JP2002139312A - Measuring method of earth-carrying quantity - Google Patents

Measuring method of earth-carrying quantity

Info

Publication number
JP2002139312A
JP2002139312A JP2000332755A JP2000332755A JP2002139312A JP 2002139312 A JP2002139312 A JP 2002139312A JP 2000332755 A JP2000332755 A JP 2000332755A JP 2000332755 A JP2000332755 A JP 2000332755A JP 2002139312 A JP2002139312 A JP 2002139312A
Authority
JP
Japan
Prior art keywords
cross
sectional area
soil
conveyed
transported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000332755A
Other languages
Japanese (ja)
Inventor
Kazunari Kuramoto
一成 蔵元
Hiroaki Watanabe
博明 渡辺
Yoshio Sakai
良雄 堺
Masayuki Kusano
昌之 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Kobukuro Iron Works Co Ltd
Original Assignee
Obayashi Corp
Kobukuro Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Kobukuro Iron Works Co Ltd filed Critical Obayashi Corp
Priority to JP2000332755A priority Critical patent/JP2002139312A/en
Publication of JP2002139312A publication Critical patent/JP2002139312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measuring Volume Flow (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy. SOLUTION: The contour of carrying sediment on a conveyor is photographed in a fixed position, the cross-sectional area of the carrying sediment for each prescribed time is arithmetically operated by image processing, and a carrying earth quantity for each prescribed time is arithmetically operated, by multiplying the obtained cross-sectional area with a carrying speed of the conveyor to measure the carrying earth quantity of the conveyor for determining an integral value of the obtained carrying earth quantity. Before actually measuring the carrying sediment A, plural planar models M1 to M4 different in a contour shape having known cross-sectional area are premanufactured; the respective planar models M1 to M4 are photographed under the same condition as actual measurement; the operational cross-sectional areas sm1 to sm4 with respective plane models M1 to M4 are determined by the image processing, a correction reference is made on the basis of these operational cross-sectional areas sm1 to sm4 the known cross-sectional areas s1 to s4; and when actually measuring the carrying sediment A, the actually measured cross-sectional area s is corrected on the basis of the correction reference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、搬送土量の測定
方法に関し、特に、ベルトコンベア上で搬送中の土砂量
を測定する方法において、測定精度を向上させる技術に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of soil transported, and more particularly to a technique for measuring the amount of earth and sand being transported on a belt conveyor, in which the measurement accuracy is improved.

【0002】[0002]

【従来の技術】コンベア上で土砂を搬送する際に、搬送
土量の測定装置として、例えば、特開平2−12440
9号公報には、コンベア上を連続して搬送される土砂の
平面形状を、別の位置から撮像装置で連続的に撮影し、
得られた平面形状の撮像情報とコンベア速度とから、搬
送土量を連続的に計測する装置が提案されている。
2. Description of the Related Art When transporting earth and sand on a conveyor, an apparatus for measuring the amount of soil transported is disclosed in, for example, JP-A-2-12440.
No. 9 discloses that the planar shape of earth and sand conveyed continuously on a conveyor is continuously photographed from another position by an imaging device,
There has been proposed an apparatus for continuously measuring the amount of conveyed soil from the obtained planar imaging information and the conveyor speed.

【0003】この公報に開示されている装置は、コンベ
ア上を搬送される土の輪郭を定位置で撮像する撮像手段
と、コンベアの搬送速度を検出する速度検出手段と、撮
像された輪郭に基づいて、単位時間ごとの搬送土砂の断
面積を演算する画像処理手段と、得られた断面積に搬送
速度を乗算して、単位時間ごとの土量を演算する演算手
段と、得られた単位土量を順次積算する積算手段と、積
算値を記録表示する表示手段とを備えている。
[0003] The apparatus disclosed in this publication includes an image pickup means for picking up an image of a contour of soil conveyed on a conveyor at a fixed position, a speed detecting means for detecting a convey speed of the conveyer, and a device based on the imaged contour. Image processing means for calculating the cross-sectional area of the conveyed soil per unit time, calculating means for calculating the soil volume per unit time by multiplying the obtained cross-sectional area by the conveying speed, and the obtained unit soil An integrating means for sequentially integrating the amounts and a display means for recording and displaying the integrated value are provided.

【0004】この公報に開示されている装置では、搬送
土砂量の連続計測が可能で、装置構成が簡単で、設置も
容易であるという利点を有しているが、以下に説明する
技術的な課題もあった。
[0004] The apparatus disclosed in this publication has the advantages that continuous measurement of the amount of sediment conveyed is possible, the apparatus configuration is simple, and the installation is easy. There were also issues.

【0005】[0005]

【発明が解決しようとする課題】すなわち、上記公報に
開示されている測定装置では、コンベア上の搬送土砂
を、撮像手段により斜め上方から撮影するが、この場
合、コンベア上の搬送土砂の中心と、撮像画面の中心と
を一致させることになる。
That is, in the measuring device disclosed in the above-mentioned publication, the conveyed earth and sand on the conveyor is photographed obliquely from above by the imaging means. And the center of the imaging screen.

【0006】ところが、このような状態での輪郭撮影で
は、撮像画面の中心よりも上側では、横方向が実際より
も広く写し出され、縦方向には、実際よりも狭く写し出
される。
However, in the contour photographing in such a state, the horizontal direction is wider than the actual position above the center of the image screen, and the vertical direction is narrower than the actual position.

【0007】また、撮像画面の中心よりも下側では、横
方向が実際よりも狭く写し出され、縦方向も、実際より
も狭く写し出される。これは、撮影手段と測定対象物と
の間の遠近差に基づくものであり、このような状態で搬
送土砂の断面積を画像処理手段により求めると、測定誤
差が大きくなる。
[0007] Further, below the center of the imaging screen, the horizontal direction is projected narrower than the actual one, and the vertical direction is projected narrower than the actual one. This is based on the perspective difference between the photographing means and the measurement object. If the cross-sectional area of the conveyed earth and sand is determined by the image processing means in such a state, the measurement error increases.

【0008】一方、この種の測定装置が使用される場所
は、トンネルの構築現場など狭い場所での使用が多く、
また、屋外で使用する際には、太陽光を遮断するために
ケースで覆うことも多く、いずれにしても、撮像手段と
測定対象物である搬送土砂との間の距離を十分に離すこ
とが難しい。
On the other hand, this type of measuring device is often used in a narrow place such as a tunnel construction site.
In addition, when used outdoors, it is often covered with a case to block sunlight, and in any case, the distance between the imaging means and the conveyed sediment, which is the object to be measured, should be sufficiently large. difficult.

【0009】そこで、この種の計測装置では、撮像手段
には、焦点距離が短い広角レンズを採用しているが、こ
のような広角レンズは、歪みが大きく、このような歪み
を補正しないと、測定誤差が非常に大きくなるという問
題があった。
Therefore, in this type of measuring apparatus, a wide-angle lens having a short focal length is employed as an imaging means. Such a wide-angle lens has a large distortion, and if such a distortion is not corrected, There is a problem that a measurement error becomes very large.

【0010】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、測
定誤差の少ない搬送土量の測定方法を提供することにあ
る。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a method of measuring the amount of conveyed soil with a small measurement error.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、コンベア上の搬送土砂の輪郭を定位置で
撮影し、撮影された前記輪郭に基づき、所定時間ごとの
前記搬送土砂の断面積を画像処理により演算し、得られ
た前記断面積に前記コンベアの搬送速度を乗じて、所定
時間ごとの搬送土量を演算し、得られた搬送土量からそ
の積算値を求める搬送土量の測定方法において、前記搬
送土砂の実測を行なう前に、予め、既知断面積の輪郭形
状の異なる複数の平面モデルを作製し、実測と同一条件
で、各平面モデルを撮影して、前記画像処理により各平
面モデル毎の演算断面積を求め、この演算断面積と前記
既知断面積とに基づいて、補正基準を作成し、前記搬送
土砂を実測した際に、前記補正基準に基づいて実測され
た断面積を補正するようにした。このように構成した搬
送土量の測定方法によれば、搬送土砂の実測を行なう前
に、予め、既知断面積の輪郭形状の異なる複数の平面モ
デルを作製し、実測と同一条件で、各平面モデルを撮影
して、画像処理により各平面モデル毎の演算断面積を求
め、この演算断面積と既知断面積とに基づいて、補正基
準を作成し、搬送土砂を実測した際に、補正基準に基づ
いて実測された断面積を補正する。平面モデルを撮影し
て、画像処理により各平面モデル毎の演算断面積を求め
る際には、測定対象物の遠近差による誤差や、撮像手段
のレンズ系の歪誤差が含まれ、この演算断面積により補
正基準を作成するので、補正した搬送土量の測定から、
遠近差およびレンズ系の歪誤差が排除され、その結果精
度を大幅に向上させることができる。前記平面モデル
は、前記搬送土量の最小値から最大値まで4段階に設定
することができる。このような平面モデル用いると、搬
送土量の変化に対応して、より効果的な補正が可能にな
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for photographing a contour of conveyed earth and sand on a conveyor at a fixed position, and based on the photographed outline, the conveyed earth and sand every predetermined time. Is calculated by image processing, the obtained cross-sectional area is multiplied by the conveying speed of the conveyor, the conveyed soil amount is calculated every predetermined time, and the integrated value is calculated from the obtained conveyed soil amount. In the soil volume measurement method, before performing the actual measurement of the transported sediment, in advance, to produce a plurality of plane models having different contour shapes of known cross-sectional area, under the same conditions as the actual measurement, photograph each plane model, The calculated cross-sectional area of each plane model is obtained by image processing, a correction reference is created based on the calculated cross-sectional area and the known cross-sectional area, and when the conveyed soil is actually measured, the measurement is performed based on the correction reference. Corrected cross section It was so. According to the method for measuring the amount of transported soil configured in this manner, before actually measuring the transported soil, a plurality of plane models having different contour shapes of known cross-sectional areas are prepared in advance, and each plane model is manufactured under the same conditions as the actual measurement. The model is photographed, the calculated cross-sectional area of each plane model is obtained by image processing, and a correction standard is created based on the calculated cross-sectional area and the known cross-sectional area. The cross-sectional area actually measured is corrected based on this. When the plane model is photographed and the calculated cross-sectional area of each plane model is obtained by image processing, errors due to the perspective difference of the object to be measured and distortion errors of the lens system of the imaging unit are included. Is used to create a correction standard.
Perspective and lens system distortion errors are eliminated, and as a result accuracy can be greatly improved. The plane model can be set in four stages from a minimum value to a maximum value of the transported soil amount. When such a plane model is used, more effective correction can be performed in response to a change in the amount of soil transported.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、添付図面に基づいて詳細に説明する。図1か
ら図5は、本発明にかかる搬送土量の測定方法の一実施
例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 5 show an embodiment of the method for measuring the amount of soil transported according to the present invention.

【0013】これらの図に示した測定方法は、図1にそ
の測定状態を示すように、土砂を搬送するコンベア10
の周囲にカバー12を設置し、カバー12で測定対象物
である搬送土砂Aを覆うようにしており、カバー12の
内面側には、搬送土砂Aを撮影する際に用いる照明器具
14が設置されている。
In the measuring method shown in these figures, as shown in FIG.
A cover 12 is provided around the object, and the cover 12 covers the transported sediment A, which is an object to be measured. On the inner surface side of the cover 12, a lighting fixture 14 used for photographing the transported sediment A is provided. ing.

【0014】コンベア10は、図示省略の駆動モータに
より、図1に矢印方向に搬送移動されるベルト16を備
えており、搬送土砂Aは、このベルト16上に投入され
て搬送移動される。この時の搬送速度Vは、例えば、ベ
ルト16の駆動用モータの回転数などにより常時測定さ
れている。
The conveyor 10 is provided with a belt 16 which is conveyed and moved in the direction of the arrow in FIG. 1 by a drive motor (not shown), and the conveyed sediment A is fed onto the belt 16 and conveyed. At this time, the transport speed V is constantly measured by, for example, the number of rotations of the driving motor of the belt 16.

【0015】搬送土砂Aの土量Xを測定する測定装置
は、コンベア10上を搬送される搬送土砂Aの輪郭Bを
定位置で撮像する撮像カメラ20と、制御演算装置22
と、表示モニタ24とを有している。
The measuring device for measuring the soil volume X of the conveyed sediment A includes an imaging camera 20 for imaging the contour B of the conveyed sediment A conveyed on the conveyor 10 at a fixed position, and a control arithmetic unit 22.
And a display monitor 24.

【0016】撮像カメラ20は、所定の画素数を備えた
デジタルカメラから構成され、搬送土砂Aの搬送方向に
対して、照明器具14の前方上部側にっあって、所定の
傾斜角度θでベルト16上の搬送土砂Aを撮影するよう
になっている。
The imaging camera 20 is composed of a digital camera having a predetermined number of pixels. The imaging camera 20 is located on the upper front side of the lighting fixture 14 with respect to the conveying direction of the conveyed earth and sand A, and has a belt at a predetermined inclination angle θ. 16 is to be photographed.

【0017】制御演算装置22は、撮像カメラ20で搬
送土砂Aを撮影する際に、照明器具14のオンオフを制
御したり、あるいは、撮像カメラ20で撮像された輪郭
Bに基づいて、単位時間ごとの搬送土砂Aの断面積sを
演算する画像処理機能も備えている。
The control arithmetic unit 22 controls the on / off of the lighting equipment 14 when photographing the conveyed sediment A with the imaging camera 20, or controls the lighting fixture 14 every unit time based on the contour B imaged by the imaging camera 20. The image processing function for calculating the cross-sectional area s of the transported sediment A is also provided.

【0018】また、制御演算装置22は、コンベア10
の搬送速度Vを取り込んで、これに断面積sを乗算し
て、単位時間ごとの単位土量xを演算し、単位土量xを
順次積算して、積算土量Xnを求め、これを表示モニタ
24に表示させる機能も備えている。
Further, the control arithmetic unit 22 includes the conveyor 10
Is multiplied by the cross-sectional area s to calculate a unit soil volume x per unit time, and sequentially integrate the unit soil volume x to obtain an integrated soil volume Xn, which is displayed. It also has a function of displaying on the monitor 24.

【0019】図2は、撮像カメラ20で撮影された輪郭
Bから搬送土量Xを求める場合の測定原理を示してい
る。搬送土量Xを求める場合には、撮像カメラ20で撮
影された輪郭Bから断面積sを求める必要がある。
FIG. 2 shows the principle of measurement when the transported soil amount X is obtained from the contour B photographed by the imaging camera 20. When obtaining the transported soil amount X, it is necessary to obtain the cross-sectional area s from the outline B captured by the imaging camera 20.

【0020】この際には、まず、第2図(A)に示すよ
うに、搬送土砂Aをベルト16上に載せないで、空荷状
態を撮像カメラ20で撮影し、撮像された画面のベルト
16上にできる明暗線に合せて、計測ウインドウ(第2
図(A)に点線で示した形状であり、ベルト16上に載
置できる搬送土砂Aの最大形状に対応している)を設定
する。
In this case, first, as shown in FIG. 2 (A), the transported earth and sand A is not placed on the belt 16, but the empty state is photographed by the imaging camera 20, and the belt of the imaged screen is taken. Measurement window (2nd line)
(A shape corresponding to the maximum shape of the conveyed sediment A that can be placed on the belt 16) is set.

【0021】次に、第2図(B)に示すように、ベルト
16上に搬送土砂Aを載せ、この土砂Aの搬送中に照明
器具14により、これを上方から照射して、光切断部を
形成し、この状態を撮像カメラ20で撮影する。
Next, as shown in FIG. 2 (B), the transported earth and sand A is placed on the belt 16, and the illumination equipment 14 irradiates the earth and sand A from above while the earth and sand A is being transported. Is formed, and this state is photographed by the imaging camera 20.

【0022】そして、この撮影によって得られた画面を
ニ値化処理して、図2(C)に白色で示したような、搬
送土砂A部の輪郭Bを得、この輪郭B内の画素数(ピク
セル数)を演算する。
Then, the screen obtained by this photographing is binarized to obtain a contour B of the conveyed sediment A as shown in white in FIG. 2C, and the number of pixels in the contour B (The number of pixels).

【0023】輪郭B内の画素数が得られると、予め、1
画素当たりの実像面積を予め求めておくことで、これら
を乗算することにより、光切断部で切断された個所の断
面積sを求めることができる。
When the number of pixels in the outline B is obtained, 1
By obtaining the real image area per pixel in advance, by multiplying them, the cross-sectional area s of the portion cut by the light cutting section can be obtained.

【0024】以上のような測定方法の基本原理は、従来
の測定装置を用いる場合と、基本的には相違しないが、
本実施例の測定方法は、以下に説明する点に顕著な相違
が認められる。
Although the basic principle of the above-described measuring method is not fundamentally different from the case of using a conventional measuring device,
The measurement method of this example has a remarkable difference in the points described below.

【0025】すなわち、本実施例の場合には、搬送土砂
Aの実測を行なう前に、予め、既知断面積の輪郭形状の
異なる複数の平面モデルM1〜M4を作製し、実測と同
一条件で、各平面モデルM1〜M4を撮影して、画像処
理により各平面モデルM1〜M4毎の演算断面積sm1
〜sm4を求め、この演算断面積sm1〜sm4と既知
断面積s1〜s4とに基づいて、補正基準を作成し、搬
送土砂Aを実測した際に、補正基準に基づいて実測され
た断面積sを補正する。
That is, in the case of the present embodiment, before the actual measurement of the conveyed sediment A, a plurality of plane models M1 to M4 having known sectional areas and different contour shapes are prepared in advance, and under the same conditions as the actual measurement, Each plane model M1 to M4 is photographed, and the calculated cross-sectional area sm1 for each plane model M1 to M4 is obtained by image processing.
To sm4, a correction standard is created based on the calculated cross-sectional areas sm1 to sm4 and the known cross-sectional areas s1 to s4. Is corrected.

【0026】図3は、本発明の測定方法で用いる平面モ
デルM1〜M4の一例を示している。同図に示した4つ
の平面モデルM1〜M4では、ハッチングで示した部分
が、黒色に塗られていて、この黒色部分が搬送土砂Aの
ベルト16上の載置形状、すなわち、輪郭Bに対応する
ように作製されている。
FIG. 3 shows an example of the plane models M1 to M4 used in the measuring method of the present invention. In the four plane models M1 to M4 shown in the same figure, the hatched portions are painted black, and the black portions correspond to the placement shape of the conveyed sediment A on the belt 16, that is, the contour B. It is made to do.

【0027】4つの平面モデルM1〜M4は、ベルト1
6上に載置しうる搬送土砂Aの量に対して、最小値から
最大値、およびこれらの中間に位置するように設定され
ていて、平面モデルM1が最小値に対応し、平面モデル
M4が最大値に対応している。
The four plane models M1 to M4 correspond to the belt 1
6 is set so as to be located between the minimum value and the maximum value and between the minimum value and the maximum value with respect to the amount of the conveyed sediment A that can be placed on the plane model 6, the plane model M1 corresponds to the minimum value, It corresponds to the maximum value.

【0028】平面モデルM1の下線の長さ294.42
9mmが、実際に使用するベルト16の幅になってい
て、平面モデルM2〜M4の側面の傾斜は、実際に使用
するベルト16の逆ハ字状に拡開した側面形状に対応し
ている。
The length of the underline of the plane model M1 is 294.42.
9 mm is the width of the belt 16 actually used, and the inclination of the side surfaces of the plane models M <b> 2 to M <b> 4 corresponds to the side surface shape of the actually used belt 16 expanded in an inverted C shape.

【0029】これらの各平面モデルM1〜M4の実際の
面積は、図示した寸法に基づいて予め演算されて、既知
断面積s1〜s4となっている。なお、この既知断面積
s1〜s4は、演算で求めること以外に、撮像カメラ2
0で各平面モデルM1〜M4を正対撮影して、求めるこ
ともできる。
The actual area of each of these plane models M1 to M4 is calculated in advance on the basis of the illustrated dimensions to obtain known sectional areas s1 to s4. The known cross-sectional areas s1 to s4 can be calculated by the
At 0, each of the plane models M1 to M4 can be obtained by directly photographing.

【0030】このような平面モデルM1〜M4が作製さ
れると、次に、実測と同一条件で、各平面モデルM1〜
M4を撮影して、画像処理により各平面モデルM1〜M
4毎の演算断面積sm1〜sm4が求められる。
After the plane models M1 to M4 are manufactured, each of the plane models M1 to M4 is then manufactured under the same conditions as those of the actual measurement.
M4 is photographed, and each plane model M1 to M is processed by image processing.
The computational cross-sectional areas sm1 to sm4 for every four are obtained.

【0031】図4は、この演算面積sm1〜sm4を求
める際の、撮像カメラ20の設置状態が示されている。
図4に示した撮像カメラ20の設置状態は、実測に即し
たものであって、実測に用いる撮像カメラ20が用いら
れ、かつ、この撮像カメラ20は、撮影する平面モデル
M1〜M4の中心C0から水平方向にL1の距離を隔て
て(実際の設置距離750mm)、撮影角度θ(実際の
設置角度が30°)になるように、垂直距離L2(実際
の設置距離433mm)を隔てて設置している。
FIG. 4 shows an installation state of the imaging camera 20 when obtaining the calculation areas sm1 to sm4.
The installation state of the imaging camera 20 shown in FIG. 4 is in accordance with the actual measurement, the imaging camera 20 used for the actual measurement is used, and the imaging camera 20 is located at the center C0 of the plane models M1 to M4 to be photographed. And a vertical distance L2 (actual installation distance of 433 mm) so that the shooting angle θ (actual installation angle is 30 °) and a distance of L1 in the horizontal direction (actual installation distance 750 mm). ing.

【0032】このような実測に即した条件で各平面モデ
ルM1〜M4を撮像カメラ20で撮影し、前述した測定
原理に基づいて、得られた撮像画面の各く輪郭Bの画素
数をカウントして、画像処理により各平面モデルM1〜
M4毎の演算断面積sm1〜sm4を求める。
Each of the plane models M1 to M4 is photographed by the imaging camera 20 under the conditions according to the actual measurement, and the number of pixels of each outline B of the obtained imaging screen is counted based on the above-described measurement principle. Then, each plane model M1
The calculation sectional areas sm1 to sm4 for each M4 are obtained.

【0033】以下に示した表1には、このようにして求
めた演算断面積sm1〜sm4のそれぞれの値が示され
ている。このような演算断面積sm1〜sm4値が求め
られると次に、演算断面積sm1〜sm4と既知断面積
s1〜s4とに基づいて、補正基準を作成する。
Table 1 below shows the values of the calculated sectional areas sm1 to sm4 obtained in this manner. When the values of the calculated sectional areas sm1 to sm4 are obtained, a correction reference is created based on the calculated sectional areas sm1 to sm4 and the known sectional areas s1 to s4.

【0034】[0034]

【表1】 [Table 1]

【0035】図5には、この補正基準をグラフ化した場
合が示されている。同図において、縦方向が面積変化率
の大きさであり、この断面積変化率は、既知断面積s1
〜s4に対する演算断面積sm1〜sm4の大きさを百
分率表示したものである。
FIG. 5 shows a case where this correction reference is graphed. In the figure, the vertical direction is the magnitude of the area change rate, and the cross-sectional area change rate is the known cross-sectional area s1.
The size of the calculated cross-sectional areas sm1 to sm4 with respect to 〜s4 is expressed as a percentage.

【0036】また、図5の横方向は、演算断面積sm1
〜sm4値を示している。図5から判るように、本発明
のように、斜め上方から搬送土砂Aを撮像カメラ20で
撮影し、得られた撮像画面を画像処理してベルト16上
の搬送土砂Aの断面積を求めると、搬送土砂Aの載置量
が少なくなる程、実際の断面積よりも演算断面積が小さ
くなることがわかる。
The horizontal direction in FIG.
〜Sm4 values are shown. As can be seen from FIG. 5, as in the present invention, the transported sediment A is photographed from obliquely above by the imaging camera 20, and the obtained imaging screen is subjected to image processing to determine the cross-sectional area of the transported sediment A on the belt 16. It can be seen that the smaller the amount of the transported sediment A, the smaller the calculated cross-sectional area than the actual cross-sectional area.

【0037】このような補正基準が作成されると、搬送
土砂Aを実測した際に、この補正基準に基づいて実測さ
れた断面積sを補正することになる。なお、補正基準
は、図5に示したような校正グラフとして使用すること
もできるし、予め数値化した補正テーブルを作成し、こ
れを、例えば、制御演算装置22のメモリに格納してお
き、演算断面積sm1〜sm4を、プログラムに組込ん
だ手順で自動的に補正するようにしてもよい。
When such a correction criterion is created, when the transported sediment A is actually measured, the cross-sectional area s actually measured based on the correction criterion is corrected. The correction criterion can be used as a calibration graph as shown in FIG. 5, or a correction table quantified in advance is created and stored in, for example, a memory of the control operation device 22. The calculation sectional areas sm1 to sm4 may be automatically corrected by a procedure incorporated in a program.

【0038】さて、以上のような測定方法によれば、搬
送土砂Aの実測を行なう前に、予め、既知断面積の輪郭
形状の異なる複数の平面モデルM1〜M4を作製し、実
測と同一条件で、各平面モデルM1〜M4を撮影して、
画像処理により各平面モデルM1〜M4毎の演算断面積
sm1〜sm4を求め、この演算断面積sm1〜sm4
と既知断面積s1〜s4とに基づいて、補正基準を作成
し、搬送土砂Aを実測した際に、補正基準に基づいて実
測された断面積sを補正する。
According to the above-described measuring method, a plurality of plane models M1 to M4 having different sectional shapes with known cross-sectional areas are prepared in advance before the actual measurement of the conveyed sediment A, and the same conditions as those of the actual measurement are obtained. Then, photograph each plane model M1 to M4,
The calculated cross-sectional areas sm1 to sm4 for each of the plane models M1 to M4 are obtained by image processing, and the calculated cross-sectional areas sm1 to sm4 are calculated.
Based on the known cross-sectional areas s1 to s4, a correction criterion is created, and when the transported sediment A is actually measured, the actually measured cross-sectional area s is corrected based on the correction criterion.

【0039】ここで、平面モデルM1〜M4を撮影し
て、画像処理により各平面モデルM1〜M4毎の演算断
面積sm1〜sm4を求める際には、測定対象物、すな
わち搬送土砂Aの遠近差による誤差や、撮像カメラ20
のレンズ系の歪誤差が含まれ、この演算断面積sm1〜
sm4により補正基準を作成するので、結果として、補
正した搬送土量の測定から、遠近差およびレンズ系の歪
誤差が排除され、測定精度を大幅に向上させることがで
きる。
Here, when the plane models M1 to M4 are photographed and the calculated cross-sectional areas sm1 to sm4 for each of the plane models M1 to M4 are obtained by image processing, the perspective difference of the object to be measured, ie, the conveyed soil A Error due to the
And the calculated cross-sectional area sm1
Since the correction criterion is created based on sm4, as a result, the perspective difference and the lens system distortion error are excluded from the corrected measurement of the transported soil amount, and the measurement accuracy can be greatly improved.

【0040】また、本実施例の場合には、平面モデルM
1〜M4は、搬送土量の最小値から最大値まで4段階に
設定しているので、搬送土量の変化に対応して、より効
果的な補正が可能になる。
In this embodiment, the plane model M
Since 1 to M4 are set in four steps from the minimum value to the maximum value of the transported soil amount, more effective correction can be performed according to the change in the transported soil amount.

【0041】なお、上記実施例では、4種類の平面モデ
ルM1〜M4を用いる場合を例示したが、本発明の実施
は、これに限定されることはなく、より多数の平面モデ
ルを用いてもよい。
In the above embodiment, the case where four types of plane models M1 to M4 are used has been described as an example. However, the present invention is not limited to this, and even if a larger number of plane models are used. Good.

【0042】[0042]

【発明の効果】以上、詳細に説明したように、本発明に
かかる搬送土量の測定方法によれば、撮影時の遠近およ
びレンズ系誤差を排除して、高精度の測定が可能にな
る。
As described in detail above, according to the method for measuring the amount of conveyed soil according to the present invention, high-precision measurement can be performed by eliminating distance and lens errors during imaging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる搬送土量の測定方法の測定状態
の説明図である。
FIG. 1 is an explanatory diagram of a measuring state of a method for measuring the amount of conveyed soil according to the present invention.

【図2】図1の測定方法の断面演算の原理説明図であ
る。
FIG. 2 is an explanatory view of the principle of the cross-section calculation in the measurement method of FIG. 1;

【図3】図1に示した測定方法に用いる平面モデルの一
例を示す正面図である。
FIG. 3 is a front view showing an example of a plane model used for the measurement method shown in FIG.

【図4】図3に示した平面モデルの撮影方法の説明図で
ある。
FIG. 4 is an explanatory diagram of an imaging method of the plane model shown in FIG. 3;

【図5】本発明にかかる搬送土量の測定方法で用いる補
正グラフの説明図である。
FIG. 5 is an explanatory diagram of a correction graph used in the method for measuring the amount of conveyed soil according to the present invention.

【符号の説明】[Explanation of symbols]

10 コンベア 12 カバー 14 照明器具 16 ベルト 18 制御演算装置 20 撮像カメラ 22 表示モニタ DESCRIPTION OF SYMBOLS 10 Conveyor 12 Cover 14 Lighting equipment 16 Belt 18 Control arithmetic unit 20 Imaging camera 22 Display monitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 博明 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 堺 良雄 福岡県嘉穂郡庄内町大字有安958番地の23 株式会社幸袋工作所内 (72)発明者 草野 昌之 福岡県嘉穂郡庄内町大字有安958番地の23 株式会社幸袋工作所内 Fターム(参考) 2D054 DA02 DA31 2F030 CC20 CE04 2F065 AA52 AA59 BB05 CC00 FF04 JJ03 JJ08 JJ26 MM03 QQ04 QQ32 RR05 UU05 5L096 BA18 CA04 DA01 FA06 FA59 FA67 GA28  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroaki Watanabe 2-15-2 Konan, Minato-ku, Tokyo Obayashi Corporation Headquarters (72) Inventor Yoshio Sakai 958-28, Ariyasu, Aria, Shonai-cho, Kaho-gun, Fukuoka Inside the Kobukuro Works (72) Inventor Masayuki Kusano 958, Ariyasu, Oaza, Shonai-cho, Kaho-gun, Fukuoka Prefecture F-term (reference) 2D054 DA02 DA31 2F030 CC20 CE04 2F065 AA52 AA59 BB05 CC00 FF04 JJ03 JJ08 JJ26 JJ26 MM03 QQ04 QQ32 RR05 UU05 5L096 BA18 CA04 DA01 FA06 FA59 FA67 GA28

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンベア上の搬送土砂の輪郭を定位置で
撮影し、 撮影された前記輪郭に基づき、所定時間ごとの前記搬送
土砂の断面積を画像処理により演算し、 得られた前記断面積に前記コンベアの搬送速度を乗じ
て、所定時間ごとの搬送土量を演算し、得られた搬送土
量からその積算値を求める搬送土量の測定方法におい
て、 前記搬送土砂の実測を行なう前に、予め、既知断面積の
輪郭形状の異なる複数の平面モデルを作製し、 実測と同一条件で、各平面モデルを撮影して、前記画像
処理により各平面モデル毎の演算断面積を求め、この演
算断面積と前記既知断面積とに基づいて、補正基準を作
成し、 前記搬送土砂を実測した際に、前記補正基準に基づいて
実測された断面積を補正することを特徴とする搬送土量
の測定方法。
An image of a contour of conveyed soil on a conveyor is taken at a fixed position, and a cross-sectional area of the conveyed sand at predetermined time intervals is calculated by image processing based on the photographed outline, and the obtained cross-sectional area is obtained. Multiplying the conveyor speed of the conveyor, to calculate the amount of soil transported for each predetermined time, in the method of measuring the amount of soil transported to obtain the integrated value from the amount of transported soil obtained, before the actual measurement of the transported soil In advance, a plurality of plane models having known cross-sectional areas having different contour shapes are prepared, each plane model is photographed under the same conditions as the actual measurement, and the calculated cross-sectional area of each plane model is obtained by the image processing. Based on the cross-sectional area and the known cross-sectional area, a correction standard is created, and when the conveyed soil is actually measured, the cross-sectional area measured based on the correction standard is corrected. Measuring method.
【請求項2】 前記平面モデルは、前記搬送土量の最小
値から最大値まで4段階に設定することを特徴とする搬
送土量の測定方法。
2. The method for measuring the amount of soil carried, wherein the plane model is set in four stages from a minimum value to a maximum value of the amount of soil carried.
JP2000332755A 2000-10-31 2000-10-31 Measuring method of earth-carrying quantity Pending JP2002139312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332755A JP2002139312A (en) 2000-10-31 2000-10-31 Measuring method of earth-carrying quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332755A JP2002139312A (en) 2000-10-31 2000-10-31 Measuring method of earth-carrying quantity

Publications (1)

Publication Number Publication Date
JP2002139312A true JP2002139312A (en) 2002-05-17

Family

ID=18808921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332755A Pending JP2002139312A (en) 2000-10-31 2000-10-31 Measuring method of earth-carrying quantity

Country Status (1)

Country Link
JP (1) JP2002139312A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220633A (en) * 2004-02-06 2005-08-18 Ohbayashi Corp Device and method for detecting conveyance soil and sand amount of belt conveyor
JP2005282265A (en) * 2004-03-30 2005-10-13 Ohbayashi Corp Shield machine
KR100609952B1 (en) * 2004-09-22 2006-08-09 한국원자력연구소 Area measurement method for the inside of boundary line by the hierarchical distance-angle graphs
JP2009025066A (en) * 2007-07-18 2009-02-05 Taisei Corp Conveyance amount estimation device
CN111982051A (en) * 2019-05-22 2020-11-24 复盛应用科技股份有限公司 Method for measuring radian of golf club head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220633A (en) * 2004-02-06 2005-08-18 Ohbayashi Corp Device and method for detecting conveyance soil and sand amount of belt conveyor
JP2005282265A (en) * 2004-03-30 2005-10-13 Ohbayashi Corp Shield machine
KR100609952B1 (en) * 2004-09-22 2006-08-09 한국원자력연구소 Area measurement method for the inside of boundary line by the hierarchical distance-angle graphs
JP2009025066A (en) * 2007-07-18 2009-02-05 Taisei Corp Conveyance amount estimation device
CN111982051A (en) * 2019-05-22 2020-11-24 复盛应用科技股份有限公司 Method for measuring radian of golf club head

Similar Documents

Publication Publication Date Title
JP3867955B2 (en) Load volume measuring method and apparatus
CN105865326A (en) Object size measurement method and image database data acquisition method
JP4234059B2 (en) Camera calibration method and camera calibration apparatus
CN109801216A (en) The quick joining method of Tunnel testing image
EP0483362B1 (en) System for measuring length of sheet
JP2012032271A (en) Measuring apparatus
JP2006320240A (en) Method for measuring crop information by remote sensing
JP2002139312A (en) Measuring method of earth-carrying quantity
JP5162412B2 (en) Tunnel wall surface photographing device
JP2000283734A (en) Method and device for measuring amount of soil loaded on truck
JP2004187220A (en) Camera angle-of-view adjustment method for crack inspection apparatus
US20050286059A1 (en) Attitude and position measurement of objects using image processing processes
JP2007010419A (en) Three-dimensional shape of object verifying system
JP2001043353A (en) Device for creation of developed image of tunnel wall surface
JP3501841B2 (en) Three-dimensional object region detection device, distance measuring device to three-dimensional object region, and their detection and measurement method
JP2000304511A (en) Soil volume measuring method and apparatus
JP2980194B2 (en) Method and apparatus for measuring reinforcing bar position and posture
JP2003042760A (en) Instrument, method, and system for measurement
JP4248232B2 (en) Shadow region correction method and shadow correction device in line sensor output image
JPH08101017A (en) Dimension measuring instrument
JP7093668B2 (en) Volume measurement system for objects to be transported contained in a moving object
JP2001033397A (en) Method and apparatus for detecting surface flaw of object
JP2900600B2 (en) Pattern inspection method
JP2000111318A (en) Method and device for measuring chain dimension
JPH0778417B2 (en) Plate shape measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206