JP2002139555A - Scanning type circuit board inspection apparatus - Google Patents
Scanning type circuit board inspection apparatusInfo
- Publication number
- JP2002139555A JP2002139555A JP2000335637A JP2000335637A JP2002139555A JP 2002139555 A JP2002139555 A JP 2002139555A JP 2000335637 A JP2000335637 A JP 2000335637A JP 2000335637 A JP2000335637 A JP 2000335637A JP 2002139555 A JP2002139555 A JP 2002139555A
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- light
- scanning
- light beam
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 52
- 230000000737 periodic effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000002040 relaxant effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 239000004973 liquid crystal related substance Substances 0.000 description 15
- 238000003384 imaging method Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Tests Of Electronic Circuits (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Measuring Leads Or Probes (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,印刷回路基板の検査装
置に拘わり,特に配線密度の高い回路基板にも柔軟に対
応できる光ビーム走査或いは電子的な走査による回路基
板検査装置に拘わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus for a printed circuit board, and more particularly to an inspection apparatus for a circuit board by light beam scanning or electronic scanning which can flexibly cope with a circuit board having a high wiring density.
【0002】[0002]
【従来の技術】電子部品を搭載する印刷回路基板はエッ
チング,メッキ等薄膜形成技術を用いて製作される。高
機能化と共に搭載部品密度は高く,線間の間隙は年々小
になる環境で製作過程で線間短絡断線事故の可能性も増
大している。高密度化で実装後の修正困難な印刷回路基
板の事前検査の重要度はますます高くなるが,高密度化
の故に困難さも増している。従来は一般に印刷回路基板
上の配線パターンそれぞれに接触或いは非接触でアクセ
スして導通或いは非導通の検査を行っていたが,高密度
化に対応するためにアクセスする点を離散的に決めてし
まうのでは無く,光ビーム或いは電子的な走査手法を利
用して連続的にアクセスできるような技術提案も種々な
されている。例えば,電気光学結晶に光学的な変化を生
ぜしめて撮像素子により電子的な走査,或いは光ビーム
による二次元走査を実施する検査技術,さらには回路基
板に光導電層を有する電極装置を対向させて二次元的な
光ビーム走査を実施する検査技術等である。2. Description of the Related Art A printed circuit board on which electronic components are mounted is manufactured using a thin film forming technique such as etching and plating. With higher functionality, the density of mounted components is higher, and the gap between wires is becoming smaller year by year. Pre-inspection of printed circuit boards, which are difficult to correct after mounting due to high density, is becoming increasingly important, but the difficulty is also increasing due to the high density. In the past, in general, a continuity or non-conduction test was performed by accessing each wiring pattern on a printed circuit board in a contact or non-contact manner. However, access points are discretely determined in order to cope with high density. Rather, there have been various technical proposals that enable continuous access using a light beam or an electronic scanning method. For example, an inspection technique that causes an optical change in an electro-optic crystal to perform electronic scanning with an image sensor or two-dimensional scanning with a light beam, or an electrode device having a photoconductive layer facing a circuit board. This is an inspection technique for performing two-dimensional light beam scanning.
【0003】しかしながら,これらの検査技術に於い
て,回路基板上の電極位置は回路基板の設定位置に依存
するので回路基板の配置固定には精度を要する。さらに
光ビーム走査による場合は光ビームの走査精度が重要で
あり,光ビーム走査装置の設定及び振動対策を徹底しな
ければ走査精度は上がらない等の問題がある。However, in these inspection techniques, the position of the electrodes on the circuit board depends on the set position of the circuit board, so that the arrangement and fixation of the circuit board requires high accuracy. Further, in the case of light beam scanning, the scanning accuracy of the light beam is important, and there is a problem that the scanning accuracy cannot be improved unless the setting of the light beam scanning device and measures against vibration are thoroughly implemented.
【0004】[0004]
【発明が解決しようとする課題】そこで本発明の目的
は,走査型の回路基板検査装置に於いて,回路基板或い
は光ビーム装置等の設定精度を緩和し,或いは光ビーム
走査の精度を向上できるような走査型回路基板検査装置
を実現提供することである。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to reduce the setting accuracy of a circuit board or a light beam device or improve the accuracy of light beam scanning in a scanning type circuit board inspection device. It is an object of the present invention to provide and provide such a scanning circuit board inspection apparatus.
【0005】[0005]
【課題を解決するための手段】第一の本発明による走査
型回路基板検査装置は,回路基板の検査に先立って基準
位置等を認識する予備走査プロセスを有して回路基板の
配置或いは走査系の設定精度を緩和させる事を可能とす
る。According to a first aspect of the present invention, there is provided a scanning type circuit board inspection apparatus having a preliminary scanning process for recognizing a reference position and the like prior to the inspection of a circuit board. Setting accuracy can be reduced.
【0006】すなわち,電極層と電気光学層とを有して
電位分布を撮像素子による二次元的な電子走査により,
或いは光ビームにより二次元的に走査を行って検知する
場合には,回路基板上の単独或いは複数の電極に電位を
与えて予備走査を行い既知の電極位置を検知する。そし
て撮像素子による場合は画素の位置を,或いは光ビーム
走査による場合は光ビーム走査手段の制御信号等を第一
位置信号として検知した電極位置と第一位置信号との関
連を考慮して補正処理を行うことにより回路基板の位置
がそれほど厳密でなくても適合できるよう制御できる。
また,複数電極間の距離も同様に第一位置信号と関連づ
けて補正処理を行うことにより走査系による拡大或いは
縮小率等の設定精度も緩和できることになる。That is, the potential distribution having the electrode layer and the electro-optic layer is two-dimensionally electronically scanned by the image pickup device.
Alternatively, in the case of performing detection by performing two-dimensional scanning with a light beam, a potential is applied to one or a plurality of electrodes on the circuit board to perform pre-scanning to detect a known electrode position. Then, the correction process is performed in consideration of the relationship between the first position signal and the position of the pixel when the image sensor is used, or the electrode position where the control signal of the light beam scanning means is detected as the first position signal in the case of light beam scanning. By performing the above, it is possible to control the circuit board so that it can be adapted even if the position of the circuit board is not so exact.
Further, by similarly performing the correction processing in association with the distance between the plurality of electrodes with the first position signal, the setting accuracy of the enlargement or reduction ratio by the scanning system can be eased.
【0007】第二の本発明による走査型回路基板検査装
置は,回路基板の近傍に於ける光ビームスポットの二次
元的な位置を示す光ビームの第二位置信号を得る手段を
設け,第二位置信号により光ビームの微小位置を制御す
る閉ループ制御を実現する。このように構成することで
光ビーム走査系と回路基板とが振動衝撃によって相対位
置にずれを生じても光ビームを追随させる事ができ,光
ビームの走査精度への影響を軽減できる。A scanning circuit board inspection apparatus according to a second aspect of the present invention includes means for obtaining a second position signal of a light beam indicating a two-dimensional position of a light beam spot near a circuit board. A closed loop control for controlling a minute position of a light beam by a position signal is realized. With this configuration, the light beam can follow the light beam even if the relative position of the light beam scanning system and the circuit board is displaced due to vibration and impact, and the influence on the scanning accuracy of the light beam can be reduced.
【0008】具体的には,透明基板上に周期格子状の略
透明な受光素子群を形成し,縦横それぞれ隣接する受光
素子群の信号差分をもって光ビームの二次元的な位置を
表す第二位置信号とする。しかしながら,光ビームの位
置を示す第二位置信号は周期的に変動するので第一位置
信号と併用するか,或いは基準位置から変動する第二位
置信号の周期を計数しながら光ビームの位置を制御す
る。More specifically, a group of substantially transparent light receiving elements in a periodic lattice are formed on a transparent substrate, and a second position indicating a two-dimensional position of the light beam is obtained by a signal difference between the light receiving elements adjacent vertically and horizontally. Signal. However, since the second position signal indicating the position of the light beam fluctuates periodically, it is used together with the first position signal, or the position of the light beam is controlled while counting the period of the second position signal fluctuating from the reference position. I do.
【0009】前記受光素子群は独立させて光ビームと液
晶層或いは光導電層と光ビーム走査系との間に配置でき
るが,本発明の趣旨からは液晶層或いは光導電層を有す
る基板上に固定的に設ける事でより精度の高いシステム
を構成できる。The light receiving element group can be independently disposed between the light beam and the liquid crystal layer or between the photoconductive layer and the light beam scanning system. However, for the purpose of the present invention, the light receiving element group is provided on a substrate having the liquid crystal layer or the photoconductive layer. A more accurate system can be configured by fixedly providing them.
【作用】上記に説明した走査型回路基板検査装置によれ
ば,検査に先立つ予備走査により基準位置を常に確認し
て制御側で適合させるので回路基板の設定精度,光ビー
ム走査系の設定精度等を緩和しても良好な精度で検査可
能であり,さらに回路基板近傍での光ビーム位置を検出
して閉ループ制御を実施するので振動,衝撃により回路
基板と光ビーム走査系との間に位置ずれが生じる場合で
も光ビーム走査精度を確保できる。According to the scanning type circuit board inspection apparatus described above, the reference position is always confirmed by the preliminary scanning prior to the inspection and is adapted on the control side, so that the setting accuracy of the circuit board, the setting accuracy of the light beam scanning system, etc. Inspection can be performed with good accuracy even if the stress is reduced, and the position of the light beam near the circuit board is detected and closed loop control is performed. Therefore, displacement between the circuit board and the light beam scanning system due to vibration and impact , The light beam scanning accuracy can be ensured.
【0010】[0010]
【発明の実施の形態】以下に本発明の走査型回路基板検
査装置についてその構成例及び原理作用について図を用
いて詳細に説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a scanning circuit board inspection apparatus according to the present invention.
【0011】図1は,本発明の第一の実施例を示し,回
路基板に対向して配置された液晶層と撮像素子を使用し
た例である。同図に於いて,電極部は基板支持部12に
固定された回路基板11に対向配置され,透明基板13
上に透明電極14,液晶層15等を積層して構成する。
回路基板11上の電極にはピン或いはコネクタ等から電
気的に接続させ,透明電極層14との間に電位を加えて
液晶層15に光学的な変化を起こさせ,その光学的な変
化を光源16から照明光17で透明基板13,透明電極
14等を介して液晶層15を照射させて反射光1bを撮
像装置18内の集光レンズ1aで集めて撮像素子19上
に結像させ電気信号に変えて制御装置に取り込む。FIG. 1 shows a first embodiment of the present invention, which is an example in which a liquid crystal layer and an image pickup device arranged opposite to a circuit board are used. In FIG. 1, an electrode portion is disposed to face a circuit board 11 fixed to a substrate support portion 12, and a transparent substrate 13 is provided.
A transparent electrode 14, a liquid crystal layer 15, and the like are stacked on top of it.
Electrodes are electrically connected to the electrodes on the circuit board 11 from pins or connectors, and a potential is applied between the electrodes and the transparent electrode layer 14 to cause an optical change in the liquid crystal layer 15. The illumination light 17 illuminates the liquid crystal layer 15 with the illumination light 17 through the transparent substrate 13, the transparent electrode 14, and the like, and the reflected light 1 b is collected by the condenser lens 1 a in the imaging device 18 to form an image on the imaging device 19, and an electric signal is generated. Into the control device.
【0012】図2は,回路基板11上の回路パターンを
画像として取り込んだ場合の対応図を示す。同図に於い
て,回路基板11上の回路パターン21,22のみに裏
面からピンを介してコンタクトし,透明電極14との間
に電圧を加えて上記方法により画像を取り込むと,撮像
素子19内の各画素25の電圧変化として番号23,2
4で示すよう認識される。FIG. 2 shows a correspondence diagram when a circuit pattern on the circuit board 11 is captured as an image. In the figure, when only the circuit patterns 21 and 22 on the circuit board 11 are contacted from the back via pins, and a voltage is applied between the circuit board 11 and the transparent electrode 14 to capture an image by the above-described method, Nos. 23 and 2 as voltage changes of each pixel 25
4 is recognized.
【0013】このように回路基板上の電位分布を画像の
明暗として電気信号に変えて取り込むが,その際に常に
問題となるのが,回路基板上の位置と取り込まれた画像
内の位置との関係である。もちろん予め位置調整用の回
路基板等を使用してそれらの関係を明確にした上で検査
をするのであるが,その際に重要な点は回路基板11を
所定の精度で固定すること,及び回路基板11の固定手
段である基板支持部12と撮像装置18との相対位置を
精度良く保持することである。しかしながら順次回路基
板11を交換して検査する場合には回路基板11の設定
位置のばらつき或いは基板支持部12の経時劣化もあ
り,また基板検査装置には移動機構部分も少なからず存
在して振動が加えられる環境であるので基板支持部12
と撮像装置18との相対位置関係も変化を受けやすい条
件下にある。したがって必要とする分解能が低い場合に
は何ら問題は生じないが,高密度基板になると頻繁に位
置調整を要する事態となる。As described above, the potential distribution on the circuit board is converted into an electric signal as the brightness of an image and taken in. The problem always arises when the position on the circuit board and the position in the taken image are changed. Relationship. Of course, inspection is performed after clarifying the relationship between them using a circuit board or the like for position adjustment in advance, but in this case, it is important to fix the circuit board 11 with a predetermined accuracy and to perform circuit inspection. The purpose of the present invention is to accurately maintain the relative position between the substrate supporting unit 12 as a fixing means of the substrate 11 and the imaging device 18. However, when the circuit board 11 is sequentially replaced and inspected, there are variations in the set position of the circuit board 11 or deterioration over time of the substrate support unit 12, and the board inspection apparatus has a considerable amount of moving mechanism and vibration. Because the environment is added, the substrate support 12
The relative positional relationship between the camera and the imaging device 18 is also subject to change. Therefore, no problem arises when the required resolution is low, but a high-density substrate requires frequent position adjustment.
【0014】本発明ではこれらの問題に対処するために
図3に示す手順に従って画像内での基準位置を回路基板
に適合させる。すなわち,検査に先立って回路基板を設
定する毎に予備走査を行い,回路基板11内に予め定め
たパターン例えば21,22が選択されるよう透明電極
層14との間に電圧を印可し,画像を取り込んで画像内
で対応するパターン画像23,24をサーチし,その画
素番号を認識する。この画素番号が第一位置信号であ
り,回路基板11内でのパターン21,22の位置は予
め判明しているので回路基板11での基準位置に対応す
る画素番号を確認し,第一位置信号との差を記憶して予
備走査を終了する。In the present invention, in order to address these problems, the reference position in the image is adapted to the circuit board according to the procedure shown in FIG. That is, a preliminary scan is performed each time the circuit board is set prior to the inspection, and a voltage is applied between the circuit board 11 and the transparent electrode layer 14 so that a predetermined pattern, for example, 21 or 22, is selected. Is retrieved, the corresponding pattern images 23 and 24 are searched in the image, and their pixel numbers are recognized. This pixel number is the first position signal. Since the positions of the patterns 21 and 22 in the circuit board 11 are known in advance, the pixel number corresponding to the reference position on the circuit board 11 is checked, and the first position signal is determined. The prescan is completed by storing the difference between the two.
【0015】回路基板の検査に於いては,検査パターン
を選んで透明電極層14との間に電圧を加え,画像を取
り込み,画像パターンの画素位置を検出し,基準位置に
相当する画素位置から補正処理をしてパターン画像の位
置を知り,パターンの良否判定を行う。In the inspection of the circuit board, a test pattern is selected, a voltage is applied between the test pattern and the transparent electrode layer 14, an image is captured, a pixel position of the image pattern is detected, and a pixel position corresponding to a reference position is determined. The position of the pattern image is known by performing the correction process, and the quality of the pattern is determined.
【0016】このように回路基板を変更する毎に予備走
査を行うので回路基板は所定の範囲内で有ればずれても
対応可能であり,設定精度は緩和できる。また,予備走
査でチェックするパターンは複数として欠陥がある場合
の対応とし,回路基板内二点間の距離をも画素間の距離
と対応づけることにより撮像装置18での光学系の拡大
縮小率等補正処理を可能とする。Since the preliminary scanning is performed every time the circuit board is changed as described above, even if the circuit board is shifted within a predetermined range, it is possible to cope with it and the setting accuracy can be relaxed. In addition, a plurality of patterns to be checked in the pre-scanning correspond to the case where there is a defect, and the distance between two points in the circuit board is also made to correspond to the distance between pixels, so that the enlargement / reduction ratio of the optical system in the imaging device 18 can be determined. Correction processing is enabled.
【0017】図4及び図5は,第一の実施例に於ける撮
像装置18に代えて光ビーム走査により画像を取り込む
例を本発明の第二の実施例として説明するための図であ
る。図4は装置の概略図を示すが,液晶層15に生じた
光学的な変化を光ビーム走査装置41から光ビーム43
を発して液晶層15上を走査し,反射光44を受光装置
42で受けて制御装置4eに電気信号として送り画像を
取り込む。光ビーム走査装置41はレーザダイオード4
7から出た光を整形レンズ48により平行光に変換し,
揺動ミラー49,4aにより反射させた後,結像レンズ
4bにより液晶層15上に収束させる。揺動ミラー4
9,4aは制御装置4eの指示により角度を微小に変
え,光ビーム43を液晶層15上の任意の位置に走査す
る。受光装置42は集光レンズ4cにより反射光44を
受光素子4d上に集めて電気変化として出力する。番号
45,46はそれぞれ光ビーム走査装置41及び受光装
置42と制御装置4e間の信号線を示す。FIGS. 4 and 5 are views for explaining an example in which an image is captured by light beam scanning instead of the imaging device 18 in the first embodiment as a second embodiment of the present invention. FIG. 4 is a schematic diagram of the device. The optical change generated in the liquid crystal layer 15 is detected by the light beam scanning device 41 from the light beam 43.
Is emitted to scan the liquid crystal layer 15, the reflected light 44 is received by the light receiving device 42, and sent to the control device 4e as an electric signal to capture an image. The light beam scanning device 41 is a laser diode 4
7 is converted into parallel light by a shaping lens 48,
After being reflected by the oscillating mirrors 49 and 4a, the light is converged on the liquid crystal layer 15 by the imaging lens 4b. Swing mirror 4
Numerals 9 and 4a slightly change the angle according to an instruction from the control device 4e, and scan the light beam 43 to an arbitrary position on the liquid crystal layer 15. The light receiving device 42 collects the reflected light 44 on the light receiving element 4d by the condenser lens 4c and outputs it as an electric change. Numerals 45 and 46 denote signal lines between the light beam scanning device 41 and the light receiving device 42 and the control device 4e, respectively.
【0018】図5は回路基板11と制御装置4eで認識
する画像51との関係を示す。第一の実施例と同様にパ
ターン21,22と透明電極層14間に電位を加え,光
ビーム走査により画像を取り込んでいるが,画像51で
認識するパターン画像52,53の位置は画素番号では
無く,揺動ミラー49,4aを制御する電圧で示す点が
図2の場合と異なる。すなわち,光ビーム43を走査す
るために二つの揺動ミラー49,4aの角度を変える
が,揺動ミラー49は横方向,揺動ミラー4aは縦方向
に光ビーム43を振るとすれば,番号54,57はそれ
ぞれ揺動ミラー49,4aに加えられる制御電圧を示
し,光ビームの第一位置信号に相当する。番号55,5
8は電圧を,番号56,59はそれぞれ横,縦の座標を
示す。したがって,パターン画像52,53の位置は制
御電圧54,57の値として認識されている。第一位置
信号を得る他の手段としては揺動ミラー49,4aにそ
の回転角度を検出するポテンショメーターを配置し,そ
の出力と規定しても良い。FIG. 5 shows the relationship between the circuit board 11 and the image 51 recognized by the control device 4e. As in the first embodiment, an electric potential is applied between the patterns 21 and 22 and the transparent electrode layer 14 to capture an image by light beam scanning. The positions of the pattern images 52 and 53 recognized by the image 51 are represented by pixel numbers. 2 is different from the case of FIG. 2 in that it is indicated by a voltage for controlling the swing mirrors 49 and 4a. That is, the angle of the two oscillating mirrors 49 and 4a is changed to scan the light beam 43. If the oscillating mirror 49 oscillates the light beam 43 in the horizontal direction and the oscillating mirror 4a oscillates the light beam 43 in the vertical direction, Reference numerals 54 and 57 denote control voltages applied to the oscillating mirrors 49 and 4a, respectively, and correspond to the first position signal of the light beam. Number 55, 5
Reference numeral 8 denotes a voltage, and numbers 56 and 59 indicate horizontal and vertical coordinates, respectively. Therefore, the positions of the pattern images 52 and 53 are recognized as the values of the control voltages 54 and 57. As another means for obtaining the first position signal, a potentiometer for detecting the rotation angle may be arranged on the oscillating mirrors 49, 4a and the output thereof may be defined.
【0019】第二の実施例に於いても第一の実施例で説
明したと同様な懸念はあり,図3を用いて説明したと同
様に図6に示した手順を有して回路基板の検査を行う。
ただし,第一位置信号は制御電圧54,57の値と読み
替えてある。In the second embodiment, there is the same concern as described in the first embodiment, and the procedure shown in FIG. Perform an inspection.
However, the first position signal is replaced with the values of the control voltages 54 and 57.
【0020】図7及び図8は,本発明の第三の実施例を
説明するための図である。回路基板11に対向する電極
部は透明基板71上に透明電極72,光導電層73を積
層して構成し,光ビーム走査装置74からの光ビーム7
5で透明基板71,透明電極72を介して光導電層73
を照射,走査して照射部分の光導電層73に局部的な導
電パスを形成させ,透明電極72に接続される信号線7
7,透明電極72,光導電層73,回路パターン等とで
形成される回路の電気抵抗或いは容量等を検査して回路
基板11上のパターンの良否を判定する。番号78は光
ビーム走査装置74と制御装置76との信号線を示し,
制御装置76は光ビーム走査装置74の制御,及び信号
線77と回路基板11上のパターンとの間の電気抵抗を
検査する。光ビーム走査装置74の構成は図4の光ビー
ム走査装置41と同じであるので詳細は省略した。FIGS. 7 and 8 are diagrams for explaining a third embodiment of the present invention. The electrode section facing the circuit board 11 is formed by laminating a transparent electrode 72 and a photoconductive layer 73 on a transparent substrate 71, and a light beam 7 from a light beam scanning device 74.
5, the photoconductive layer 73 through the transparent substrate 71 and the transparent electrode 72
Is irradiated and scanned to form a local conductive path in the irradiated portion of the photoconductive layer 73, and the signal line 7 connected to the transparent electrode 72 is formed.
7, the electrical resistance or capacitance of a circuit formed by the transparent electrode 72, the photoconductive layer 73, the circuit pattern, and the like is inspected to determine the quality of the pattern on the circuit board 11. Numeral 78 indicates a signal line between the light beam scanning device 74 and the control device 76.
The control device 76 controls the light beam scanning device 74 and inspects the electric resistance between the signal line 77 and the pattern on the circuit board 11. The configuration of the light beam scanning device 74 is the same as that of the light beam scanning device 41 of FIG.
【0021】第三の実施例により認識される画像81内
のパターン画像は表面に露出している82,83,8
4,85の電極部分のみである。これら電極の位置も図
5に示したと同様に揺動ミラーの制御電圧54,57の
値で示され,この制御電圧を光ビームの第一位置信号と
する。The pattern images in the image 81 recognized according to the third embodiment are exposed on the surface.
There are only 4,85 electrode portions. The positions of these electrodes are also indicated by the values of the control voltages 54 and 57 for the oscillating mirror, as in FIG. 5, and this control voltage is used as the first position signal of the light beam.
【0022】この第三の実施例に於いても第二の実施例
と同様に検査に先立って予備走査を行い,図6に従って
基準位置を認識して補正処理を可能にする。In the third embodiment, as in the second embodiment, preliminary scanning is performed prior to inspection, and a reference position is recognized according to FIG. 6 to enable correction processing.
【0023】第三の実施例は,片面から回路基板上のパ
ターンの一端を光ビームで走査し,他端はピン或いはコ
ネクタ等を介して制御装置に接続することを想定した
が,二つの光ビームを用いて光ビームのみで導電パス及
び回路を形成することも可能である。その場合に二つの
光ビーム及び基板パターン位置の詳細位置が不明である
ので特定パターンにそれぞれ導電パスを形成するのに試
行錯誤を限りなく繰り返す事は不経済であるので予備走
査用に回路基板上の特定パターンをピン或いはコネクタ
等で制御装置に接続して実施することで迅速に予備走査
手順を実行できる。専用の基準位置確認用パターンを特
に回路基板上に設ければ更に望ましい。In the third embodiment, it is assumed that one end of a pattern on a circuit board is scanned with a light beam from one side and the other end is connected to a control device via a pin or a connector. It is also possible to form a conductive path and a circuit using only a light beam using a beam. In this case, since the detailed positions of the two light beams and the substrate pattern position are unknown, it is uneconomical to repeat trial and error without limit to form a conductive path for each specific pattern. The pre-scanning procedure can be quickly performed by connecting the specific pattern to the control device with a pin or a connector and executing it. It is more desirable to provide a dedicated reference position confirmation pattern especially on a circuit board.
【0024】第一から第三の実施例を用いて回路基板上
のパターンを電子的走査或いは光ビーム走査により検査
するに際して回路基板或いは走査装置の設定精度を緩和
できるような本発明について説明したが,これらの装置
に於いて更に振動,衝撃等への耐性を如何に強くするか
の課題がある。すなわち,回路基板の搬送,交換等移動
機構部は必須であるので装置内に於いては振動或いは衝
撃は常に存在するが,任意の点への光ビームの走査はこ
のような条件下でも所定の精度を有する必要があり,回
路基板に於けるパターン密度の増大に際して解決すべき
課題となっている。本発明はこの点にも対処出来る走査
型回路基板検査装置を実現できるもので第四の実施例以
下をあげて説明する。Although the present invention has been described with reference to the first to third embodiments, it is possible to relax the setting accuracy of the circuit board or the scanning device when inspecting the pattern on the circuit board by electronic scanning or light beam scanning. However, there is a problem of how to make these devices more resistant to vibration, impact, and the like. That is, since a moving mechanism such as transfer and exchange of a circuit board is indispensable, vibration or impact always exists in the apparatus, but scanning of a light beam to an arbitrary point is performed under a predetermined condition even under such conditions. It is necessary to have precision, and this is a problem to be solved when increasing the pattern density on a circuit board. The present invention can realize a scanning circuit board inspection apparatus capable of coping with this point, and a fourth embodiment will be described below.
【0025】図9,図10,図11は本発明の第四の実
施例を説明するための図を示す。図9は光導電層よりな
る電極部を回路基板に対向させ,光ビームにより走査を
行う例であるが,光ビームの位置を検知する受光素子群
を電極部内に配置して光ビームの詳細位置を検出し,第
二位置信号として制御を行うことによって光ビームの位
置精度を向上し,振動或いは衝撃への耐性を高める。同
図に於いて,回路基板11に対向する電極部は透明基板
91にほぼ透明な受光素子群92,透明電極93,及び
光導電層94等を積層して構成する。光ビーム走査装置
95により光ビーム96を透明基板91,受光素子群9
2,透明電極93等を介して光導電層94を照射,走査
し,光導電層94の光ビームの照射された位置に局部的
な導電パスを形成させる。光ビーム走査装置95内の構
成は図4に於ける光ビーム走査装置41と同じであるの
で説明は省略する。番号98は受光素子群92及び透明
電極層93と制御装置97とを接続する信号線を,番号
99は光ビーム制御装置95と制御装置97との間の信
号線をそれぞれ示す。FIGS. 9, 10 and 11 are views for explaining a fourth embodiment of the present invention. FIG. 9 shows an example in which an electrode portion made of a photoconductive layer is opposed to a circuit board and scanning is performed by a light beam. A light receiving element group for detecting the position of the light beam is arranged in the electrode portion to set a detailed position of the light beam. Is detected and controlled as the second position signal, thereby improving the position accuracy of the light beam and increasing the resistance to vibration or impact. In the figure, the electrode section facing the circuit board 11 is formed by laminating a substantially transparent light receiving element group 92, a transparent electrode 93, a photoconductive layer 94, etc. on a transparent substrate 91. The light beam 96 is transmitted by the light beam scanning device 95 to the transparent substrate 91 and the light receiving element group 9.
2, irradiate and scan the photoconductive layer 94 through the transparent electrode 93 and the like, and form a local conductive path at the position of the photoconductive layer 94 where the light beam is irradiated. The configuration inside the light beam scanning device 95 is the same as that of the light beam scanning device 41 in FIG. Reference numeral 98 denotes a signal line connecting the light receiving element group 92 and the transparent electrode layer 93 to the control device 97, and reference numeral 99 denotes a signal line between the light beam control device 95 and the control device 97.
【0026】図10は,受光素子群92の平面的な配置
構造例を示し,光ビームスポット10aの径をほぼその
周期とする格子状の受光素子101,102,103,
104等を配置して構成する。各受光素子は,ほぼ透明
なソーラーセルで構成し,それらの出力は縦横それぞれ
に隣接する受光素子の出力の差分を出力するよう結線さ
れる。例えば,横方向ではオペアンプ106に受光素子
101から一つおきの受光素子の出力が抵抗105によ
り合算されて+入力に入り,受光素子102から一つお
きの受光素子も同様に合算されて−入力に入り,出力1
07には横方向に隣接する受光素子出力の差が現れる。
同様にしてオペアンプ108の出力109には縦方向の
隣接受光素子の出力が現れるよう結線されている。オペ
アンプ106,108への結線は端部のみ示したがすべ
ての受光素子が前述のように接続される。FIG. 10 shows an example of a planar arrangement structure of the light receiving element group 92. The light receiving elements 101, 102, 103, and 104 have a lattice shape having the diameter of the light beam spot 10a substantially as its period.
104 and the like are arranged. Each light receiving element is constituted by a substantially transparent solar cell, and their outputs are connected so as to output the difference between the outputs of the adjacent light receiving elements vertically and horizontally. For example, in the horizontal direction, the outputs of every other light receiving element from the light receiving element 101 are added to the operational amplifier 106 by the resistor 105 and input to the + input, and the other light receiving elements from the light receiving element 102 are similarly added and added to the negative input. And output 1
At 07, the difference between the outputs of the light receiving elements adjacent in the horizontal direction appears.
Similarly, the output 109 of the operational amplifier 108 is connected so that the output of the adjacent light receiving element in the vertical direction appears. Although the connection to the operational amplifiers 106 and 108 is shown only at the ends, all the light receiving elements are connected as described above.
【0027】このような受光素子群に於いて,図10で
は光ビームスポット10aが受光素子101,102,
103,104を照射し,それぞれの受光素子の出力は
光ビームスポット10aと重なり合う面積に比例して現
れるので,横方向の位置を示す出力107には受光素子
101,103の出力の和と受光素子102,104の
出力の和との差が現れる。同様に縦方向の位置を示す出
力109には受光素子101,102の出力の和と受光
素子103,104の出力の和との差が現れる。それら
の出力を受光素子101,102,103,104の全
出力和で割って正規化すればさらに光ビームスポットの
強度等変動に対しても安定な出力を得ることが出来る。In such a light receiving element group, the light beam spot 10a is shown in FIG.
The outputs of the light receiving elements 103 and 104 are radiated, and the output of each light receiving element appears in proportion to the area overlapping with the light beam spot 10a. A difference from the sum of the outputs of 102 and 104 appears. Similarly, a difference between the sum of the outputs of the light receiving elements 101 and 102 and the sum of the outputs of the light receiving elements 103 and 104 appears in the output 109 indicating the vertical position. If these outputs are divided by the sum of all outputs of the light receiving elements 101, 102, 103 and 104 and normalized, a stable output can be obtained even with respect to fluctuations in the intensity of the light beam spot.
【0028】これらの出力107,109はそれぞれ光
ビームスポット10aの局部的な位置を示す第二位置信
号であり,これらの出力がそれぞれ一定値になるよう光
ビーム走査装置95内の揺動ミラーを駆動すれば光ビー
ムスポット10aを液晶層94の任意の位置に制御でき
る。これら光ビームの位置を示す出力107,109は
回路基板11或いは液晶層94に密着した受光素子群9
2から得られるので装置内に振動,衝撃があっても光ビ
ーム96はそれに追随するよう制御される。従来の光ビ
ーム走査は制御装置から指示された電圧に基づいて揺動
ミラーの回転角度を制御する開ループの制御であった
が,図9及び図10に示す光ビームの制御は閉ループ制
御であり,走査精度の向上及び振動等の外乱への耐性を
強化できる。These outputs 107 and 109 are second position signals indicating the local position of the light beam spot 10a, respectively. The oscillating mirror in the light beam scanning device 95 is controlled so that these outputs become constant values. By driving, the light beam spot 10a can be controlled to an arbitrary position on the liquid crystal layer 94. The outputs 107 and 109 indicating the positions of these light beams are received by the light receiving element group 9 which is in close contact with the circuit board 11 or the liquid crystal layer 94.
2, the light beam 96 is controlled to follow the vibration or impact in the apparatus. The conventional light beam scanning is an open loop control for controlling the rotation angle of the oscillating mirror based on a voltage instructed by the control device. However, the light beam control shown in FIGS. 9 and 10 is a closed loop control. In addition, the scanning accuracy can be improved and the resistance to disturbances such as vibration can be enhanced.
【0029】図11は,光ビームの第一位置信号と第二
位置信号との関係を示す。光ビーム走査装置95,制御
装置97とで認識するエリア111に於いて,光ビーム
位置112は図5に示したと同様に揺動ミラーの制御電
圧113及び117により横方向及び縦方向の位置は表
される。番号114,118は電圧を番号115,11
9はそれぞれ横,縦の座標を示す。これらの制御電圧1
13,117が光ビーム位置112の第一位置信号であ
るが,振動,衝撃が存在して光ビーム走査装置95と回
路基板11との間の相対位置に変動を生じるとその精度
を著しく減じることになる。番号11b,11dはそれ
ぞれ出力107,109の出力を示すもので光ビーム位
置112の第二位置信号を示す。ただ,受光素子群10
1,102,103,104等は周期的に構成されるの
で第二位置信号は図に示すよう周期的で使用に当たって
は注意を要する。第一位置信号で大まかな位置を制御
し,詳細位置制御を第二位置信号で制御する等の分担,
或いは基準位置から第二位置信号の山,谷を計数しなが
らの制御を行う等の配慮を必要とする。第二位置信号を
得るための受光素子群は図10のように格子状に形成す
るのが原則であるが,受光素子を形成する基板上でパタ
ーンにより結線を行うとしても複雑過ぎる傾向がある。
この点を改善しようとするのが図12に示す第五の実施
例であり,同図は回路基板に対向する電極部に形成する
受光素子群の断面を示す。透明基板121にストライプ
状の透明電極122,光導電層124,一様な透明電極
125,光導電層126,ストライプ状透明電極127
等を積層して構成する。番号123はストライプ状電極
122間に充填する透明絶縁材である。ストライプ状電
極122と127はほぼ直交するよう配置する。それぞ
れの電極グループ内では隣接電極の差分出力が得られる
ようそれぞれ一つおきに接続してオペアンプで差分出力
を得る。ストライプ状電極122を横,ストライプ状電
極127を縦方向にそれぞれ割り当るとこれらは光ビー
ムの第二の位置信号を表すことになる。構成する層の数
は増加するが,配線の数は減らすことは出来る。FIG. 11 shows the relationship between the first position signal and the second position signal of the light beam. In the area 111 recognized by the light beam scanning device 95 and the control device 97, the light beam position 112 is displayed in the horizontal and vertical directions by the control voltages 113 and 117 of the oscillating mirror in the same manner as shown in FIG. Is done. The numbers 114 and 118 correspond to the voltages 115 and 11 respectively.
9 indicates horizontal and vertical coordinates, respectively. These control voltages 1
Reference numerals 13 and 117 denote first position signals of the light beam position 112. If the relative position between the light beam scanning device 95 and the circuit board 11 fluctuates due to the presence of vibration or shock, the accuracy is significantly reduced. become. Numerals 11b and 11d indicate outputs 107 and 109, respectively, and indicate a second position signal of the light beam position 112. However, the light receiving element group 10
Since 1, 102, 103, 104, etc. are configured periodically, the second position signal is periodic as shown in FIG. Sharing the first position signal to control the rough position and the detailed position control to the second position signal
Alternatively, it is necessary to perform control while counting peaks and valleys of the second position signal from the reference position. In principle, the light receiving element group for obtaining the second position signal is formed in a lattice shape as shown in FIG. 10, but even if wiring is performed by a pattern on a substrate on which the light receiving element is formed, the connection tends to be too complicated.
The fifth embodiment shown in FIG. 12 is intended to improve this point. FIG. 12 shows a cross section of a light receiving element group formed on an electrode portion facing a circuit board. On a transparent substrate 121, a striped transparent electrode 122, a photoconductive layer 124, a uniform transparent electrode 125, a photoconductive layer 126, and a striped transparent electrode 127 are formed.
Are laminated. Reference numeral 123 denotes a transparent insulating material to be filled between the striped electrodes 122. The striped electrodes 122 and 127 are arranged so as to be substantially orthogonal. In each electrode group, every other electrode is connected so as to obtain a differential output of an adjacent electrode, and a differential output is obtained by an operational amplifier. When the stripe-shaped electrodes 122 are allocated in the horizontal direction and the stripe-shaped electrodes 127 are allocated in the vertical direction, these represent the second position signal of the light beam. The number of constituent layers increases, but the number of wirings can be reduced.
【0030】第四,第五の実施例を用いて説明したよう
に回路基板に近いところで光ビームの位置を示す第二位
置信号を得て光ビームの走査を閉ループ制御できること
を示した。しかしながら,第四,第五の実施例に於ける
受光素子群の構成ではその配列周期をほぼ光ビームスポ
ットの径に等しく設定したので若干の問題を有してい
る。すなわち,図11に示す第二位置信号を見ると,周
期的な山,谷を有する。光ビームスポット位置112が
横方向の位置を示す番号11bのようにほぼゼロ点付近
である時は問題無いが,縦方向の位置を示す番号11d
に於いて谷の最深部近傍にある場合には精度的に問題を
有する。光ビームスポットの径と受光素子の周期との関
係で谷,山部分の出力波形は変動し,また傾斜も一定と
はし難いのでそれらの信号で揺動ミラーを制御する場合
には制御系が不安定となる恐れがある。これらの状況を
考慮して光ビーム径,受光素子の周期はほぼ回路基板上
のアクセスすべき電極の最小単位間隙として受光素子間
の間隙がおおよそそれら回路基板上の電極の上に位置す
るよう配置すれば解決はできる。As described with reference to the fourth and fifth embodiments, it has been shown that the scanning of the light beam can be controlled in a closed loop by obtaining the second position signal indicating the position of the light beam near the circuit board. However, in the configuration of the light receiving element group in the fourth and fifth embodiments, the arrangement period is set to be substantially equal to the diameter of the light beam spot, so that there is a slight problem. That is, the second position signal shown in FIG. 11 has periodic peaks and valleys. There is no problem when the light beam spot position 112 is near the zero point like the number 11b indicating the horizontal position, but the number 11d indicating the vertical position
In the case where it is near the deepest part of the valley, there is a problem in accuracy. The output waveform at the valleys and peaks fluctuates due to the relationship between the diameter of the light beam spot and the period of the light-receiving element, and the inclination is difficult to be constant. There is a risk of instability. In consideration of these situations, the light beam diameter and the period of the light receiving element are arranged as the minimum unit gap between the electrodes to be accessed on the circuit board, so that the gap between the light receiving elements is approximately positioned above the electrodes on the circuit board. We can solve it.
【0031】図13に示す第六の実施例は上の問題を受
光素子構成のみで解決してシステム構成に更に自由度を
与える受光素子の構成を示す。第四及び第五に示す受光
素子群はほぼ光ビームスポット径に等しい周期を有した
が,同一の受光素子群を縦,横それぞれに半周期ズラし
て配置し,光ビームの第二位置信号は光ビームスポット
の位置によりそれぞれの受光素子群からの出力を切り替
えて使用することとし,光ビームの走査制御を行う。図
13は図12で示したストライプ状の受光素子群で構成
した第二位置信号を得る手段と同じ構成の受光素子群を
半周期ズラして配置した構成を示す。The sixth embodiment shown in FIG. 13 shows the structure of a light receiving element which solves the above problem only with the light receiving element configuration and gives more flexibility to the system configuration. The light receiving element groups shown in the fourth and the fifth have a period substantially equal to the light beam spot diameter. However, the same light receiving element group is vertically and horizontally shifted by a half period, and the second position signal of the light beam is arranged. Is to switch and use the output from each light receiving element group according to the position of the light beam spot, and perform scanning control of the light beam. FIG. 13 shows a configuration in which the light receiving element group having the same configuration as the means for obtaining the second position signal formed of the stripe-shaped light receiving element group shown in FIG.
【0032】同図に於いて,番号131は透明な基板
を,番号132,137,139,13dはそれぞれ透
明なストライプ状電極を示し,番号134,136,1
3a,13cは光導電層を示し,番号135,13bは
一様な透明電極を番号133,138は透明な絶縁層を
それぞれ示す。ストライプ状電極132,137は図に
示すように横方向に半周期分ずれて配置され,ストライ
プ状電極139,13dは奥行き方向にやはり半周期ズ
ラして配置してあるものとする。ストライプ状電極は4
層有るが,それぞれの層での結線は図12と同様であ
り,それらの受光素子群から四つの出力が得られること
になる。In the figure, reference numeral 131 denotes a transparent substrate, reference numerals 132, 137, 139, and 13d denote transparent striped electrodes, respectively, and reference numerals 134, 136, and 1
3a and 13c indicate photoconductive layers, numbers 135 and 13b indicate uniform transparent electrodes, and numbers 133 and 138 indicate transparent insulating layers, respectively. It is assumed that the striped electrodes 132 and 137 are shifted laterally by a half cycle as shown in the figure, and the striped electrodes 139 and 13d are also shifted by a half cycle in the depth direction. 4 striped electrodes
Although there are layers, the connections in each layer are the same as in FIG. 12, and four outputs are obtained from those light receiving element groups.
【0033】図14には,第二位置信号を形成する四つ
の信号波形を示している。図11に於ける第一位置信号
113,117及び第二位置信号11b,11dに加え
て新たに半周期ズラして配置された受光素子群から得ら
れる第二位置信号141,142を点線で示してある。
図13に示す第六の実施例では第二位置信号はこれら1
1b,11d,141,142で構成することになり,
光ビームの第二位置信号は常にこれら4種の信号の状態
を監視し光ビームの位置によって切り替えて使用する。
例えば,横方向の第二位置信号は番号11bが一定傾斜
上に光ビームが存在するので使用し,同様の意味で縦方
向の位置信号は番号142を選択する。FIG. 14 shows four signal waveforms forming the second position signal. In addition to the first position signals 113 and 117 and the second position signals 11b and 11d in FIG. 11, second position signals 141 and 142 obtained from the light receiving element groups newly shifted by a half cycle are indicated by dotted lines. It is.
In the sixth embodiment shown in FIG.
1b, 11d, 141 and 142,
The second position signal of the light beam is used by constantly monitoring the state of these four types of signals and switching according to the position of the light beam.
For example, the second position signal in the horizontal direction is used because the light beam exists on the fixed inclination with the number 11b, and the number 142 is selected as the vertical position signal in the same sense.
【0034】図15,16,17を用いて本発明の第七
の実施例を説明する。第四,第五,第六の実施例で液晶
層或いは光導電層の近傍に受光素子を配置して光ビーム
の第二位置信号を得,揺動ミラーにフィードバックして
光ビームの精細な位置制御を実施することを説明した。
しかしながら電極部近傍に配置する受光素子群の構成は
必ずしもシンプルでは無いので電極部近傍の構成をシン
プルにし,離れた位置の受光素子群に負荷を負わせる構
造である第七の実施例を説明する。A seventh embodiment of the present invention will be described with reference to FIGS. In the fourth, fifth, and sixth embodiments, a light receiving element is arranged near a liquid crystal layer or a photoconductive layer to obtain a second position signal of a light beam, which is fed back to an oscillating mirror to define a fine position of the light beam. The execution of the control has been described.
However, since the configuration of the light receiving element group arranged near the electrode unit is not always simple, the seventh embodiment will be described in which the configuration near the electrode unit is simplified and a load is applied to the light receiving element group at a remote position. .
【0035】図15は,第七の実施例の概略構成を示
す。同図に於いて,回路基板11に対向配置する電極部
は透明基板151,反射光に市松模様の明暗パターンを
生じさせる反射制御層152,透明電極153,光導電
層154とから構成され,光ビーム走査装置155から
の光ビーム156を受けてその一部を反射制御層152
から反射させ,反射光158を受光装置157は集光レ
ンズ159によって受光素子アレイ15a上に集め電気
信号に変え,信号線15dを介して制御装置15bに送
る。制御装置15bは得られた画像から光ビーム156
の第二位置信号を抽出し,信号線15eを介して光ビー
ム走査装置155内の揺動ミラー等を制御して光ビーム
156の位置を精細に制御する。番号15cは透明電極
層153と制御装置15b間の信号線を示す。FIG. 15 shows a schematic configuration of the seventh embodiment. In the figure, an electrode portion opposed to the circuit board 11 is composed of a transparent substrate 151, a reflection control layer 152 for generating a checkered bright and dark pattern in reflected light, a transparent electrode 153, and a photoconductive layer 154. Upon receiving the light beam 156 from the beam scanning device 155, a part thereof is reflected by the reflection control layer 152.
The light receiving device 157 collects the reflected light 158 on the light receiving element array 15a by the condenser lens 159, converts the collected light into an electric signal, and sends the electric signal to the control device 15b via the signal line 15d. The control device 15b outputs a light beam 156 from the obtained image.
Is extracted, and the position of the light beam 156 is finely controlled by controlling the oscillating mirror and the like in the light beam scanning device 155 via the signal line 15e. Numeral 15c indicates a signal line between the transparent electrode layer 153 and the control device 15b.
【0036】図16は,第六の実施例で使用した回路基
板11に対向する電極部の具体的な構成例を示す。同図
に於いて,電極部は透明基板151上に透明電極15
3,光導電層154を積層して構成する。反射制御層1
52は透明電極層153周辺の形状により実現したので
図には示していない。照射光の一部を反射して反射光強
度の小となる領域161と大となる領域162が市松模
様となるよう構成するが,その構成及び原理を電極部断
面の一部を番号163で示すよう拡大して説明する。透
明基板151の一面を数ミクロンメートル程度の周期で
緩やかな凹凸を設けた租面を有する領域と平坦な面を有
する領域とを市松模様に形成し,その上に薄膜の半透明
層を形成する。本実施例では透明電極層153と薄膜半
透明層とを兼ねているので20%程度の反射率を有する
ような導電性金属薄膜をスパッタリング等で形成する。
さらにその上に光導電層154を形成して構成する。FIG. 16 shows a specific example of the configuration of the electrode portion facing the circuit board 11 used in the sixth embodiment. In the figure, the electrode section is a transparent electrode 15 on a transparent substrate 151.
3. The photoconductive layer 154 is laminated. Reflection control layer 1
52 is not shown in the figure because it was realized by the shape around the transparent electrode layer 153. The region 161 where the intensity of the reflected light is small and the region 162 where the intensity of the reflected light is small by reflecting a part of the irradiation light are formed in a checkered pattern. The explanation will be expanded as follows. One surface of the transparent substrate 151 is formed in a checkered pattern with a rough surface having gentle irregularities at a period of several micrometers and a flat surface, and a thin translucent layer is formed thereon. . In this embodiment, since the transparent electrode layer 153 also functions as the thin film translucent layer, a conductive metal thin film having a reflectance of about 20% is formed by sputtering or the like.
Further, a photoconductive layer 154 is formed thereon.
【0037】同図に於いて,番号164は平坦な領域の
導電性金属薄膜部分を,番号165は凹凸を有する領域
の導電性金属薄膜部分を示す。入射光166が平坦な領
域164に入力すると反射光167は入射角度に応じて
一様な方向に反射し,凹凸のある領域165に入力する
と反射光169は凹凸の斜面の傾斜に応じてランダムな
方向に向かうので反射光に強弱を持たせることが出来
る。受光装置157が平坦な領域からの反射光167を
入射しないよう位置を設定すれば,凹凸のある領域から
の反射光169を受けてその領域を明として認識する。
透過光168及び16aは,導電性金属薄膜上下を形成
する材料の屈折率を同じにすれば入射光166とほぼ同
じ方向に進み強度以外の影響は少ない。光導電層154
の厚みが小であれば透過光に多少の乱れがあっても影響
が少ないので特に屈折率を厳密に考慮する必要は無い。
しかし光導電層154の厚みを大にして透過光のビーム
径が分解能に影響する場合には透明基板151の表面は
平坦とし,その上に薄く光導電層或いは光導電層と同じ
屈折率を有する材料を付け,その上で金型を押しつける
等により凹凸を付け,導電性金属薄膜を付けた後に光導
電層を形成すれば導電性金属薄膜上下の屈折率は同じに
なるので透過光に歪みが生じることは無くなる。In the figure, reference numeral 164 denotes a conductive metal thin film portion in a flat region, and reference numeral 165 denotes a conductive metal thin film portion in a region having irregularities. When the incident light 166 is input to the flat area 164, the reflected light 167 is reflected in a uniform direction according to the incident angle, and when the incident light 166 is input to the uneven area 165, the reflected light 169 is randomly generated according to the slope of the uneven slope. Since the light travels in the direction, the reflected light can be given strength. If the position is set so that the light receiving device 157 does not receive the reflected light 167 from a flat area, the light receiving apparatus 157 receives the reflected light 169 from the uneven area and recognizes the area as bright.
The transmitted lights 168 and 16a travel in substantially the same direction as the incident light 166 and have little effect other than the intensity, provided that the materials forming the upper and lower portions of the conductive metal thin film have the same refractive index. Photoconductive layer 154
If the thickness is small, even if there is some disturbance in the transmitted light, there is little effect, so there is no need to strictly consider the refractive index.
However, in the case where the thickness of the photoconductive layer 154 is increased and the beam diameter of the transmitted light affects the resolution, the surface of the transparent substrate 151 is made flat and has a thin refractive index thereon or the same refractive index as the photoconductive layer. If a material is added, the surface is made uneven by pressing a mold, etc., and if a photoconductive layer is formed after the conductive metal thin film is applied, the refractive index of the upper and lower conductive metal thin films will be the same, so that the transmitted light will be distorted. Will not occur.
【0038】図17は,受光装置157の出力から得ら
れる画像を示し,その画像から光ビームの第二位置信号
を得る手順を説明する。受光装置157はほぼ回路基板
11全体を覆う電極部からの反射光を受けるが,光ビー
ム156で照射された部分の強度は大であるので一定値
以上の反射光強度を有する部分のみを抽出すれば番号1
71で示すように光ビームスポット形状の画像が得られ
る。光ビーム156で照射された電極部からの反射光に
は市松模様の明暗パターン172,173が得られる。
その市松模様の一部に着目し,例えば番号175で示す
境界と画像171の中心点174との位置関係から光ビ
ームの第二位置信号を得る。もし,受光装置157の分
解能が許容するなら市松模様の一部にアドレス対応のコ
ードを記録し,認識すれば更に制御の精度を向上でき
る。FIG. 17 shows an image obtained from the output of the light receiving device 157, and a procedure for obtaining the second position signal of the light beam from the image will be described. The light receiving device 157 receives the reflected light from the electrode portion covering almost the entire circuit board 11, but only the portion having the reflected light intensity of a certain value or more is extracted because the intensity of the portion irradiated with the light beam 156 is large. BA number 1
As shown at 71, an image having a light beam spot shape is obtained. Checkered light and dark patterns 172 and 173 are obtained in the reflected light from the electrode portion irradiated with the light beam 156.
Focusing on a part of the checkered pattern, a second position signal of the light beam is obtained from the positional relationship between the boundary indicated by reference numeral 175 and the center point 174 of the image 171, for example. If the resolution of the light receiving device 157 allows, a code corresponding to the address is recorded in a part of the checkerboard pattern, and if it is recognized, the control accuracy can be further improved.
【0039】以上,第四から第七までの実施例を用いて
光ビームの位置制御を精細に行う例を示した。これらの
実施例では専ら光導電層を有する例を挙げたが,液晶層
を有する場合でも有効である。受光素子群或いは反射制
御層等の位置にはかなりの自由度があり,透明基板の上
面に配置してもまた中間に配置しても機能は期待でき
る。第七の実施例に於ける反射制御層の実現方法にも上
の実施例の他にホログラムその他の技術を利用しても構
成できる。In the above, examples have been shown in which the position control of the light beam is finely performed using the fourth to seventh embodiments. In these embodiments, examples having only a photoconductive layer have been described. However, it is effective to have a liquid crystal layer. There is considerable freedom in the position of the light receiving element group or the reflection control layer, and the function can be expected if the light receiving element group is arranged on the upper surface of the transparent substrate or in the middle. The method of realizing the reflection control layer in the seventh embodiment can also be configured by using a hologram or other techniques in addition to the above embodiments.
【0040】第一から第三の実施例は,予備走査を有し
て回路基板上の基準点と走査系で認識する位置,すなわ
ち第一位置信号との相互関係を認識して補正処理を行う
ことで,第四から第七の実施例では光ビームの精細位置
である第二位置信号を検出して走査系を制御することに
より回路基板の高密度化に対応出来ることを説明した。
それらの中で第二位置信号と予備走査との関係を詳細に
は説明しなかったが,第二位置信号で光ビームを制御す
るに際しても予備走査で基準位置の認識が必要であるの
は自明である。In the first to third embodiments, the correction process is performed by recognizing the correlation between the reference point on the circuit board and the position recognized by the scanning system, that is, the first position signal, having the preliminary scanning. In the fourth to seventh embodiments, it has been explained that the density of the circuit board can be increased by detecting the second position signal which is the fine position of the light beam and controlling the scanning system.
Among them, the relationship between the second position signal and the pre-scan was not described in detail, but it is obvious that the control of the light beam by the second position signal also requires the recognition of the reference position in the pre-scan. It is.
【0041】[0041]
【発明の効果】以上,実施例を用いて説明したように本
発明に依れば,電子的走査或いは光ビームの走査により
回路基板上の任意の点にアクセスして回路基板の良否を
判定する検査装置に於いて,回路基板上の基準位置は適
応的に補正処理するので回路基板の設定制度は緩和で
き,また光ビーム位置を回路基板の近傍で検知して精細
制御するので振動,衝撃に強く,また精度を向上できる
ので高密度回路基板の検査に有効である。As described above, according to the present invention, an arbitrary point on a circuit board is accessed by electronic scanning or light beam scanning to determine the quality of the circuit board. In the inspection equipment, the reference position on the circuit board is adaptively corrected, so the setting accuracy of the circuit board can be relaxed. Also, the light beam position is detected near the circuit board and finely controlled, so that it is not subject to vibration and shock. Since it is strong and can improve accuracy, it is effective for inspection of high-density circuit boards.
【図1】 本発明の第一の実施例の構成を示す図FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.
【図2】 二次元画像と画素,回路基板上との位置関係
を示す図FIG. 2 is a diagram showing a positional relationship between a two-dimensional image, a pixel, and a circuit board.
【図3】 第一の実施例で予備走査を含む基板検査のフ
ローFIG. 3 is a flowchart of a board inspection including a pre-scan in the first embodiment.
【図4】 本発明の第二の実施例の構成を示す図FIG. 4 is a diagram showing a configuration of a second embodiment of the present invention.
【図5】 二次元画像と制御電圧,回路基板上との位置
関係を示す図FIG. 5 is a diagram showing a positional relationship between a two-dimensional image, a control voltage, and a circuit board.
【図6】 第二の実施例で予備走査を含む基板検査のフ
ローFIG. 6 is a flowchart of a board inspection including a pre-scan in the second embodiment.
【図7】 本発明の第三の実施例の構成を示す図FIG. 7 is a diagram showing a configuration of a third embodiment of the present invention.
【図8】 二次元画像と制御電圧,回路基板上との位置
関係を示す図FIG. 8 is a diagram showing a positional relationship between a two-dimensional image, a control voltage, and a circuit board.
【図9】 本発明の第四の実施例の構成を示す図FIG. 9 is a diagram showing a configuration of a fourth embodiment of the present invention.
【図10】 格子状受光素子群配置と結線を示す図FIG. 10 is a diagram showing a grid-like light receiving element group arrangement and connection.
【図11】 第一位置信号,第二位置信号,光ビーム位
置等の関係を示す図FIG. 11 is a diagram showing a relationship among a first position signal, a second position signal, a light beam position, and the like.
【図12】 本発明の第五の実施例であるストライプ状
受光素子群配置断面図FIG. 12 is a sectional view showing the arrangement of a striped light receiving element group according to a fifth embodiment of the present invention;
【図13】 本発明の第六の実施例である半周期ずらし
た二組の受光素子群断面図FIG. 13 is a sectional view of two light receiving element groups shifted by a half cycle according to a sixth embodiment of the present invention.
【図14】 半周期ずらした二組の受光素子群の信号波
形と光ビーム位置関係を示す図FIG. 14 is a diagram illustrating a signal waveform and a light beam positional relationship of two light receiving element groups shifted by a half cycle.
【図15】 本発明の第七の実施例の構成を示す図FIG. 15 is a diagram showing a configuration of a seventh embodiment of the present invention.
【図16】 反射光に明暗パターンを含ませるための電
極部構造図FIG. 16 is a structural view of an electrode portion for including a light and dark pattern in reflected light.
【図17】 第二位置信号を検出するための画像FIG. 17 is an image for detecting a second position signal.
11・・回路基板・, 12・・
・基板支持部,13・・・透明基板,
14・・・透明電極,15・・・液晶層,
16・・・光源,17・・・照明
光, 18・・・撮像装置19
・・・撮像素子, 1a・・・集
光レンズ,1b・・・反射光 21,22・・回路パターン,23,24・・回路パタ
ーン画像, 25・・・画素 41・・・光ビーム走査装置, 42・・
・受光装置,43・・・光ビーム,
44・・・反射光,45,46・・信号線,
47・・・レーザダイオード,48・・
・整形レンズ, 49,4a・・揺
動ミラー,4b・・・結像レンズ,
4c・・・集光レンズ,4d・・・受光素子,
4e・・・制御装置 51・・・画像, 52,5
3・・パターン画像,54,57・・制御電圧,
55,58・・電圧,56,59・・座標 71・・・透明基板, 72・・
・透明電極,73・・・光導電層,
74・・・光ビーム走査装置,75・・・光ビー
ム, 76・・・制御装置,7
7,78・・信号線 81・・・画像,82,83,84,85・・パターン
画像 91・・・透明基板, 92・・
・受光素子群,93・・・透明電極,
94・・・光導電層,95・・・光ビーム走査装
置, 96・・・光ビーム,97・・・制
御装置, 98,99・・信号線 101,102,103,104・・受光素子,105
・・・抵抗, 106,108
・・オペアンプ,107,109・・出力,
10a・・・光ビームスポット 111・・・エリア, 112・
・・光ビーム位置,113,117・・制御電圧,
114,118・・電圧,115,119・
・座標, 11b,11d・・出力 121・・・透明基板, 122,
127・・ストライプ状電極,123・・・透明絶縁
材, 124,126・・光導電層,
125・・・透明電極 131・・・透明基板,132,137,139,13
d・・ストライプ状電極,134,136,13a,1
3c・・光導電層,133,138・・透明な絶縁層,
135,13b・・透明電極 141,142・・第二位置信号 151・・・透明基板, 152・
・・反射制御層,153・・・透明電極,
154・・・光導電層,155・・・光ビーム
走査装置, 156・・・光ビーム,157
・・・受光装置, 158・・・反
射光,159・・・集光レンズ, 1
5a・・・受光素子アレイ,15b・・・制御装置,
15c,15d,15e・・信号線 161・・・反射光強度の大な領域, 162・
・・反射光強度の小な領域,163・・・拡大図,
164・・・平坦部,165・・・
凹凸部, 166・・・入射光,
167,169・・反射光, 168,
16a・・透過光 171・・・画像, 172,
173・・明暗パターン,174・・・中心点,
175・・・境界11 ... circuit board, 12 ...
・ Substrate support, 13 ... Transparent substrate,
14: transparent electrode, 15: liquid crystal layer,
16 light source, 17 illumination light, 18 imaging device 19
... Imaging device, 1a ... Condenser lens, 1b ... Reflected light 21,22 ... Circuit pattern, 23,24 ... Circuit pattern image, 25 ... Pixel 41 ... Light beam scanning device , 42 ...
.Light receiving devices, 43 ... light beams,
44 ... reflected light, 45, 46 ... signal line,
47 ... Laser diode, 48 ...
・ Shaping lens, 49, 4a ・ ・ Swinging mirror, 4b ・ ・ ・ Imaging lens,
4c: condenser lens, 4d: light receiving element,
4e: Control device 51: Image, 52, 5
3 ··· Pattern image, 54, 57 ·· Control voltage,
55, 58... Voltage, 56, 59... Coordinates 71... Transparent substrate, 72.
・ Transparent electrode, 73 ・ ・ ・ Photoconductive layer,
74 ... light beam scanning device, 75 ... light beam, 76 ... control device, 7
7, 78... Signal line 81... Image, 82, 83, 84, 85... Pattern image 91... Transparent substrate, 92.
.Light receiving element group, 93: transparent electrode,
94 photoconductive layer, 95 light beam scanning device, 96 light beam, 97 control device, 98, 99 signal line 101, 102, 103, 104 light receiving element, 105
... Resistance, 106,108
..Op amps, 107,109..Output,
10a: light beam spot 111: area, 112
..Position of light beam, 113,117..Control voltage,
114, 118... Voltage, 115, 119.
-Coordinates, 11b, 11d-Output 121 ... Transparent substrate, 122,
127 striped electrode, 123 ... transparent insulating material, 124, 126 photoconductive layer,
125: Transparent electrode 131: Transparent substrate, 132, 137, 139, 13
d .. Striped electrodes, 134, 136, 13a, 1
3c ··· Photoconductive layer, 133,138 ··· Transparent insulating layer,
135, 13b ··· Transparent electrode 141, 142 ··· Second position signal 151 ··· Transparent substrate, 152 ·
..Reflection control layers, 153, transparent electrodes,
154: photoconductive layer, 155: light beam scanning device, 156: light beam, 157
...... Reception device, 158 ... Reflected light, 159 ... Condenser lens, 1
5a: light receiving element array, 15b: control device,
15c, 15d, 15e... Signal line 161... Large reflected light intensity area, 162.
..Small region of reflected light intensity, 163 ... enlarged view,
164: flat portion, 165:
Irregularities, 166 ... incident light,
167, 169 ... reflected light, 168,
16a: transmitted light 171: image, 172
173 ... light / dark pattern, 174 ... center point,
175 ・ ・ ・ Boundary
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/00 G01R 31/28 L ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/00 G01R 31/28 L
Claims (10)
により回路基板に対向する電極装置上の所定位置にアク
セスして回路基板良否を判別するる走査型回路基板検査
装置に於いて,回路基板を設定する毎に或いは検査の途
中で予備走査により回路基板上の予め定めた電極に対応
する電極装置上へアクセスして光ビーム走査系の有する
光ビームの第一位置信号或いは画像走査による第一位置
信号との関係を検知して回路基板に対向する電極装置上
の位置を補正処理することにより走査精度を確保するこ
とを特徴とする走査型回路基板検査装置In a scanning type circuit board inspection apparatus, a predetermined position on an electrode device facing a circuit board is accessed by light beam scanning or scanning on an image to determine whether the circuit board is good or bad. Each time the setting is performed or during the inspection, the pre-scanning is performed to access the electrode device corresponding to the predetermined electrode on the circuit board, and the first position signal of the light beam included in the light beam scanning system or the first position by image scanning. A scanning circuit board inspection apparatus for detecting a relationship with a signal and correcting a position on an electrode device facing the circuit board to secure scanning accuracy.
に於いて,予備走査でアクセスする回路基板上の電極は
複数として前記第一位置信号と回路上の基準位置に加え
て回路上の基準距離との関係をも認識して回路基板に対
向する電極装置上の位置を補正処理することにより走査
精度を確保することを特徴とする走査型回路基板検査装
置2. The scanning circuit board inspection apparatus according to claim 1, wherein a plurality of electrodes on the circuit board to be accessed in the pre-scan are provided in addition to the first position signal and the reference position on the circuit. A scanning circuit board inspection apparatus, which also recognizes a relationship with a reference distance and corrects a position on an electrode device facing a circuit board to secure scanning accuracy.
査装置に於いて,電極装置は電極層と電気光学素子等と
より構成されるとし,予備走査では電極装置内の電極層
と予め定めた回路基板上の電極のみとの間に所定の電位
差を与えて検出させることを特徴とする走査型回路基板
検査装置3. The scanning circuit board inspection apparatus according to claim 1, wherein the electrode device is composed of an electrode layer and an electro-optical element. A scanning circuit board inspection apparatus, wherein a predetermined potential difference is given between only a predetermined electrode on a circuit board and detection is performed.
査装置に於いて,電極装置は電極層と光導電層等とより
構成されるとし,予備走査では電極装置内の電極層と予
め定めた回路基板上の電極のみを選択して接続を検出す
ることを特徴とする走査型回路基板検査装置4. The scanning circuit board inspection apparatus according to claim 1, wherein the electrode device is composed of an electrode layer and a photoconductive layer. A scanning circuit board inspection apparatus, wherein a connection is detected by selecting only electrodes on a predetermined circuit board.
査装置に於いて,複数の光ビームにより形成される導電
パス間の回路パターン良否を検出する場合は,予め定め
た回路パターンを他の手段で接続し,その接続点と一体
の回路パターンを光ビームによって探索して第一位置信
号を得ることを特徴とする走査型回路基板検査装置5. A scanning circuit board inspection apparatus according to claim 1, wherein when detecting whether or not a circuit pattern between conductive paths formed by a plurality of light beams is good, a predetermined circuit pattern is used. A circuit pattern integrated with the connection point is searched by a light beam to obtain a first position signal.
向する電極装置上の所定位置にアクセスして回路基板良
否を判別するる走査型回路基板検査装置に於いて,光ビ
ームの経路中に配置されて光ビームの二次元的な位置に
応じた光ビームの第二位置信号を出力する受光素子群を
有し,前記光ビームの第二位置信号も加えて光ビームの
二次元位置を制御することを特徴とする走査型回路基板
検査装置6. A scanning circuit board inspection apparatus for judging whether a circuit board is good or not by accessing a predetermined position on an electrode device facing the circuit board by light beam scanning and arranged in a path of the light beam. A light receiving element group for outputting a second position signal of the light beam corresponding to the two-dimensional position of the light beam, and controlling the two-dimensional position of the light beam by adding the second position signal of the light beam. Scanning circuit board inspection apparatus characterized by the following:
に於ける受光素子群は,照射光ビームの径にほぼ等しい
周期的な格子状に形成されて格子内のそれぞれが受光量
に応じた電気信号を出力する受光素子で構成し,光ビー
ムに照射された受光素子群の縦,横それぞれ隣接する受
光素子間の信号出力を光ビームの第二位置信号とするこ
とを特徴とする走査型回路基板検査装置7. A light receiving element group in a scanning circuit board inspection apparatus according to claim 6, wherein the light receiving element group is formed in a periodic lattice shape substantially equal to the diameter of the irradiation light beam, and each of the lattices corresponds to the amount of received light. Scanning, comprising a light receiving element for outputting an electric signal, and a signal output between the light receiving element vertically and horizontally adjacent to the light receiving element group irradiated with the light beam as a second position signal of the light beam. Type circuit board inspection equipment
に於ける受光素子群は,照射光ビームの径にほぼ等しい
周期的な第一のストライプ状受光素子群と,第一のスト
ライプ状受光素子群とは方向が異なる第二のストライプ
状受光素子群とが積層され,光ビームに照射された第一
のストライプ状受光素子群に於ける隣接受光素子間の出
力差と,第二のストライプ状受光素子群に於ける隣接受
光素子間の出力差とを光ビームの第二位置信号とするこ
とを特徴とする走査型回路基板検査装置8. A light-receiving element group in a scanning circuit board inspection apparatus according to claim 6, wherein the light-receiving element group has a periodic first stripe-shaped light-receiving element group substantially equal to the diameter of the irradiation light beam and a first stripe-shaped light-receiving element group. A second stripe light receiving element group having a different direction from the light receiving element group is laminated, and the output difference between adjacent light receiving elements in the first stripe light receiving element group irradiated with the light beam, A scanning circuit board inspection apparatus, wherein an output difference between adjacent light receiving elements in a striped light receiving element group is used as a second position signal of a light beam.
に於ける受光素子群を,請求項7或いは8記載の受光素
子群を半周期ずらした二組有して構成し,光ビームの位
置により切り替えて第二位置信号とすることを特徴とす
る走査型回路基板検査装置9. A scanning type circuit board inspection apparatus according to claim 6, wherein the light receiving element group comprises two sets of the light receiving element groups according to claim 7 shifted by a half cycle. Scanning circuit board inspection apparatus characterized in that the second position signal is switched by a position.
電極装置上の所定位置にアクセスして回路基板良否を判
別する走査型回路基板検査装置に於いて,光ビームの経
路中に配置されて光ビームの二次元的な位置に応じた明
暗パターンを生ぜしめるような反射光を返す反射制御層
と,反射光を受光する受光素子アレイとを有し,受光素
子アレイより検出される明暗パターンから光ビームの第
二位置信号を得て光ビームの二次元位置を制御すること
を特徴とする走査型回路基板検査装置10. A scanning type circuit board inspection apparatus for accessing a predetermined position on an electrode device facing a circuit board by light beam scanning to determine whether the circuit board is good or not. It has a reflection control layer that returns reflected light so as to generate a light and dark pattern corresponding to the two-dimensional position of the beam, and a light receiving element array that receives the reflected light. A scanning circuit board inspection apparatus for controlling a two-dimensional position of a light beam by obtaining a second position signal of the beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000335637A JP2002139555A (en) | 2000-11-02 | 2000-11-02 | Scanning type circuit board inspection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000335637A JP2002139555A (en) | 2000-11-02 | 2000-11-02 | Scanning type circuit board inspection apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002139555A true JP2002139555A (en) | 2002-05-17 |
Family
ID=18811346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000335637A Pending JP2002139555A (en) | 2000-11-02 | 2000-11-02 | Scanning type circuit board inspection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002139555A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107703151A (en) * | 2017-10-30 | 2018-02-16 | 杭州智感科技有限公司 | A kind of comprehensive detection device of open defect |
-
2000
- 2000-11-02 JP JP2000335637A patent/JP2002139555A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107703151A (en) * | 2017-10-30 | 2018-02-16 | 杭州智感科技有限公司 | A kind of comprehensive detection device of open defect |
CN107703151B (en) * | 2017-10-30 | 2024-01-09 | 杭州智感科技有限公司 | Appearance defect all-round check out test set |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5309222A (en) | Surface undulation inspection apparatus | |
EP0467149B1 (en) | Method of and device for inspecting pattern of printed circuit board | |
CN101943572B (en) | Method for inspecting measurement object | |
US9488472B2 (en) | Apparatus and method for measuring a three dimensional shape | |
JPS6229737B2 (en) | ||
JPH0831137B2 (en) | Three-dimensional image forming method and apparatus | |
JPH02114156A (en) | Inspection device of mounted substrate | |
JP2002139555A (en) | Scanning type circuit board inspection apparatus | |
JPH0156682B2 (en) | ||
JP3479171B2 (en) | LCD drive board inspection method | |
JP2001349710A (en) | Three-dimensional measuring device | |
JPH08233532A (en) | Inspection of transparent electrode | |
JPH04221705A (en) | Visual inspection equipment | |
JPH06160057A (en) | Device for inspecting lead shape of electronic part | |
JP2596158B2 (en) | Component recognition device | |
Kakinoki et al. | Wide-Area, High Dynamic Range 3-D Imager | |
US20230324679A1 (en) | Laser device and method of aligning laser device | |
JP3232811B2 (en) | Inspection method of mounted printed circuit board | |
JP2525261B2 (en) | Mounted board visual inspection device | |
JPH11304483A (en) | Wave height measuring method and device | |
JPS5970947A (en) | Method for detecting pattern of printed-wiring board | |
JP2002081924A (en) | Three-dimensional measuring device | |
JP3203853B2 (en) | Inspection device for mounted printed circuit boards | |
JP2885443B2 (en) | Flat package integrated circuit lead inspection device | |
JPH0399208A (en) | Inspection apparatus for mounting board |