比と炉出
口CO及びNox濃度を示す分布図である。
FIG. 5 is a distribution diagram showing the air ratio and the CO and NOx concentrations at the furnace outlet when the partial circulation fluidized bed furnace is used.

【符号の簡単な説明】[Brief description of the code]

1 ライザ 3 ライザ分散板 5 汚泥投入口 6 二次空気投入口 8 フリーボード部 9 ライザ頂部 17 一次空気 18 濃厚層部 20 二次空気 29 スプラッシュ領域 Reference Signs List 1 riser 3 riser dispersion plate 5 sludge inlet 6 secondary air inlet 8 free board section 9 riser top 17 primary air 18 rich layer section 20 secondary air 29 splash area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/50 ZAB F27B 15/02 F27B 15/02 15/10 15/10 F23C 11/02 311 (72)発明者 山内 恒樹 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 (72)発明者 逸見 眞知 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 (72)発明者 笹谷 史郎 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 Fターム(参考) 3K062 AA11 AB01 AC01 AC02 BB03 DB06 DB09 DB30 3K064 AA01 AA04 AB03 AC03 AC06 AD08 AE01 AE04 AE11 BA07 BA17 BB09 4K046 HA12 JC04 JC06 JC08 JD06 JE04 LA04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F23G 5/50 ZAB F27B 15/02 F27B 15/02 15/10 15/10 F23C 11/02 311 (72) Inventor Tsuneki Yamauchi 1-8-1 Koura, Kanazawa-ku, Yokohama-shi Yokohama Research Institute, Mitsubishi Heavy Industries Co., Ltd. Shiro No.12 Nishikicho, Naka-ku, Yokohama-shi F-term in Mitsubishi Heavy Industries, Ltd.Yokohama Works 3K062 AA11 AB01 AC01 AC02 BB03 DB06 DB09 DB30 3K064 AA01 AA04 AB03 AC03 AC06 AD08 AE01 AE04 AE11 BA07 BA17 BB09 4K046 HA12 JC04 J06 LA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下水汚泥等の高含水率・高揮発性の廃棄
物焼却炉に外部循環流動層炉を用い、前記流動層炉の下
方から供給する一次空気により気泡流動層(濃厚層部)
を形成させ、該気泡流動層領域(濃厚層部)の流動砂層
面の気泡の破裂に伴なって流動媒体の粒子が吹き上げら
れるスプラッシュ領域に二次空気を導入し、該二次空気
により前記吹き上げ粒子をフリーボードを介して炉外に
同伴輸送し、同伴輸送した粒子を外部循環部を介して前
記気泡流動領域へ還流させる循環流動層焼却炉におい
て、 全供給空気量を前述の一次空気と二次空気とに分配する
にあたり、一次空気量を全供給空気量の10〜40%
(体積比)とするとともに、前記一次空気量が、焼却対
象物の完全燃焼物の完全燃焼に必要な理論空気量の0.
15〜0.5倍に設定し、気泡流動層領域を還元雰囲気
に維持して熱分解を行わしめることを特徴とする下水汚
泥等の高含水率・高揮発性の廃棄物焼却炉に用いる外部
循環流動層炉の運転方法。
1. An external circulating fluidized bed furnace for a waste incinerator having a high water content and high volatility such as sewage sludge, and a bubble fluidized bed (dense layer portion) with primary air supplied from below the fluidized bed furnace.
Is formed, and secondary air is introduced into a splash area where particles of a fluid medium are blown up along with bursting of bubbles on the surface of the fluidized sand layer in the bubble fluidized bed area (dense layer portion), and the secondary air blows up the air. In a circulating fluidized bed incinerator in which particles are entrained and transported to the outside of the furnace via a free board and the entrained particles are returned to the bubble flow region via an external circulation section, the total amount of supplied air is reduced by two times with the primary air. When distributing to the primary air, the primary air amount is 10 to 40% of the total supply air amount.
(Volume ratio), and the amount of primary air is 0.1% of the theoretical amount of air required for complete combustion of the completely burned material to be incinerated.
15 to 0.5 times, thermal decomposition is carried out while maintaining the bubble fluidized bed area in a reducing atmosphere, and is used for waste incinerators with high water content and high volatility such as sewage sludge. Operating method of circulating fluidized bed furnace.
【請求項2】 下水汚泥等の高含水率・高揮発性の廃棄
物焼却炉に外部循環流動層炉を用い、前記流動層炉の下
方から供給する一次空気により気泡流動層(濃厚層部)
を形成させ、該気泡流動層領域(濃厚層部)の流動砂層
面の気泡の破裂に伴なって流動媒体の粒子が吹き上げら
れるスプラッシュ領域に二次空気を導入し、該二次空気
により前記吹き上げ粒子をフリーボードを介して炉外に
同伴輸送し、同伴輸送した粒子を外部循環部を介して前
記気泡流動領域へ還流させる循環流動層焼却炉におい
て、 前記一次空気の供給量と二次空気量との和である全空気
量が、補助燃料を含めた全焼却物に対する理論燃焼空気
量の1.15〜1.45倍に設定するとともに、該全供
給空気量を前述の一次空気と二次空気とに分配するにあ
たり、一次空気量を全供給空気量の10〜40%(体積
比)としたことを特徴とする下水汚泥等の高含水率・高
揮発性の廃棄物焼却炉に用いる外部循環流動層炉の運転
方法。
2. An external circulating fluidized bed furnace for a waste incinerator having a high water content and a high volatility such as sewage sludge, and a bubble fluidized bed (dense layer portion) with primary air supplied from below the fluidized bed furnace.
Is formed, and secondary air is introduced into a splash area where particles of a fluid medium are blown up along with bursting of bubbles on the surface of the fluidized sand layer in the bubble fluidized bed area (dense layer portion), and the secondary air blows up the air. In a circulating fluidized bed incinerator in which particles are entrained and transported outside the furnace via a free board and the entrained particles are recirculated to the bubble flow region via an external circulation section, the supply amount of the primary air and the secondary air amount Is set to 1.15 to 1.45 times the theoretical combustion air amount for all incinerated materials including auxiliary fuel, and the total supply air amount is set to the above-described primary air and secondary air amount. When used for incinerators with high water content and high volatility such as sewage sludge, the primary air amount is 10 to 40% (volume ratio) of the total supply air amount when distributing to air. Operating method of circulating fluidized bed furnace.
【請求項3】 下水汚泥等の高含水率・高揮発性の廃棄
物焼却炉に外部循環流動層炉を用い、前記流動層炉の下
方から供給する一次空気により気泡流動層(濃厚層部)
を形成させ、該気泡流動層領域(濃厚層部)の流動砂層
面の気泡の破裂に伴なって流動媒体の粒子が吹き上げら
れるスプラッシュ領域に二次空気を導入し、該二次空気
により前記吹き上げ粒子をフリーボードを介して炉外に
同伴輸送し、同伴輸送した粒子を外部循環部を介して前
記気泡流動領域へ還流させる循環流動層焼却炉において
前記二次空気の気泡流動層領域への吹込み位置が流動層
空気分散板から1.2m以上のスプラッシュ領域に近い
高さに設定するとともに、平均粒径0.5m以下の流動
媒体を用い、一次空気及び二次空気混合後のフリーボー
ド部(ライザー部)での排ガスの空塔速度が3〜10m
/sであることを特徴とする下水汚泥等の高含水率・高
揮発性の廃棄物焼却炉に用いる外部循環流動層炉の運転
方法。
3. An external circulating fluidized bed furnace for a waste incinerator having a high water content and a high volatility such as sewage sludge, and a bubble fluidized bed (dense layer portion) with primary air supplied from below the fluidized bed furnace.
Is formed, and secondary air is introduced into a splash area where particles of a fluid medium are blown up along with bursting of bubbles on the surface of the fluidized sand layer in the bubble fluidized bed area (dense layer portion), and the secondary air blows up the air. The secondary air is blown into the bubble fluidized bed region in a circulating fluidized bed incinerator in which particles are transported out of the furnace via a free board and the entrained particles are returned to the bubble flowed region through an external circulation section. The freeboard section after mixing the primary air and the secondary air, using a fluid medium having an average particle size of 0.5 m or less, while setting the position of the fluidized bed close to the splash area of 1.2 m or more from the fluidized-bed air dispersion plate. The superficial velocity of the exhaust gas at the riser is 3 to 10 m
/ S, the method for operating an external circulating fluidized bed furnace used for a waste incinerator having a high water content and a high volatility such as sewage sludge.
JP2000339382A 2000-11-07 2000-11-07 Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge Expired - Fee Related JP3790418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339382A JP3790418B2 (en) 2000-11-07 2000-11-07 Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339382A JP3790418B2 (en) 2000-11-07 2000-11-07 Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge

Publications (2)

Publication Number Publication Date
JP2002147725A true JP2002147725A (en) 2002-05-22
JP3790418B2 JP3790418B2 (en) 2006-06-28

Family

ID=18814460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339382A Expired - Fee Related JP3790418B2 (en) 2000-11-07 2000-11-07 Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge

Country Status (1)

Country Link
JP (1) JP3790418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060885A1 (en) * 2007-11-07 2009-05-14 Metawater Co., Ltd. Fluidized-bed incinerator and method of fluidized-bed incineration of sludge with the same
JP2009229042A (en) * 2008-03-25 2009-10-08 Ihi Corp Circulating fluidized bed gasifier and air flow rate control method and device therefor
JP2014037956A (en) * 2012-07-20 2014-02-27 Ebara Environmental Plant Co Ltd Waste processing method and waste incinerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060885A1 (en) * 2007-11-07 2009-05-14 Metawater Co., Ltd. Fluidized-bed incinerator and method of fluidized-bed incineration of sludge with the same
CN101849140B (en) * 2007-11-07 2012-09-26 美得华水务株式会社 Fluidized-bed incinerator and method of fluidized-bed incineration of sludge with the same
RU2476772C2 (en) * 2007-11-07 2013-02-27 Метауотер Ко., Лтд. Waste incineration furnace with fluidised bed and method to burn bottom sediment in such furnace (versions)
US8881662B2 (en) 2007-11-07 2014-11-11 Metawater Co., Ltd. Fluidized bed incinerator and fluidized bed incinerating method for sludge using the same
JP2009229042A (en) * 2008-03-25 2009-10-08 Ihi Corp Circulating fluidized bed gasifier and air flow rate control method and device therefor
JP2014037956A (en) * 2012-07-20 2014-02-27 Ebara Environmental Plant Co Ltd Waste processing method and waste incinerator

Also Published As

Publication number Publication date
JP3790418B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP2657896B2 (en) Fluid bed reactor and combustion method
US5105747A (en) Process and apparatus for reducing pollutant emissions in flue gases
US5937772A (en) Reburn process
US5553554A (en) Waste disposal and energy recovery system and method
PL196981B1 (en) Method and device for incinerating organic waste material
JP2002147725A (en) Operation method for external circulating fluidized bed incinerator used for incinerator of wastes with high moisture content and volatile substance content such as sewage sludge
JP2005299938A (en) Circulated fluidized furnace
JP3831567B2 (en) Circulating fluidized bed furnace
JP2003166706A (en) Combustion method and combustion device of stoker type incinerator
JP2941785B1 (en) Operating method of fluidized bed incinerator and its incinerator
JP2003227604A (en) Incinerator and combustion exhaust gas re-circulating method for incinerator
JP3030016B2 (en) Operating method of fluidized bed incinerator and its incinerator
JP2001241629A (en) Low-pollution combustion equipment for waste
JP2941789B1 (en) Fluidized bed incinerator
JP3825263B2 (en) Gasification and melting equipment
JP2707186B2 (en) Combustion equipment
JP3030017B2 (en) Fluidized bed incinerator
JP2005121342A (en) Operation method of circulating fluidized bed furnace
JP2002195534A (en) Method and system for controlling combustion of refuse incinerator
JP3030025B1 (en) Operating method of fluidized bed incinerator and its incinerator
JP3014953B2 (en) Incinerator
JP2937737B2 (en) Fluidized bed combustion method and apparatus with partial combustion
JP2643720B2 (en) Method and apparatus for reducing emitted pollutants in flue gas
JP3100365B2 (en) Fluidized bed incinerator
JP3790502B2 (en) Circulating fluidized bed furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R151 Written notification of patent or utility model registration

Ref document number: 3790418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees