JP2002143120A - 均一磁場発生方法 - Google Patents

均一磁場発生方法

Info

Publication number
JP2002143120A
JP2002143120A JP2000339164A JP2000339164A JP2002143120A JP 2002143120 A JP2002143120 A JP 2002143120A JP 2000339164 A JP2000339164 A JP 2000339164A JP 2000339164 A JP2000339164 A JP 2000339164A JP 2002143120 A JP2002143120 A JP 2002143120A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting bulk
temperature superconducting
uniform
bulk materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000339164A
Other languages
English (en)
Inventor
Hiroshichi Noto
宏七 能登
Toshimi Chiba
利実 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000339164A priority Critical patent/JP2002143120A/ja
Publication of JP2002143120A publication Critical patent/JP2002143120A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】 【課題】 MRI装置に有用で、均一かつ安定した高磁
場を、低コストで簡便に発生させることが可能な均一磁
場発生方法を提供する。 【解決手段】 2つの高温超伝導バルク材を着磁させ、
ヘルムホルツコイルと同様に平行かつ同軸に配置させる
ことにより、2つの高温超伝導バルク材の中間に均一な
高磁場を発生させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この出願の発明は、均一高磁
場発生方法に関するものである。さらに詳しくは、この
出願の発明は、MRI装置に有用で、均一かつ安定した
高磁場を低コストで簡便に発生させることが可能な均一
磁場発生方法に関するものである。
【0002】
【従来の技術とその課題】磁気共鳴映像装置(MRI装
置)等では試料に静磁場を印加するため、均一でかつ安
定した磁場の発生が不可欠である。従来より、MRI装
置等で磁場を発生させるには、低温超伝導(LTS)線
材によりシム付コイルを作製して永久電流モードで運転
する方法や、Nd−Fe−B系の永久磁石を用いてその
特性設計を行なう方法等が知られている。
【0003】しかしながら、LTSコイルによる方法で
は、コイルの冷却に液体ヘリウムを多量に必要とするた
め手間とコストがかかり、また装置自体が大型化してし
まうといった欠点があった。永久磁石による方法では、
運転操作およびメンテナンス等が複雑な上に、LTSコ
イルによる方法と比較して発生可能な磁場が低いといっ
た欠点があった。
【0004】そこで、この出願の発明は、以上の通りの
事情に鑑みてなされたものであり、従来技術の問題点を
解消し、MRI装置に有用で、均一かつ安定した高磁場
を低コストで簡便に発生させることが可能な均一磁場発
生方法を提供することを課題としている。
【0005】
【課題を解決するための手段】そこで、この出願の発明
は、上記の課題を解決するものとして、以下の通りの発
明を提供する。
【0006】すなわち、まず第1には、この出願の発明
は、2つの高温超伝導バルク材を着磁させ、ヘルムホル
ツコイルと同様に平行かつ同軸に配置させることによ
り、2つの高温超伝導バルク材に挟まれた空間に均一な
高磁場を発生させることを特徴とする均一磁場発生方法
を提供する。
【0007】また、この出願の発明は、上記第1の発明
について、着磁後、高温超伝導バルク材の温度を数〜1
0K程度低下させることを特徴とする均一磁場発生方法
などもその態様として提供する。
【0008】
【発明の実施の形態】この出願の発明は、上記の通りの
特徴を持つものであるが、以下にその実施の形態につい
て説明する。
【0009】まず、この出願の発明が提供する均一磁場
発生方法は、2つの高温超伝導バルク材を着磁させ、ヘ
ルムホルツコイルと同様に平行かつ同軸に配置させるこ
とにより、2つの高温超伝導バルク材の中間に均一な高
磁場を発生させることを特徴としている。
【0010】超伝導バルク材の着磁方法としては、一般
に、その最大補足磁場以下の磁場中で臨界温度(Tc)
以下に磁場中冷却させる方法や、Tc以下に冷却後に最
大補足磁場以下の磁場を印加する方法が知られている。
着磁されたバルク材の内部には、その臨界電流密度(J
c)およびバルク材のサイズに依存した量の磁束が捕捉
されている。
【0011】超伝導バルク材に捕捉される磁束の分布
は、バルク材が均質な場合には図1に例示したようにな
り、バルク材の中央部の磁束密度が最大となる傾斜磁場
が形成される。すなわち、超伝導バルク材を着磁するこ
とで、バルク材の厚さに等しいソレノイドコイルと同等
の磁束密度分布が得られる。
【0012】そこで、この出願の発明では、上記のよう
に着磁させた2つの高温超伝導バルク材を、ヘルムホル
ツコイルと同配置にすることにより、その中心付近にほ
ぼ均一な磁場を発生させる。図2に、この出願の発明の
概念を示した。すなわち、たとえば、高温超伝導バルク
材が半径aの円盤状とすると、同じ大きさの2つの高温
超伝導バルク材を同条件で着磁させ、互いに半径と同じ
間隔aだけ離して同軸上に配置させる。すると、この2
つの円盤状の高温超伝導バルク材の真中に一様な磁場を
発生させることができる。
【0013】この出願の発明の方法で発生される磁束密
度は、超伝導バルク材の種類、大きさおよび着磁条件に
よって制御することができる。超伝導バルク材として
は、各種の組成のものを使用することができ、Tcの高
い高温超電導体以外の超電導体ももちろん利用すること
ができる。この発明においては、Tcの高い高温超電導
体を用いることで、その冷却に小型冷凍機等を使用する
ことができ、簡便である。高温超伝導バルク材の形状に
ついては、上記の説明では簡便のために円盤状とした
が、2つの高温超伝導バルク材の形状が同じであればそ
の形状は制限されず、所望のものとすることができる。
【0014】また、高温超伝導バルク材の着磁に際し
て、着磁後直ちに高温超伝導バルク材の温度を数〜10
K程度低下させることで、発生させた磁場を安定させる
ことが可能となる。
【0015】以下、添付した図面に沿って実施例を示
し、この発明の実施の形態についてさらに詳しく説明す
る。
【0016】
【実施例】(実施例1)直径50mmの円盤状のY−1
23系高温超伝導バルク材を2つ用意し、臨界温度以下
に冷却した後磁場を印加して着磁させ、さらに5K程度
冷却させた。着磁した2つの高温超伝導バルク材を平行
かつ同軸に25mm離して配置し、2つの高温超伝導バ
ルク材の中間面の磁束密度分布を測定した。なお、磁場
の印加は、磁場強度(a)0.2T、(b)0.4Tの
2通りで行なった。
【0017】磁束密度分布の測定結果を図3に示した。
図のX軸、Y軸は測定面内の位置を、Z軸は磁束密度を
示している。
【0018】図3より、2つの高温超伝導バルク材の中
間に、均一な高磁場が、安定して発生していることが確
認された。磁場強度0.2Tで着磁させた場合(a)
は、特に広範囲にわたって均一な磁場が発生されること
が分かった。 (実施例2)直径60mmの円盤状のAg添加Sm−1
23系高温超伝導バルク材を2つ用意し、実施例1と同
様に着磁および配置させ、2つの高温超伝導バルク材の
中間の磁束密度分布を測定した。磁場の印加は、磁場強
度0.2Tとした。
【0019】磁束密度分布の測定結果を図4に示した。
図のX軸、Y軸は測定面内の位置を、Z軸は磁束密度を
示している。
【0020】図4より、2つの高温超伝導バルク材の中
間に、広範囲にわたって均一な高磁場が発生しているこ
とが確認された。
【0021】もちろん、この発明は以上の例に限定され
るものではなく、細部については様々な態様が可能であ
ることは言うまでもない。
【0022】
【発明の効果】以上詳しく説明した通り、この発明によ
って、MRI装置に有用で、均一かつ安定した高磁場
を、低コストで簡便に発生させることが可能な均一磁場
発生方法が提供される。
【図面の簡単な説明】
【図1】超伝導バルク材に捕捉される磁束密度の分布を
例示した図である。
【図2】この出願の発明の方法の概念を示した図であ
る。
【図3】この出願の発明の方法により発生させた磁場の
磁束密度分布の測定結果を例示した図である。
【図4】この出願の発明の方法により発生させた磁場の
磁束密度分布の測定結果を例示した図である。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 2つの高温超伝導バルク材を着磁させ、
    ヘルムホルツコイルと同様に平行かつ同軸に配置させる
    ことにより、2つの高温超伝導バルク材の中間に均一な
    高磁場を発生させることを特徴とする均一磁場発生方
    法。
  2. 【請求項2】 着磁後、高温超伝導バルク材の温度を数
    K〜10K程度低下させることを特徴とする請求項1記
    載の均一磁場発生方法。
JP2000339164A 2000-11-07 2000-11-07 均一磁場発生方法 Pending JP2002143120A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339164A JP2002143120A (ja) 2000-11-07 2000-11-07 均一磁場発生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339164A JP2002143120A (ja) 2000-11-07 2000-11-07 均一磁場発生方法

Publications (1)

Publication Number Publication Date
JP2002143120A true JP2002143120A (ja) 2002-05-21

Family

ID=18814271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339164A Pending JP2002143120A (ja) 2000-11-07 2000-11-07 均一磁場発生方法

Country Status (1)

Country Link
JP (1) JP2002143120A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064049A (zh) * 2012-12-21 2013-04-24 北京航空航天大学 一种基于相位同步的三维标准磁场发生装置
JP2015167576A (ja) * 2014-03-04 2015-09-28 国立大学法人 新潟大学 磁場発生装置及び磁場発生方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064049A (zh) * 2012-12-21 2013-04-24 北京航空航天大学 一种基于相位同步的三维标准磁场发生装置
JP2015167576A (ja) * 2014-03-04 2015-09-28 国立大学法人 新潟大学 磁場発生装置及び磁場発生方法

Similar Documents

Publication Publication Date Title
Golovchanskiy et al. Magnetization dynamics in proximity-coupled superconductor-ferromagnet-superconductor multilayers
Balaev et al. Automated magnetometer with superconducting solenoid
US5986453A (en) AC magnetic susceptibility control of superconducting materials in nuclear magnetic resonance (NMR) probes
US6545474B2 (en) Controlling method of superconductor magnetic field application apparatus, and nuclear magnetic resonance apparatus and superconducting magnet apparatus using the method
Solovyov et al. Magnetic cloak for low frequency AC magnetic field
Fallarino et al. Suppression of coercivity in nanoscale graded magnetic materials
JP2002143120A (ja) 均一磁場発生方法
Das et al. A novel approach for x-ray scattering experiments in magnetic fields utilizing trapped flux in type-II superconductors
Portugall et al. Magnetic fields and measurements
Sabolek et al. Reduction of loss in composite magnetic material
JP3704549B2 (ja) 超伝導膜の超伝導臨界電流特性の評価方法及びその装置
Tai Measuring electromagnetic properties of superconductors in high and localized RF magnetic field
Tamin Tai et al. Nonlinear Near-Field Microwave Microscope for RF Defect Localization in Superconductors
Prokeš et al. Neutron scattering in magnetic fields: extending the possibilities
Sakon et al. Field-Induced Strain of Shape Memory Alloy Fe–31.2% Pd Using a Capacitance Method in a Pulsed Magnetic Field
Katyan et al. Characterization of thin films using local magneometer
JPH09201347A (ja) Mri装置及びmri装置製造方法
Vanderbemden Characterization of Superconductor Magnetic Properties in Crossed Magnetic Fields
JP2006332499A (ja) バルク超電導体のパルス着磁方法及び超電導磁石装置
Hsu Unconventional Fermi surface in insulating SmB6 and superconducting YBa2Cu3O6+ x probed by high magnetic fields
Marmion Comparison of spin Hall magnetoresistance temperature dependence in YIG/metal systems
Yokoyama et al. Numerical analysis of bulk superconducting magnet magnetized by pulsed-field considering a partial difference of superconducting characteristics
Douine et al. Characterization of High Temperature Superconductor Bulks for Electrical Machine Application. Materials 2021, 14, 1636
Yokoyama et al. Evaluation of current distribution in bulk superconductors magnetized by pulsed-fields
Vakaliuk Novel Lorentz Force Velocimetry system based on bulk high-temperature superconductors

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129