JP2002134309A - Method for manufacturing electromagnetic wave absorbent powder - Google Patents

Method for manufacturing electromagnetic wave absorbent powder

Info

Publication number
JP2002134309A
JP2002134309A JP2000325124A JP2000325124A JP2002134309A JP 2002134309 A JP2002134309 A JP 2002134309A JP 2000325124 A JP2000325124 A JP 2000325124A JP 2000325124 A JP2000325124 A JP 2000325124A JP 2002134309 A JP2002134309 A JP 2002134309A
Authority
JP
Japan
Prior art keywords
powder
electromagnetic wave
wave absorbent
wave absorber
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000325124A
Other languages
Japanese (ja)
Inventor
Yoshikazu Aikawa
芳和 相川
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000325124A priority Critical patent/JP2002134309A/en
Publication of JP2002134309A publication Critical patent/JP2002134309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing electromagnetic wave absorbent powder which has superior electromagnetic wave absorbing effect by using powder which is obtained by flattening the gas-atomized magnetic powder of an aspect ratio 2 or below and grain diameter 200 μm or smaller into powder of average s/t (ratio of sectional area to thickness of powder) 50 mm or larger. SOLUTION: Electromagnetic wave absorbent flattened powder size is of average s/t 50 mm or above. The electromagnetic wave absorbent flattened powder is formed of material powder having an aspect ratio of 2 or smaller. Furthermore, the major axis of flattened powder is 200 μm or smaller in length. The electromagnetic wave absorbent powder comprises of a material powder of Permalloy, Fe-Cr-Al, Fe-Cr-Si, Fe-Cr-Si-Al, or powder of 3 to 10 mass% Cr and remaining mass% Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁波吸収体等に
用いる偏平粉末に関するものである。
TECHNICAL FIELD The present invention relates to a flat powder used for an electromagnetic wave absorber or the like.

【0002】[0002]

【従来の技術】近年、パソコン等の電子機器、情報機器
が急速に発達、普及してきており、これに伴ってそれか
ら発生する電磁波が誤作動の原因となったり、人体に悪
影響を及ぼすなどの電磁波による障害が問題視されてい
る。これらパソコン等の電子機器から発生する電磁波に
よる影響を遮断するため、電磁波吸収体でその発生源を
包み込むといったことが行われており、また、電磁波吸
収体による電磁波の吸収率を高めるため各種の電磁波吸
収体が研究されている。しかし、発生する電磁波の周波
数が高周波化してきており、従来の電磁波吸収体では吸
収することができないのが実状である。
2. Description of the Related Art In recent years, electronic devices and information devices such as personal computers have been rapidly developed and spread, and electromagnetic waves generated therefrom cause malfunctions and adversely affect the human body. Is a problem. In order to cut off the effects of electromagnetic waves generated from these electronic devices such as personal computers, the source of the electromagnetic waves is wrapped in an electromagnetic wave absorber, and various electromagnetic waves are used to increase the absorption rate of electromagnetic waves by the electromagnetic wave absorber. Absorbers are being studied. However, the frequency of the generated electromagnetic wave has been increasing, and in reality, it cannot be absorbed by a conventional electromagnetic wave absorber.

【0003】その対策の1例として、特開平11−87
117号公報のように、軟磁性材料の粉末を厚み3μm
以下に偏平し、ゴムシートに練り込んで2GHz以上の
周波数で複素透磁率の損失項μ〃を5以上に発揮する製
造方法が提案されている。このような電磁波吸収体等に
用いる金属偏平粉末に求められている性質として、飽和
磁束密度が大きいことにより高周波帯域に対応が可能で
あること、また、粉末のアスペクト比が大きいこと(厚
みが薄いこと)により吸収特性が増大する。さらに、粉
末の硬度が低いと偏平化処理がし易いことやある程度の
耐食性があることが必要であること等が知られている。
これらのことから、例えば2000−114767号公
報に開示されているように、アスペクト比15以上の粉
末を用いることが知られている。
As an example of the countermeasure, Japanese Patent Laid-Open No. 11-87
No. 117, a soft magnetic material powder having a thickness of 3 μm
A manufacturing method has been proposed in which a flat magnetic material is kneaded into a rubber sheet and exhibits a loss factor μ〃 of complex permeability of 5 or more at a frequency of 2 GHz or more. The metal flat powder used for such an electromagnetic wave absorber or the like is required to have a high saturation magnetic flux density to cope with a high frequency band and a high powder aspect ratio (thin thickness). ) Increases the absorption characteristics. Further, it is known that when the hardness of the powder is low, the flattening treatment is easily performed and it is necessary that the powder has a certain level of corrosion resistance.
For these reasons, it is known to use a powder having an aspect ratio of 15 or more, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-114767.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の開示技
術では原材料の形状、製造法について明記しておらず、
例えば一般的な水アトマイズで作成された粉末は不定形
状となっている。この粉末に偏平化処理を施した場合、
同じアスペクト比を持つ粉末でも針状のもの、棒状のも
の等様々な形状が含まれている。従って、円盤状のもの
と比較してこれらの粉末は、誘電損失(ε)の項が低く
なるため好ましくないという問題がある。
In the above-mentioned conventional technology, the shape of the raw material and the manufacturing method are not specified.
For example, a powder made by general water atomization has an irregular shape. When this powder is subjected to flattening treatment,
Even powders having the same aspect ratio include various shapes such as needle-like powders and rod-like powders. Therefore, there is a problem that these powders are not preferable because the term of the dielectric loss (ε) becomes lower than that of the disk-shaped powder.

【0005】また、特開平11−87117号公報の場
合は、偏平化する際の詳細な条件について、特に雰囲気
について明確な開示がない。また、この偏平化はボール
ミルなどの手段によっているが、条件によっては、偏平
化加工の際に生じる新生面が加工時の衝撃により、分断
微細化、再凝集による粗大化といった悪循環が発生しや
すく、粗大な粉末ができるという問題がある。特に電磁
波吸収体等に用いる場合には、アスペクト比が大きく、
かつ一定以下の大きさの粉末が必要であり、粗大粉末で
は吸収特性が劣化するという問題がある。
[0005] In the case of Japanese Patent Application Laid-Open No. 11-87117, there is no clear disclosure about the detailed conditions for flattening, especially the atmosphere. In addition, this flattening is performed by means such as a ball mill. However, depending on the conditions, a vicious cycle is likely to occur such that the new surface generated during the flattening process is subjected to impact during processing, such as fragmentation and miniaturization, and coarsening due to re-agglomeration. There is a problem that a fine powder is produced. Particularly when used for electromagnetic wave absorbers, etc., the aspect ratio is large,
In addition, a powder having a size equal to or less than a certain value is required, and there is a problem that a large powder deteriorates absorption characteristics.

【0006】[0006]

【課題を解決するための手段】上述のような問題を解消
するために、発明者らは鋭意開発を進めた結果、Fe−
Ni系、Fe−Cr−Al−Si系の原料を、ガスアト
マイズによるアスペクト比2以下で粒径が200μm以
下の磁性粉末を平均s/t(粉末の断面積と厚みの比)
を50mm以上に偏平化した粉末を用いることにより電
磁波吸収特性に優れたことを見出した。その発明の要旨
とするところは、 (1)電磁波吸収体用偏平粉末において、粉末の平均s
/t(粉末の断面積と厚みの比)が50mm以上の偏平
粉であることを特徴とする電磁波吸収体用粉末。 (2)原料粉末としてアスペクト比が2以下の球状粉末
を用いることを特徴とする前記(1)記載の電磁波吸収
体用粉末。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively developed and found that Fe-
Ni-based and Fe-Cr-Al-Si-based raw materials were prepared by using magnetic powder having an aspect ratio of 2 or less by gas atomization and a particle diameter of 200 µm or less, average s / t (ratio of cross-sectional area to thickness of powder).
Was found to be excellent in electromagnetic wave absorption characteristics by using a powder flattened to 50 mm or more. The gist of the invention is as follows: (1) In the flat powder for an electromagnetic wave absorber, the average powder s
A powder for an electromagnetic wave absorber, wherein the powder is a flat powder having a / t (ratio of cross-sectional area to thickness of the powder) of 50 mm or more. (2) The powder for an electromagnetic wave absorber according to the above (1), wherein a spherical powder having an aspect ratio of 2 or less is used as a raw material powder.

【0007】(3)偏平粉末の長軸の長さが200μm
以下であることを特徴とする前記(1)記載の電磁波吸
収体用粉末。 (4)原料としてパーマロイ系、Fe−Cr−Al系、
Fe−Cr−Si系、Fe−Cr−Si−Al系または
Cr:3〜10mass%、残部Feからなる粉末を用
いることを特徴とする前記(1)〜(3)記載の電磁波
吸収体用粉末にある。
(3) The length of the major axis of the flat powder is 200 μm
The powder for an electromagnetic wave absorber according to the above (1), wherein: (4) Permalloy, Fe—Cr—Al,
The powder for an electromagnetic wave absorber according to any one of (1) to (3), wherein a powder composed of Fe-Cr-Si, Fe-Cr-Si-Al, or Cr: 3 to 10 mass% and the balance of Fe is used. It is in.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明において、図1に示すように、粉末の断面
積Sと厚さtの比(s/t)を50mm以上とした。そ
の理由は、電磁波吸収特性は磁気損失と誘電損失の和で
表わせるが、面積が広いことにより誘電損失が増加し、
s/tが大きくなることにより磁気損失が増加すること
を見出したもので、その値は50mm以上のものが有効
である。しかし、50mm未満ではその効果が得られな
い。従って、その下限を50mmとした。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, as shown in FIG. 1, the ratio (s / t) between the cross-sectional area S and the thickness t of the powder is set to 50 mm or more. The reason is that electromagnetic wave absorption characteristics can be expressed by the sum of magnetic loss and dielectric loss, but the dielectric loss increases due to the large area,
It has been found that the magnetic loss increases with an increase in s / t, and a value of 50 mm or more is effective. However, if it is less than 50 mm, the effect cannot be obtained. Therefore, the lower limit was set to 50 mm.

【0009】次に、原料粉末としてアスペクト比が2以
下の球状粉末を用いる。その理由は、原料として球状粉
末を用いることにより、偏平化加工後の粉末は図1に示
すような円盤状となる。針状や米状等の偏平粉と比較し
て円盤状の方が、誘電損失が大きくなることを見出した
もので、しかも、原料の球状粉末はガスアトマイズ法で
得るのが好ましく、球状粉が得られると同時に酸素濃度
が低いため、飽和磁束密度が大きくなるから有利であ
る。
Next, a spherical powder having an aspect ratio of 2 or less is used as a raw material powder. The reason is that by using spherical powder as a raw material, the powder after flattening becomes a disk shape as shown in FIG. It has been found that a disk-shaped powder has a larger dielectric loss than a needle-shaped or rice-shaped flat powder, and moreover, it is preferable that the raw material spherical powder is obtained by a gas atomizing method, and the spherical powder is obtained. At the same time, since the oxygen concentration is low, the saturation magnetic flux density is advantageously increased.

【0010】また、偏平粉末の長軸の長さhが200μ
m以下とする。その理由は、長軸の長さが200μmを
超えると吸収材成形時の充填率が下がり特性に不利であ
るので、その上限を200μmとした。さらに、組成と
して、パーマロイ系、Fe−Cr−Al系、Fe−Cr
−Si系、Fe−Cr−Al−Si系としたのは、耐食
性が大きく、硬度が低いため、s/tが大きい粉末を容
易に製造することが可能である。また、飽和磁束密度も
大きいため高周波対応が可能である。
The length h of the long axis of the flat powder is 200 μm.
m or less. The reason is that if the length of the major axis exceeds 200 μm, the filling factor at the time of molding the absorbent decreases, which is disadvantageous to the characteristics. Further, as the composition, permalloy, Fe—Cr—Al, Fe—Cr
-Si-based and Fe-Cr-Al-Si-based powders have high corrosion resistance and low hardness, so that powder having a large s / t can be easily produced. Further, since the saturation magnetic flux density is large, it is possible to cope with high frequencies.

【0011】Cr:3〜10mass%、残部Feとし
た理由は、耐食性もある程度備えており、飽和磁束密度
が特に大きい。硬度も特に低いため、s/tが大きい粉
末を容易に製造することが可能となり、また、溶解時の
粘性が低いため、アトマイズ時に粒度の細かい粉末を製
造することが出来るため、長軸の長さが200μm以下
の粉末を容易に製造できる。Crが3%未満では耐食性
が劣化し、Cr10%を超えると飽和磁束密度低下によ
る吸収特性の劣化に繋がる。従って、その範囲を3〜1
0mass%とした。
[0011] The reason for using Cr: 3 to 10 mass% and the balance of Fe is that corrosion resistance is also provided to some extent and the saturation magnetic flux density is particularly large. Since the hardness is particularly low, it is possible to easily produce a powder having a large s / t. Also, since the viscosity at the time of dissolution is low, a powder having a fine particle size can be produced at the time of atomization, so that the length of the long axis is long. Powder having a thickness of 200 μm or less can be easily produced. If the Cr content is less than 3%, the corrosion resistance is deteriorated. If the Cr content is more than 10%, the absorption characteristics are deteriorated due to a decrease in the saturation magnetic flux density. Therefore, the range is 3 to 1
0 mass%.

【0012】[0012]

【実施例】以下、本発明について実施例によって具体的
に説明する。粉末組成Fe−50Niをガスアトマイズ
によって製造した後、−106μm分級し、アトライタ
ーで偏平化処理(処理時間を変えることによりs/tを
変化させた)した。この時のアトライター処理条件とし
ては、粉末処理量2kg、ボール重量10kg、アトラ
イター処理時にArガスの分圧を制御することにより、
粉末の酸素値を変化させる。また、成形条件は、塩素化
ポリエチレン(CPE)樹脂を10mass%混合し、
厚さ1.0mmのシート形状にロール成形した。その結
果を表1に示す。電磁波吸収特性としては、ネットワー
クアナライザーで100MHzの電磁波吸収特性を測
定、飽和磁束密度はBHトレーサーにより測定、耐食性
は70℃−95%湿度にて96hr放置して発錆の有無
を確認した。
The present invention will be specifically described below with reference to examples. After producing powder composition Fe-50Ni by gas atomization, it was classified into -106 µm, and flattened by an attritor (s / t was changed by changing the processing time). Attritor processing conditions at this time were as follows: powder processing amount 2 kg, ball weight 10 kg, and partial pressure of Ar gas during attritor processing were controlled.
Changes the oxygen value of the powder. The molding conditions were as follows: chlorinated polyethylene (CPE) resin was mixed at 10 mass%,
The sheet was roll-formed into a sheet having a thickness of 1.0 mm. Table 1 shows the results. As the electromagnetic wave absorption characteristics, the electromagnetic wave absorption characteristics at 100 MHz were measured with a network analyzer, the saturation magnetic flux density was measured with a BH tracer, and the corrosion resistance was checked at 70 ° C.-95% humidity for 96 hours to check for rust.

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示すように、No.1〜8は本発明
例であり、No.9〜13は比較例である。No.9は
アスペクト比が2.5と高いために、誘電損失の指標が
小さく、また、No.10は偏平粉末の長軸の長さが2
30μmと大きいために、充填率が低く、磁気損失の指
標が小さく、高周波の電磁波の吸収の低いことを示して
いる。No.11はCr%が2%と低く耐食性が悪く、
No.12はCr%が11%と高いために、耐食性は良
いが飽和磁束密度が低い。さらに、No.13は粉末の
断面積と厚みの比(s/t)が30mmと小さいため
に、磁気損失の大きさμ〃および誘電損失の大きさε〃
共に低く、高周波電磁波の吸収が低いことを示してい
る。
As shown in Table 1, as shown in FIG. Nos. 1 to 8 are examples of the present invention. 9 to 13 are comparative examples. No. No. 9 has a high aspect ratio of 2.5, and therefore has a small index of dielectric loss. 10 is the length of the major axis of the flat powder is 2
Since it is as large as 30 μm, the filling factor is low, the index of magnetic loss is small, and the absorption of high-frequency electromagnetic waves is low. No. 11 has a low Cr% of 2% and poor corrosion resistance.
No. Sample No. 12 has high corrosion resistance but low saturation magnetic flux density because Cr% is as high as 11%. In addition, No. No. 13 has a magnitude of magnetic loss μ〃 and a magnitude of dielectric loss ε〃 since the ratio (s / t) between the cross-sectional area and the thickness of the powder is as small as 30 mm.
Both are low, indicating that the absorption of high-frequency electromagnetic waves is low.

【0015】[0015]

【発明の効果】以上述べたように、本発明による粉末を
ガスアトマイズによるアスペクト比2以下で粒径が20
0μm以下の磁性粉末を平均s/t(粉末の断面積と厚
みの比)を50mm以上に偏平化した粉末を用いること
により、電磁波吸収効果に優れた電磁波吸収体用粉末を
効率よく得られる極めて優れた効果を奏するものであ
る。
As described above, the powder according to the present invention has a particle size of 20 with an aspect ratio of 2 or less by gas atomization.
By using a powder obtained by flattening a magnetic powder of 0 μm or less to have an average s / t (ratio of cross-sectional area and thickness of the powder) of 50 mm or more, it is possible to efficiently obtain a powder for an electromagnetic wave absorber having an excellent electromagnetic wave absorbing effect. It has excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る偏平粉末の断面形状を示す図であ
る。
FIG. 1 is a view showing a cross-sectional shape of a flat powder according to the present invention.

【符号の説明】[Explanation of symbols]

S 断面積 t 厚み h 長軸の長さ S Cross-sectional area t Thickness h Length of major axis

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E040 AA11 AA19 AA20 CA13 HB00 HB15 NN06 5E041 AA07 AA11 AA19 CA01 HB00 HB15 NN01 NN06 5E321 BB53 GG05 GG07 GG11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E040 AA11 AA19 AA20 CA13 HB00 HB15 NN06 5E041 AA07 AA11 AA19 CA01 HB00 HB15 NN01 NN06 5E321 BB53 GG05 GG07 GG11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電磁波吸収体用偏平粉末において、粉末
の平均s/t(粉末の断面積と厚みの比)が50mm以
上の偏平粉であることを特徴とする電磁波吸収体用粉
末。
1. The flat powder for an electromagnetic wave absorber, wherein the average powder s / t (the ratio of the cross-sectional area to the thickness of the powder) is 50 mm or more.
【請求項2】 原料粉末としてアスペクト比が2以下の
球状粉末を用いることを特徴とする請求項1記載の電磁
波吸収体用粉末。
2. The powder for an electromagnetic wave absorber according to claim 1, wherein a spherical powder having an aspect ratio of 2 or less is used as a raw material powder.
【請求項3】 偏平粉末の長軸の長さが200μm以下
であることを特徴とする請求項1記載の電磁波吸収体用
粉末。
3. The powder for an electromagnetic wave absorber according to claim 1, wherein the major axis of the flat powder has a length of 200 μm or less.
【請求項4】 原料としてパーマロイ系、Fe−Cr−
Al系、Fe−Cr−Si系、Fe−Cr−Si−Al
系またはCr:3〜10mass%、残部Feからなる
粉末を用いることを特徴とする請求項1〜3記載の電磁
波吸収体用粉末。
4. A raw material made of permalloy, Fe—Cr—
Al-based, Fe-Cr-Si-based, Fe-Cr-Si-Al
The powder for an electromagnetic wave absorber according to any one of claims 1 to 3, wherein a powder composed of a system or Cr: 3 to 10% by mass and the balance of Fe is used.
JP2000325124A 2000-10-25 2000-10-25 Method for manufacturing electromagnetic wave absorbent powder Pending JP2002134309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325124A JP2002134309A (en) 2000-10-25 2000-10-25 Method for manufacturing electromagnetic wave absorbent powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325124A JP2002134309A (en) 2000-10-25 2000-10-25 Method for manufacturing electromagnetic wave absorbent powder

Publications (1)

Publication Number Publication Date
JP2002134309A true JP2002134309A (en) 2002-05-10

Family

ID=18802543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325124A Pending JP2002134309A (en) 2000-10-25 2000-10-25 Method for manufacturing electromagnetic wave absorbent powder

Country Status (1)

Country Link
JP (1) JP2002134309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140335A (en) * 2002-08-19 2004-05-13 Sumitomo Electric Ind Ltd Electromagnetic wave absorbing material
JP2017190491A (en) * 2016-04-13 2017-10-19 山陽特殊製鋼株式会社 Flat powder
JP2019110166A (en) * 2017-12-15 2019-07-04 株式会社トーキン Noise suppression sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140335A (en) * 2002-08-19 2004-05-13 Sumitomo Electric Ind Ltd Electromagnetic wave absorbing material
JP2017190491A (en) * 2016-04-13 2017-10-19 山陽特殊製鋼株式会社 Flat powder
JP2019110166A (en) * 2017-12-15 2019-07-04 株式会社トーキン Noise suppression sheet

Similar Documents

Publication Publication Date Title
JP5617173B2 (en) Method for producing flat soft magnetic powder and electromagnetic wave absorber
CN107004481B (en) Flat soft magnetic powder and method for producing same
EP2980811B1 (en) Composite magnetic powder for noise suppressing
JP4717754B2 (en) Flat powder for electromagnetic wave absorber and electromagnetic wave absorber
KR102369149B1 (en) Magnetic flat powder and magnetic sheet containing same
TWI664648B (en) Soft magnetic flat powder and manufacturing method thereof
JP5299983B2 (en) Porous iron powder, method for producing porous iron powder, electromagnetic wave absorber
JP2014204051A (en) Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP2002134309A (en) Method for manufacturing electromagnetic wave absorbent powder
KR102393236B1 (en) soft magnetic flat powder
WO2020195968A1 (en) Alloy powder for magnetic member
JP4017032B2 (en) Magnetic film and method for forming the same
US20110056593A1 (en) Flaky Powder for an Electromagnetic Wave Absorber, and Method for Producing Same
JP2018170330A (en) Soft magnetic metal powder
WO2022172543A1 (en) Soft-magnetic flat powder
JP2018131640A (en) Soft magnetic flat powder
JP2007273732A (en) Noise suppressing soft magnetism metal powder and noise suppressing sheet
JP4734599B2 (en) Iron nitride magnetic powder with good weather resistance and method for producing the same
JP2005123531A (en) Powder for electromagnetic wave absorber
JP2017118114A (en) Soft magnetic flat-particle powder, and magnetic sheet using the same
JPH0118961B2 (en)
JP2001152211A (en) Method for producing flat metal powder for electromagnetic wave absorber
JP2002105512A (en) Method for manufacturing powder for electromagnetic wave absorber
JP2002208507A (en) Electromagnetic wave absorbing material powder
JP2002134308A (en) Electromagnetic wave absorbent material powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130