JP2002147468A - Insulation bearing - Google Patents

Insulation bearing

Info

Publication number
JP2002147468A
JP2002147468A JP2000343204A JP2000343204A JP2002147468A JP 2002147468 A JP2002147468 A JP 2002147468A JP 2000343204 A JP2000343204 A JP 2000343204A JP 2000343204 A JP2000343204 A JP 2000343204A JP 2002147468 A JP2002147468 A JP 2002147468A
Authority
JP
Japan
Prior art keywords
thermal conductivity
bearing
insulating
insulation
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000343204A
Other languages
Japanese (ja)
Inventor
Yamato Arai
大和 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2000343204A priority Critical patent/JP2002147468A/en
Publication of JP2002147468A publication Critical patent/JP2002147468A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/70Polyesters, e.g. polyethylene-terephthlate [PET], polybutylene-terephthlate [PBT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation bearing solving a problem that a heat radiation property of a bearing becomes bad, temperature of the bearing is raised and a life of the bearing is shortened by early deterioration of grease in an insulation bearing in which an outer periphery of an outer ring is, for example, covered with an insulation coating film made of a synthetic resin in order to prevent an electrolytic corrosion. SOLUTION: A polyester resin is used for an insulation coating film 9 covering an outer periphery 2 of an outer ring 2. The polyester resin can contain an insulation material of 85 wt.% or more having a high heat conductivity and the insulation coating film 9 can exhibit high heat conductivity and insulation property. Ceramics, mica, aluminum hydroxide, etc., are used as an insulation material having a high heat conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば鉄道車両用
電動機等に使用される絶縁軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated bearing used for, for example, an electric motor for a railway vehicle.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
鉄道車両用電動機等に使用される軸受では、ハウジング
や軸からの漏れ電流が軸受の転動体と軌道輪との間に流
れて電食が生じるという問題があった。そこで、外部か
らの電流を遮断するために、外輪の外周面とハウジング
との嵌合面や、内輪と軸との嵌合面に合成樹脂からなる
絶縁被膜を設けることが試みられている。
2. Description of the Related Art
In bearings used for electric motors for railway vehicles, there is a problem that leakage current from a housing or a shaft flows between a rolling element of the bearing and a bearing ring to cause electrolytic corrosion. Therefore, in order to cut off current from the outside, it has been attempted to provide an insulating coating made of synthetic resin on a fitting surface between the outer peripheral surface of the outer ring and the housing and a fitting surface between the inner ring and the shaft.

【0003】しかしながら、一般的な合成樹脂の熱伝導
率は0.3〜0.4W/m・K程度であり、例えば鉄の
熱伝導率40W/m・Kと比較して格段に劣る。ところ
で、近年の鉄道車両の高速化に伴い軸回転時の軸受の発
熱量が増大する傾向にある。上記のような熱伝導性の悪
い合成樹脂を絶縁被膜に用いた場合、軸受内で発生した
熱が外部へ逃げ難くなるので、軸受の温度が上昇する結
果、グリースの早期劣化をきたし軸受寿命が低下する。
However, the thermal conductivity of a general synthetic resin is about 0.3 to 0.4 W / m · K, which is much lower than, for example, the thermal conductivity of iron of 40 W / m · K. By the way, with the recent increase in speed of railway vehicles, the amount of heat generated by bearings during shaft rotation tends to increase. If a synthetic resin with poor thermal conductivity as described above is used for the insulating coating, the heat generated in the bearings will not easily escape to the outside. descend.

【0004】本発明は上記課題に鑑みてなされたもので
あり、高い熱伝導率と絶縁性を達成できる絶縁被膜を有
する絶縁軸受を提供することを目的とする。
[0004] The present invention has been made in view of the above problems, and has as its object to provide an insulated bearing having an insulating film capable of achieving high thermal conductivity and insulating properties.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、内輪の内周面及び外輪の外周面の少なく
とも一方を絶縁被膜で被覆した絶縁軸受において、上記
絶縁被膜は、85重量%以上の高熱伝導率を有する絶縁
材料を含有する不飽和ポリエステル樹脂組成物からなる
ことを特徴とするものである。不飽和ポリエステル樹脂
は充填材の含有率をかなり高くし、自身の含有割合がか
なり低くなっても成形が可能である。その性質を利用
し、高熱伝導率を有する絶縁材料を85重量%以上充填
することが可能である。その結果、非常に高い熱伝導性
を確保することができる。これにより軸受の放熱性が高
まるので、軸受の温度上昇を防止でき、ひいてはグリー
スの早期劣化の防止を通じて軸受寿命を長くすることが
できる。
In order to achieve the above object, the present invention provides an insulated bearing having at least one of an inner peripheral surface of an inner ring and an outer peripheral surface of an outer ring covered with an insulating coating. It is characterized by comprising an unsaturated polyester resin composition containing an insulating material having a high thermal conductivity of not less than weight%. The unsaturated polyester resin can be molded even when the content of the filler is considerably high and the content of the unsaturated polyester resin is considerably low. By utilizing this property, it is possible to fill an insulating material having a high thermal conductivity of 85% by weight or more. As a result, extremely high thermal conductivity can be ensured. As a result, the heat radiation of the bearing is enhanced, so that the temperature rise of the bearing can be prevented, and the bearing life can be prolonged by preventing the early deterioration of the grease.

【0006】絶縁被膜として、例えば3W/m・K以上
の高い熱伝導性と、例えば比抵抗1×1013Ω・cm以上
の高い絶縁性を発揮するものが好ましい。上記高熱伝導
率を有する絶縁材料としては、例えばセラミック、マイ
カ、水酸化アルミニウムが好ましい。これらの材料を8
5重量%以上含有することにより、絶縁被膜として3〜
5W/m・Kの高い熱伝導率を発揮させることができる
点で好ましい。
As the insulating film, a film exhibiting high thermal conductivity of, for example, 3 W / m · K or more and high insulating property of, for example, specific resistance of 1 × 10 13 Ω · cm or more is preferable. As the insulating material having high thermal conductivity, for example, ceramic, mica, and aluminum hydroxide are preferable. 8 of these materials
By containing 5% by weight or more, 3 to
This is preferable in that a high thermal conductivity of 5 W / m · K can be exhibited.

【0007】特に、上記高熱伝導率を有する絶縁材料は
粒径の異なる複数の絶縁材料を含むことが好ましい。例
えば粒径1μmのアルミナと粒径5μmのアルミナを組
合せて用いると、粒径1μmのアルナミのみを用いる場
合や、粒径5μmのアルミナのみを用いる場合と比較し
て、相等しい重量%で配合するという条件でも、全体と
しての熱伝導率を高くできる。その理由は、粒径の異な
るアルミナを分散させた場合、粒径の大きいアルミナ間
に粒径の小さなアルミナが入り込むので、等径のアルミ
ナのみを分散させた場合と比較して、近接するアルミナ
の表面間の距離をより小さくできるからである。
In particular, the insulating material having a high thermal conductivity preferably includes a plurality of insulating materials having different particle sizes. For example, when a combination of alumina having a particle size of 1 μm and alumina having a particle size of 5 μm is used, the same weight% is blended as compared with a case where only Alnami having a particle size of 1 μm is used or a case where only alumina having a particle size of 5 μm is used. With such a condition, the thermal conductivity as a whole can be increased. The reason is that when alumina having different particle diameters is dispersed, alumina having a small particle diameter enters between aluminas having a large particle diameter. This is because the distance between the surfaces can be reduced.

【0008】なお、実際には粒径にばらつきがあるの
で、上記で粒径としたのは実質的には平均粒径に相当す
ることになる。すなわち、平均粒径x1 μmの粒子群に
は、粒径x(μm)が、 x1 −a≦x≦x1 +a で示される範囲にある複数の粒子が含まれる。ただしa
は数μm程度である。したがって、ここで言う異なる粒
径x1 ,x2 を持つ粒子とは、 x1 −a≦x≦x1 +a の範囲の粒径xを持つ第1の粒子群と、第1の粒子群の
粒径範囲に含まれない、 x2 −a≦x≦x2 +a の範囲の粒径xを持つ第2の粒子群とを意味する。例え
ば、0〜2μm程度の粒径を持つ粒子群よりなる平均粒
径1μmの粒子と、4〜6μm程度の粒径を持つ粒子群
よりなる平均粒径5μmの粒子との場合のように、各粒
子群の平均粒径を中心とするばらつきの範囲が互いに重
ならないわけである。
Incidentally, since the particle size actually varies, the above-mentioned particle size substantially corresponds to the average particle size. That is, the particle group having an average particle diameter x 1 μm includes a plurality of particles whose particle diameter x (μm) is in the range represented by x 1 −a ≦ x ≦ x 1 + a. Where a
Is about several μm. Therefore, the particles having different particle diameters x 1 and x 2 referred to herein include a first particle group having a particle diameter x in a range of x 1 −a ≦ x ≦ x 1 + a and a first particle group having a particle diameter x. A second particle group having a particle size x in a range of x 2 −a ≦ x ≦ x 2 + a, which is not included in the particle size range. For example, as in the case of particles having an average particle diameter of 1 μm consisting of a group of particles having a particle size of about 0 to 2 μm and particles having an average particle diameter of 5 μm consisting of a group of particles having a particle size of about 4 to 6 μm, That is, the ranges of variation centered on the average particle size of the particle group do not overlap each other.

【0009】また、複数の絶縁材料は同種のものであっ
ても良いし、相異なる種類のものであっても良い。ま
た、上記不飽和ポリエステル樹脂に10重量%以下のガ
ラス繊維が充填されることが好ましい。これは、補強と
いう観点からはガラス繊維をできるだけ多く含むことが
好ましいが、ベースレジンとしての不飽和ポリエステル
樹脂の量があまり少なくなると、成形性が悪くなるから
である。
Further, the plurality of insulating materials may be of the same type or different types. Preferably, the unsaturated polyester resin is filled with 10% by weight or less of glass fiber. This is because, from the viewpoint of reinforcement, it is preferable to contain as much glass fiber as possible, but if the amount of the unsaturated polyester resin as the base resin is too small, the moldability is deteriorated.

【0010】[0010]

【発明の実施の形態】本発明の好ましい実施の形態につ
いて添付図面を参照しつつ説明する。図1は本発明の一
実施の形態の絶縁軸受の断面図である。図1を参照し
て、絶縁軸受は、内輪1と、外輪2と、内外輪1,2間
に転動可能に介在する複数の転動体3と、これらの転動
体3を保持する保持器4とを備えている。外輪2の外周
面2aには2条の円周溝5,6が形成されるとともに、
外輪2の両端面2bには、段付き部7,8が形成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view of an insulated bearing according to one embodiment of the present invention. Referring to FIG. 1, the insulating bearing includes an inner ring 1, an outer ring 2, a plurality of rolling elements 3 rotatably interposed between inner and outer rings 1, 2, and a retainer 4 for holding these rolling elements 3. And Two circumferential grooves 5, 6 are formed on the outer peripheral surface 2a of the outer race 2,
Stepped portions 7 and 8 are formed on both end surfaces 2 b of the outer race 2.

【0011】外輪2の外周面2a及び両端面2bにわた
って、絶縁被膜9により被覆されている。絶縁被膜9
は、外輪2の外周面2aを覆う筒状の主体部9aと、主
体部9aの両端部から径方向内方へ延設される環状の端
面部9bとを有する。絶縁被膜9の主体部9aの内周に
は一対の環状突起10,11が形成されている。各環状
突起10,11が対応する円周溝5,6に嵌め合わされ
ることにより、絶縁被膜9の軸方向のずれが防止されて
いる。
The outer ring 2 is covered with an insulating coating 9 over the outer peripheral surface 2a and both end surfaces 2b. Insulation coating 9
Has a cylindrical main body 9a that covers the outer peripheral surface 2a of the outer race 2, and an annular end surface 9b that extends radially inward from both ends of the main body 9a. A pair of annular projections 10 and 11 are formed on the inner periphery of the main body 9 a of the insulating coating 9. The annular projections 10 and 11 are fitted into the corresponding circumferential grooves 5 and 6 to prevent the insulating coating 9 from shifting in the axial direction.

【0012】また、絶縁被膜9の各端面部9bの内周に
は、絶縁被膜9の軸方向内向きに延びる環状の縁部12
が形成されている。各縁部12が対応する段付き部7,
8に嵌められることにより、絶縁被膜9の端部からの剥
がれが防止される。上記絶縁被膜9は85重量%以上の
高熱伝導率を有する絶縁材料を含有する不飽和ポリエス
テル樹脂組成物からなる。不飽和ポリエステル樹脂は充
填材の含有率をかなり高くし、自身の含有割合がかなり
低くなっても成形が可能である。その性質を利用し、高
熱伝導率を有する絶縁材料を85重量%以上充填するこ
とが可能である。図2に示すように、高熱伝導率を有す
る絶縁材料では、充填量を増加していくと、85重量%
の近傍を臨界点として、急激に熱伝導率が高くなる。し
たがって、85重量%以上充填することにより、絶縁被
膜9として、非常に高い熱伝導性を確保することができ
る。これにより軸受の放熱性が高まるので、軸受の温度
上昇を防止でき、ひいてはグリースの早期劣化の防止を
通じて軸受寿命を長くすることができる。
An annular edge 12 extending inward in the axial direction of the insulating coating 9 is provided on the inner periphery of each end face 9 b of the insulating coating 9.
Are formed. Each edge 12 corresponds to the stepped portion 7,
By being fitted to the insulating film 8, the insulating film 9 is prevented from peeling from the end. The insulating coating 9 is made of an unsaturated polyester resin composition containing an insulating material having a high thermal conductivity of 85% by weight or more. The unsaturated polyester resin can be molded even when the content of the filler is considerably high and the content of the unsaturated polyester resin is considerably low. By utilizing this property, it is possible to fill an insulating material having a high thermal conductivity of 85% by weight or more. As shown in FIG. 2, in the case of an insulating material having a high thermal conductivity, 85 wt%
With the vicinity of the critical point as a critical point, the thermal conductivity rapidly increases. Therefore, by filling 85% by weight or more, very high thermal conductivity can be secured as the insulating coating 9. As a result, the heat radiation of the bearing is enhanced, so that the temperature rise of the bearing can be prevented, and the bearing life can be prolonged by preventing the early deterioration of the grease.

【0013】絶縁被膜9として、例えば3W/m・K以
上の高い熱伝導性と、例えば比抵抗1×1013Ω・cm以
上の高い絶縁性を発揮するものが好ましい。上記絶縁材
料としては、例えばセラミック、マイカ、水酸化アルミ
ニウムなどが好ましい。これらの材料では、絶縁被膜9
として、一般的な合成樹脂の持つ熱伝導率0.3〜0.
4W/m・Kに対して、約10倍という3〜5W/m・
Kの高い熱伝導率を発揮させることができる点で好まし
い。
It is preferable that the insulating film 9 exhibit high thermal conductivity of, for example, 3 W / m · K or more and high insulating property of, for example, specific resistance of 1 × 10 13 Ω · cm or more. As the insulating material, for example, ceramic, mica, aluminum hydroxide and the like are preferable. In these materials, the insulating coating 9
The thermal conductivity of a general synthetic resin is 0.3 to 0.1.
3 to 5 W / m · K, about 10 times that of 4 W / m · K
K is preferable in that it can exhibit a high thermal conductivity.

【0014】セラミックとしては、上記の高い熱伝導性
を満足するものであれば良く、例えば窒化アルミニウム
(AlN)、アルミナ(Al2 3 )、酸化マグネシウ
ム(MgO)、窒化ホウ素(BN)等がある。これらは
単独で使用しても混合して使用しても良い。このうち、
AlNは熱伝導性が顕著に高いことから特に好ましい。
水酸化アルミニウムは、体積固有抵抗が8.7×1013
Ω・cmで、熱伝導率が0.71W/m・Kであり、非
常に高い絶縁性と熱伝導性を有している。
The ceramic may be any one that satisfies the above-mentioned high thermal conductivity, and examples thereof include aluminum nitride (AlN), alumina (Al 2 O 3 ), magnesium oxide (MgO), and boron nitride (BN). is there. These may be used alone or in combination. this house,
AlN is particularly preferred because of its remarkably high thermal conductivity.
Aluminum hydroxide has a volume resistivity of 8.7 × 10 13
Ω · cm, the thermal conductivity is 0.71 W / m · K, and it has very high insulation and thermal conductivity.

【0015】上記の高熱伝導率を有する絶縁材料は粒径
の異なる少なくとも二種の絶縁材料を含むことが好まし
い。例えば粒径1μmのセラミック微粉末(例えばアル
ミナ)と粒径5μmのセラミック微粉末(例えばアルミ
ナ)を組合せて用いると、粒径1μmのセラミック微粉
末のみを用いる場合や、粒径5μmのセラミック微粉末
のみを用いる場合と比較して、相等しい重量%で配合す
るという条件でも、全体としての熱伝導率を高くでき
る。その理由は、粒径の異なるセラミック微粉末を分散
させた場合、粒径の大きいセラミック微粉末間に粒径の
小さなセラミック微粉末が入り込むので、等径のセラミ
ック微粉末のみを分散させた場合と比較して、近接する
セラミック微粉末の表面間の距離をより小さくできるか
らである。
It is preferable that the above-mentioned insulating material having high thermal conductivity contains at least two kinds of insulating materials having different particle sizes. For example, when a ceramic fine powder (for example, alumina) having a particle size of 1 μm and a ceramic fine powder (for example, alumina) having a particle size of 5 μm are used in combination, only the ceramic fine powder having a particle size of 1 μm is used, Compared with the case of using only the same, the thermal conductivity as a whole can be increased even under the condition that they are blended at the same weight%. The reason is that when ceramic fine powders having different particle diameters are dispersed, ceramic fine powders having a small particle diameter enter between ceramic fine powders having a large particle diameter, and only when ceramic fine powders having the same diameter are dispersed. This is because the distance between the surfaces of adjacent ceramic fine powders can be made smaller in comparison.

【0016】なお、実際には粒径にはばらつきがあるの
で、上記で粒径としたのは実質的には平均粒径に相当す
ることになる。したがって、粒径が異なるとは、平均粒
径が異なり、且つ各平均粒径を中心とする互いのばらつ
きの範囲が重ならないことを意味する。また、粒径の異
なる複数の絶縁材料は同種でも異種でも良い。また、上
記不飽和ポリエステル樹脂に10重量%以下のガラス繊
維が充填されることが好ましい。これは、補強という観
点からはガラス繊維をできるだけ多く含むことが好まし
いが、ベースレジンとしての不飽和ポリエステル樹脂の
量があまり少なくなると、成形性が悪くなるからであ
る。
Since the particle size actually varies, the above-mentioned particle size substantially corresponds to the average particle size. Therefore, that the particle diameters are different means that the average particle diameters are different and the ranges of the variation around each average particle diameter do not overlap. The plurality of insulating materials having different particle sizes may be the same or different. Preferably, the unsaturated polyester resin is filled with 10% by weight or less of glass fiber. This is because, from the viewpoint of reinforcement, it is preferable to contain as much glass fiber as possible, but if the amount of the unsaturated polyester resin as the base resin is too small, the moldability is deteriorated.

【0017】上記ベースレジンとしての不飽和ポリエス
テル樹脂の含有割合は15重量%未満であれば良いが、
成形性を考慮すると、10〜15重量%の範囲にあるこ
とがより好ましい。この場合、ガラス繊維を含有させる
とすると、0〜5重量%ということになる。以上のよう
に本実施の形態によれば、絶縁被膜9のベースレジンと
して、充填物を多量に包含することができる特質のある
不飽和ポリエステル樹脂を用いる。この不飽和ポリエス
テル樹脂に、高い熱伝導性を有する絶縁材料を85重量
%以上包含させることにより、絶縁被膜9として高い熱
伝導性と絶縁性を両立させることができる。絶縁性の発
揮により、電食の発生を防止すると共に、高い熱伝導性
により軸受の放熱性を良くして、軸受の長寿命化を図る
ことができる。
The content of the unsaturated polyester resin as the base resin may be less than 15% by weight.
In consideration of moldability, it is more preferably in the range of 10 to 15% by weight. In this case, if glass fibers are contained, the content is 0 to 5% by weight. As described above, according to the present embodiment, a characteristic unsaturated polyester resin capable of including a large amount of filler is used as the base resin of the insulating coating 9. By including 85% by weight or more of an insulating material having high thermal conductivity in the unsaturated polyester resin, the insulating coating 9 can have both high thermal conductivity and insulating properties. By exhibiting the insulating property, the occurrence of electrolytic corrosion can be prevented, and the heat dissipation of the bearing can be improved by the high thermal conductivity, so that the life of the bearing can be extended.

【0018】なお、本発明は上記実施の形態に限定され
るものではなく、例えば、上記の絶縁被膜は、外輪の外
周面又は内輪の内周面の少なくとも一方に設ければ良
い。その他、本発明の範囲で種々の変更を施すことがで
きる。
The present invention is not limited to the above embodiment. For example, the insulating coating may be provided on at least one of the outer peripheral surface of the outer race and the inner peripheral surface of the inner race. In addition, various changes can be made within the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の絶縁軸受の断面図であ
る。
FIG. 1 is a sectional view of an insulated bearing according to an embodiment of the present invention.

【図2】高熱伝導率を持つ絶縁材料の充填量と熱伝導率
との関係を示すグラフ図である。
FIG. 2 is a graph showing a relationship between a filling amount of an insulating material having high thermal conductivity and thermal conductivity.

【符号の説明】[Explanation of symbols]

1 内輪 2 外輪 3 転動体 4 保持器 5,6 円周溝 7,8 段付き部 9 絶縁被膜 DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Rolling element 4 Cage 5, 6 Circular groove 7, 8 Stepped part 9 Insulation coating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内輪の内周面及び外輪の外周面の少なくと
も一方を絶縁被膜で被覆した絶縁軸受において、上記絶
縁被膜は、85重量%以上の高熱伝導率を有する絶縁材
料を含有する不飽和ポリエステル樹脂組成物からなるこ
とを特徴とする絶縁軸受。
1. An insulating bearing in which at least one of an inner peripheral surface of an inner ring and an outer peripheral surface of an outer ring is coated with an insulating coating, the insulating coating contains an insulating material having a high thermal conductivity of 85% by weight or more. An insulated bearing comprising a polyester resin composition.
【請求項2】請求項1において、上記高熱伝導率を有す
る絶縁材料は、セラミック、マイカ、水酸化アルミニウ
ムから少なくとも一つ選択されることを特徴とする絶縁
軸受。
2. The insulated bearing according to claim 1, wherein said insulating material having high thermal conductivity is selected from at least one of ceramic, mica, and aluminum hydroxide.
【請求項3】請求項1又は2において、上記高熱伝導率
を有する絶縁材料は粒径の異なる複数の絶縁材料を含む
ことを特徴とする絶縁軸受。
3. The insulated bearing according to claim 1, wherein the insulating material having high thermal conductivity includes a plurality of insulating materials having different particle sizes.
【請求項4】請求項1,2又は3において、上記不飽和
ポリエステル樹脂に10重量%以下のガラス繊維が充填
されることを特徴とする絶縁軸受。
4. The insulated bearing according to claim 1, wherein the unsaturated polyester resin is filled with 10% by weight or less of glass fiber.
JP2000343204A 2000-11-10 2000-11-10 Insulation bearing Pending JP2002147468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343204A JP2002147468A (en) 2000-11-10 2000-11-10 Insulation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343204A JP2002147468A (en) 2000-11-10 2000-11-10 Insulation bearing

Publications (1)

Publication Number Publication Date
JP2002147468A true JP2002147468A (en) 2002-05-22

Family

ID=18817610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343204A Pending JP2002147468A (en) 2000-11-10 2000-11-10 Insulation bearing

Country Status (1)

Country Link
JP (1) JP2002147468A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084792A (en) * 2002-08-27 2004-03-18 Koyo Seiko Co Ltd Rolling bearing
JP2007147072A (en) * 2005-10-27 2007-06-14 Nsk Ltd Electrolytic corrosion preventive insulating rolling bearing and its manufacturing method
WO2009101852A1 (en) * 2008-02-14 2009-08-20 Thk Co., Ltd. Linear motor
US8425120B2 (en) 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
CN103475140A (en) * 2013-09-22 2013-12-25 首钢京唐钢铁联合有限责任公司 Self-short circuit insulation bearing
KR101448380B1 (en) * 2013-03-20 2014-10-07 주식회사 한일하이테크 Method for manufacturing bearing
US10823229B2 (en) 2017-03-24 2020-11-03 Aktiebolaget Skf Rolling-element bearing including an electrically insulating layer
US20240183399A1 (en) * 2022-12-02 2024-06-06 Schaeffler Technologies AG & Co. KG Insulated bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084792A (en) * 2002-08-27 2004-03-18 Koyo Seiko Co Ltd Rolling bearing
JP2007147072A (en) * 2005-10-27 2007-06-14 Nsk Ltd Electrolytic corrosion preventive insulating rolling bearing and its manufacturing method
US8425120B2 (en) 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
EP1950436B1 (en) * 2005-10-27 2017-10-11 NSK Ltd. Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
WO2009101852A1 (en) * 2008-02-14 2009-08-20 Thk Co., Ltd. Linear motor
CN101939897A (en) * 2008-02-14 2011-01-05 Thk株式会社 Linear motor
JP5444008B2 (en) * 2008-02-14 2014-03-19 Thk株式会社 Linear motor
KR101448380B1 (en) * 2013-03-20 2014-10-07 주식회사 한일하이테크 Method for manufacturing bearing
CN103475140A (en) * 2013-09-22 2013-12-25 首钢京唐钢铁联合有限责任公司 Self-short circuit insulation bearing
US10823229B2 (en) 2017-03-24 2020-11-03 Aktiebolaget Skf Rolling-element bearing including an electrically insulating layer
US20240183399A1 (en) * 2022-12-02 2024-06-06 Schaeffler Technologies AG & Co. KG Insulated bearing

Similar Documents

Publication Publication Date Title
US5375933A (en) Rolling contact bearing protected against electrolytic corrosion
US5961222A (en) Anti-electrolytic corrosion rolling bearing
JP2005133876A (en) Electrical corrosion prevention rolling bearing
JP2002147468A (en) Insulation bearing
JP2016520774A (en) Bearing ring, electrical insulating coating and method of applying electrical insulating coating
JPH1130239A (en) Electrolytic corrosion preventive rolling bearing
JP4855761B2 (en) Rolling bearing
JP3747684B2 (en) Electric motor and rolling bearing used therefor
JP2007016884A (en) Bearing mechanism, and x-ray tube
JP2005282862A (en) Electrolytic corrosion preventive rolling bearing
JPH10184699A (en) Rolling bearing
JP3579917B2 (en) Anti-corrosion rolling bearing
JP2002147466A (en) Insulation bearing
JP3821969B2 (en) Anti-corrosion rolling bearing
JP4548334B2 (en) Rolling bearing
JPH0743488Y2 (en) Anti-corrosion type rolling bearing
JP3778154B2 (en) Anti-corrosion rolling bearing
JP3821968B2 (en) Anti-corrosion rolling bearing
JPH08100818A (en) Electrocorrosion-preventing roller bearing
CN112117836A (en) Stator structure of motor and motor
JP2006226485A (en) Rolling bearing
JP3068311B2 (en) Anti-corrosion rolling bearing
JP4920066B2 (en) Electric corrosion prevention type rolling bearing
JP2004308735A (en) Electric corrosion-proof bearing
JP2003113842A (en) Insulated bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113