JP2002134300A - Wiggler-magnet equipment - Google Patents

Wiggler-magnet equipment

Info

Publication number
JP2002134300A
JP2002134300A JP2000327185A JP2000327185A JP2002134300A JP 2002134300 A JP2002134300 A JP 2002134300A JP 2000327185 A JP2000327185 A JP 2000327185A JP 2000327185 A JP2000327185 A JP 2000327185A JP 2002134300 A JP2002134300 A JP 2002134300A
Authority
JP
Japan
Prior art keywords
magnet
magnets
wiggler
magnetic flux
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000327185A
Other languages
Japanese (ja)
Inventor
Yasuji Morii
保次 森井
Koichi Nakayama
光一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000327185A priority Critical patent/JP2002134300A/en
Publication of JP2002134300A publication Critical patent/JP2002134300A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wiggler-magnet equipment having a clear picture in which blurring of the picture that has been a problem conventionally does not arises even if the wiggler magnet is made into multi-poles. SOLUTION: A ratio of magnitudes B2, B4, and B6 of magnetic-flux densities between even-numbered magnet, between a2, b2, between a4, b4, between a6, b6, excepting magnets a1, b1 and a7, b7 of the both ends of the magnet sequences 37, 38, and magnitudes B3, B5, of the magnetic-flux densities between odd-numbered magnet, between a3, b3, between a5, b5, is set to 1 to 2 or 2 to 1. And, the ratio of magnetic effective length L2, L4, and L6 and the magnetic effective length L3 and L5 of the odd-numbered magnet is set to 2 to 1 or 1 to 2. When, a product of the magnitudes B1, B7 of the magnetic-flux densities B2 to B6 and the effective length L1, L7 of magnets of these both ends along with the electronic beam is set as a standard, it is constituted so that all of the magnetic-flux densities of other than these both ends section can be equal, and the product of the magnitude B2 to B6 and the effective length L2 to L6 of the magnets other than these both ends section along with the electronic beam can become twice of the standard product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シンクロトロン放
射光装置(以下単に放射光装置と称する)に用いられる
ウィグラー磁石装置(挿入光源)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiggler magnet device (insertion light source) used in a synchrotron radiation device (hereinafter simply referred to as a radiation device).

【0002】[0002]

【従来の技術】放射光装置は、強力で理想的な光源であ
ることから、生物化学、物理科学、表面化学、結晶学な
ど多種多様な分野で使用されている。
2. Description of the Related Art Synchrotron radiation devices are used in various fields such as biochemistry, physical science, surface chemistry, and crystallography because they are powerful and ideal light sources.

【0003】図1は、放射光装置の概略構成を示す平面
図であり、電子ビームが周回するための蓄積リング(真
空ダクト)1と、電子ビームを偏向させるための偏向電
磁石2と、放射光を発生させるためのウィグラー3と、
電子ビームを収束させるための四極磁石(四極電磁石)
4と、電子ビームを加速するための高周波空胴5からな
っている。
FIG. 1 is a plan view showing a schematic configuration of a radiation light device, which includes a storage ring (vacuum duct) 1 for circulating an electron beam, a deflection electromagnet 2 for deflecting the electron beam, and radiation light. A wiggler 3 for generating
Quadrupole magnet for converging the electron beam (quadrupole electromagnet)
4 and a high-frequency cavity 5 for accelerating the electron beam.

【0004】入射器6より、蓄積リング1に入射された
電子ビームは、適切に配置された偏向電磁石2の偏向磁
場及び四極磁石4の収束磁場により蓄積リング1内を周
回する。電子ビームが偏向電磁石2及びウィグラー3を
通過する際に加速によりエネルギーが補給される。ウィ
グラー3で発生した放射光は、取出しポート7を介して
利用する。
The electron beam incident on the storage ring 1 from the injector 6 circulates in the storage ring 1 due to the deflection magnetic field of the appropriately arranged bending electromagnet 2 and the converging magnetic field of the quadrupole magnet 4. When the electron beam passes through the bending electromagnet 2 and the wiggler 3, energy is supplied by acceleration. The emitted light generated by the wiggler 3 is used through an extraction port 7.

【0005】ウィグラー3は、偏向電磁石2から得られ
るX線より高いエネルギーのX線を得るために、磁場強
度の強い磁石が用いられる。
The wiggler 3 uses a magnet having a high magnetic field strength in order to obtain X-rays having higher energy than X-rays obtained from the bending electromagnet 2.

【0006】図5は従来のウィグラー3を説明するため
の図であり、ウィグラー3は、第1(上)の磁石列31
と、第2(下)の磁石列32を対向配置し、両磁石列3
1,32間に図示しない電子ビームが通過するようにし
たものであって、該両磁石列31,32はいずれも六面
体の磁石を複数個(a1,a2,a3,a4,a5,a
6,a7からなるものと、b1,b2,b3,b4,b
5,b6,b7からなるものと)が直線状に一体的に併
設すると共に、該両磁石列31,32間に発生する磁束
の向きが、矢印に示すように各磁石列31,32の隣接
する磁石a1〜a7、b1〜b7毎に逆方向になるよう
に構成したものである。そして、両磁石列31,32間
の磁石a1〜a7、b1〜b7の間に生ずる磁束密度を
夫々B1,B2,B3,B4,B5,B6,B7とした
とき、B1,B7以外は、B2=B3=B4=B5=B
6となるように構成したものである。
FIG. 5 is a view for explaining a conventional wiggler 3. The wiggler 3 includes a first (upper) magnet row 31.
And the second (lower) magnet row 32 is arranged to face each other.
An electron beam (not shown) passes between the first and second magnets 32 and 32. Each of the two magnet arrays 31 and 32 includes a plurality of hexahedron magnets (a1, a2, a3, a4, a5, a
6, b7, b1, b2, b3, b4, b
5, b6, and b7) are integrally provided in a straight line, and the direction of the magnetic flux generated between the two magnet rows 31, 32 is adjacent to each magnet row 31, 32 as shown by the arrow. The magnets a1 to a7 and b1 to b7 are configured to be in opposite directions. When the magnetic flux densities generated between the magnets a1 to a7 and b1 to b7 between the two magnet rows 31 and 32 are B1, B2, B3, B4, B5, B6, and B7, respectively, = B3 = B4 = B5 = B
6.

【0007】このように各磁石列31,32を複数の磁
石a1〜a7、b1〜b7を一体的で直線状に構成して
いるのは、放射光強度をあげるためである。このような
構成のものにおいて、電子ビームがこの磁束中で蛇行
し、そのピークで放射光を出す。
The reason why each of the magnet rows 31 and 32 is constituted by integrating the plurality of magnets a1 to a7 and b1 to b7 into a linear shape is to increase the intensity of radiation light. In such a configuration, the electron beam meanders in this magnetic flux and emits radiation at its peak.

【0008】図6(a)に示すように蛇行する電子ビー
ム軌道33の第1の磁石列31から出るX線(放射光)
31Xと、第2の磁石列32からでるX線(放射光)3
2Xがあり、光源が2線あることになる。
As shown in FIG. 6A, X-rays (radiation light) emitted from the first magnet row 31 of the meandering electron beam orbit 33 are shown.
31X and X-rays (emitted light) 3 emitted from the second magnet row 32
There are 2X and there are two light sources.

【0009】[0009]

【発明が解決しようとする課題】これを光源として、被
写体20と検出器30を用いて画像を得る場合、図6
(b)に示すように第1の磁石列31からでるX線31
Xの像と、第2の磁石列32からでるX線32Xの像光
の像ができ、画像のぼけ35につながる。この傾向は、
電子ビームの蛇行幅が大きい場合に影響が大きい。これ
は、電子ビームのエネルギーが低くウィグラーの磁場強
度が強い場合に顕著になる。
When an image is obtained using the object 20 and the detector 30 by using this as a light source, FIG.
(B) X-rays 31 emitted from the first magnet row 31 as shown in FIG.
An image of X and an image of image light of X-ray 32X emitted from the second magnet row 32 are formed, which leads to image blur 35. This trend is
The effect is large when the meandering width of the electron beam is large. This becomes remarkable when the energy of the electron beam is low and the magnetic field strength of the wiggler is high.

【0010】このように、従来のウィグラーでは放射光
強度をあげようと多極にすると、光源が2線化して、画
像処理する際に画像のぼけをきたし、画質上で問題とな
ることがあった。
As described above, in the conventional wiggler, if the number of poles is increased in order to increase the intensity of the emitted light, the light source becomes two lines, which causes image blurring during image processing, which may cause a problem in image quality. Was.

【0011】そこで、本発明は放射光強度をあげるため
にウィグラー磁石を多極にしても、光源が一つの線上に
並び画像のぼけが出ないウィグラー磁石装置を提供する
ことを目的とする。
Accordingly, an object of the present invention is to provide a wiggler magnet apparatus in which even if the wiggler magnet has multiple poles in order to increase the intensity of the emitted light, the light sources are arranged on one line and the image is not blurred.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、第1の磁石列と、第2
の磁石列を対向配置し、両磁石列間に電子ビームが通過
するようにしたものであって、該両磁石列はいずれも六
面体の磁石を複数個直線状に一体的に併設すると共に、
該両磁石列間に発生する磁束の向きが各磁石列の隣接す
る磁石毎に逆方向になるようにしたウィグラー磁石装置
において、該両磁石列の両端部の磁石を除く各列の隣接
する磁石の磁束密度が1:2になるように構成し、かつ
該両磁石列の両端部の磁石間の磁束密度の大きさと前記
電子ビームに沿った該両端部の磁石としての有効長さと
の積を基準としたとき、該両端部以外の磁石間の磁束密
度の大きさと該電子ビームに沿った該両端部以外の磁石
としての有効長さとの積が該基準の2倍となるように構
成したウィグラー磁石装置である。
To achieve the above object, an invention according to claim 1 comprises a first magnet array and a second magnet array.
Are arranged so that an electron beam passes between the two magnet rows, and each of the two magnet rows has a plurality of hexahedron magnets integrally and linearly arranged together.
In a wiggler magnet device in which the direction of magnetic flux generated between the two magnet rows is opposite for each adjacent magnet in each magnet row, adjacent magnets in each row except for magnets at both ends of the two magnet rows are provided. And the product of the magnitude of the magnetic flux density between the magnets at both ends of the two magnet rows and the effective length of the magnets at both ends along the electron beam. A wiggler configured such that the product of the magnitude of the magnetic flux density between the magnets other than the two ends and the effective length of the magnet other than the two ends along the electron beam is twice the standard when the standard is set. It is a magnet device.

【0013】請求項1に対応する発明によれば、従来の
問題点であるウィグラー光源が2線化すると言う問題を
解決することができる。すなわち、請求項1に対応する
発明は、両磁石列の両端部の磁石を除く各列の隣接する
磁石の磁束密度が1:2になるように構成したので、実
効的に光源を1線化することができる。
[0013] According to the invention corresponding to claim 1, it is possible to solve the conventional problem that the wiggler light source is converted into two lines. That is, in the invention corresponding to claim 1, since the magnetic flux densities of the adjacent magnets in each row except for the magnets at both ends of both magnet rows are configured to be 1: 2, the light source is effectively linearized. can do.

【0014】前記目的を達成するため、請求項2に対応
する発明は、前記両磁石列の各磁石間の磁束密度を可変
可能に構成した請求項1に記載のウィグラー磁石装置で
ある。
In order to achieve the above object, the invention corresponding to claim 2 is the wiggler magnet device according to claim 1, wherein the magnetic flux density between the magnets of the two magnet rows is variable.

【0015】請求項2に対応する発明によれば、請求項
1に対応する発明と同様な作用効果が得られるばかりで
なく、磁束密度を可変にすることにより、電子ビームは
磁場により蛇行し、X線を放出すると共に、X線のスペ
クトルを可変にできる。
According to the invention corresponding to claim 2, not only the same operation and effect as the invention corresponding to claim 1 can be obtained, but also the electron beam meanders by the magnetic field by making the magnetic flux density variable. X-rays can be emitted and the spectrum of X-rays can be varied.

【0016】前記目的を達成するため、請求項3に対応
する発明は、前記両磁石列の各磁石を、前記電子ビーム
の軸のまわりに回転可能に構成した請求項1に記載のウ
ィグラー磁石装置である。
According to a third aspect of the present invention, there is provided a wiggler magnet apparatus according to the first aspect, wherein each magnet of the two magnet rows is rotatable around the axis of the electron beam. It is.

【0017】請求項3に対応する発明によれば、請求項
1に対応する発明と同様な作用効果が得られるばかりで
なく、磁石列を電子ビーム軸のまわりに回転できるよう
にすることにより、放出されるX線の偏向面を変えられ
る。
According to the invention corresponding to claim 3, not only the same operation and effect as the invention corresponding to claim 1 can be obtained, but also the magnet array can be rotated around the electron beam axis, The deflection surface of the emitted X-ray can be changed.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図2は本発明のウィグラー磁石装置
の第1の実施形態を説明するための図であり、(a)は
その磁石の配列を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a view for explaining the first embodiment of the wiggler magnet device of the present invention, and FIG. 2 (a) is a view showing an arrangement of the magnets.

【0019】すなわち、第1の磁石列37と、第2の磁
石列38を対向配置し、両磁石列37,38間に電子ビ
ームが通過するようにしたものであって、該両磁石列3
7,38はいずれも六面体の磁石を複数個(a1,a
2,a3,a4,a5,a6,a7からなるものと、b
1,b2,b3,b4,b5,b6,b7からなるもの
と)直線状に一体的に併設すると共に、図2(a)の矢
印に示すように該両磁石列37,38間に発生する磁束
の向きが各磁石列の隣接する磁石毎に逆方向になるよう
に構成したものである。
That is, the first magnet row 37 and the second magnet row 38 are arranged to face each other so that an electron beam passes between the two magnet rows 37 and 38.
7 and 38 each include a plurality of hexahedral magnets (a1, a
2, a3, a4, a5, a6, a7 and b
1, b2, b3, b4, b5, b6, and b7) are linearly and integrally provided, and are generated between the two magnet arrays 37 and 38 as shown by arrows in FIG. The configuration is such that the direction of the magnetic flux is opposite for each adjacent magnet in each magnet row.

【0020】そして、該両磁石列37,38の両端部の
磁石a1,b1、a7,b7を除く偶数番目の磁石a
2,b2間、a4,b4間、a6,b6間の磁束密度の
大きさB2,B4,B6と、奇数番目の磁石a3,b3
間、a5,b5間の磁束密度B3,B5の大きさの割合
を1対2又は2対1とし、これらの偶数番目の電子ビー
ムに沿った磁石としての有効長さL2,L4,L6と奇
数番目の磁石の電子ビームに沿った磁石としての有効長
さL3,L5の割合を2対1又は1対2とし、かつ該両
磁石列37,38の両端部の磁石a1,b1間、a7,
b7間の磁束密度の大きさB1,B7と電子ビームに沿
った該両端部の磁石としての有効長さL1,L7との積
(磁場積分)を基準としたとき、該両端部以外の磁石間
の磁束密度B2,B3,B4,B5,B6が全て等しく
B2=B3=B4=B5=B6該磁束密度の大きさと電
子ビームに沿った該両端部以外の磁石としての有効長さ
L2,L3,L4.L5,L6との積が該基準の2倍と
なるように構成したものである。
The even-numbered magnets a excluding the magnets a1, b1, a7, b7 at both ends of the magnet rows 37, 38
The magnitudes B2, B4, B6 of the magnetic flux densities between B2, b2, a4, b4, a6, b6 and the odd-numbered magnets a3, b3
The ratio of the magnitude of the magnetic flux density B3 between B5 and a5, b5 is 1: 2 or 2: 1, and the effective lengths L2, L4, L6 of these magnets along the even-numbered electron beams and the odd numbers The ratio of the effective lengths L3 and L5 of the second magnet as the magnets along the electron beam is 2: 1 or 1: 2, and between the magnets a1 and b1 at both ends of both magnet rows 37 and 38, a7 and
When the product (magnetic field integration) of the magnitudes B1 and B7 of the magnetic flux densities between b7 and the effective lengths L1 and L7 as the magnets at both ends along the electron beam is used as a reference, the distance between the magnets other than both ends is determined. B2 = B3 = B4 = B5 = B6 The magnetic flux densities B2, B3, B4, B5, and B6 are all equal. L4. The product of L5 and L6 is configured to be twice the reference.

【0021】具体的には、B2=B4=B6=7T(又
は3.5T)とし、B3=B5=3.5T(7T)と
し、さらに磁石の有効長L2=L4=L6=0.3m
(又は0.6m)とし、L3=L5=0.6m(0.3
m)とする。この結果、磁束密度と有効長との積(磁場
積分)BnLn=2.1Tmと揃える。
Specifically, B2 = B4 = B6 = 7T (or 3.5T), B3 = B5 = 3.5T (7T), and the effective magnet length L2 = L4 = L6 = 0.3 m
(Or 0.6 m), and L3 = L5 = 0.6 m (0.3
m). As a result, the product (magnetic field integral) BnLn = 2.1 Tm of the magnetic flux density and the effective length is made uniform.

【0022】そして、両端部の磁石は電子ビーム軌道を
真中に戻すため、BnLn=2.1Tmの半分のB1L
1=B7L7=1.05Tmとしている。
Since the magnets at both ends return the electron beam trajectory to the center, B1L, which is half of BnLn = 2.1 Tm, is used.
1 = B7L7 = 1.05Tm.

【0023】このときの電子ビームの軌道36は、図2
(b)の様になる。3.5T側からでるX線(放射光)
37Xの列と7T側からでるX線(放射光)38Xの列
がある。
The trajectory 36 of the electron beam at this time is shown in FIG.
(B). X-ray (emitted light) emitted from the 3.5T side
There is a row of 37X and a row of X-rays (emitted light) 38X emitted from the 7T side.

【0024】BnLnを揃えることは必ずしも必要無い
が、電子ビームの軌道36を揃えるにはBnLnを一定
とする。この様に従来と同じように光源は2線あるよう
に見えるが、各列のスペクトルが異なる。
Although it is not always necessary to make BnLn uniform, BnLn is fixed to make electron beam trajectory 36 uniform. Thus, the light source appears to have two lines as in the conventional case, but the spectrum of each column is different.

【0025】電子ビームエネルギー2.3GeVの時の
7Tと3.5TのX線強度を図3に示す。目的としてい
るハードX線、例えば50keVでのX線強度を比較す
ると7Tで3×1014、3.5Tで5×1013と6
倍の違いがあり、3.5T側からの寄与はほとんど無
い。従って、図2の7T側の列38からX線38Xがで
ることになる。
FIG. 3 shows the X-ray intensities at 7 T and 3.5 T at an electron beam energy of 2.3 GeV. Comparing the target hard X-rays, for example, the X-ray intensity at 50 keV, 3 × 10 14 at 7 T, 5 × 10 13 and 6 at 3.5 T
There is a difference of twice, and there is almost no contribution from the 3.5T side. Therefore, X-rays 38X are emitted from the column 38 on the 7T side in FIG.

【0026】以上述べたことから、本実施形態によれば
多極ウィグラーにしても、光源が一つの線上にならび画
像のぼけがが出ないようになる。
As described above, according to the present embodiment, even if the multi-pole wiggler is used, the light sources are arranged on one line and the image is not blurred.

【0027】以上述べた従来のウィグラー3(図5)を
用いた場合に、ウィグラー磁石3の強度は、その両端を
除くと磁束密度(磁場強度)が等しいために、図6
(a)に示すような上下対称な電子軌道になり、磁束密
度が高い場合には隣接する磁石内での放射光の発生点が
上下方向に大きくずれるために、ウィグラー放射光源が
2線化すると言う問題点がある。この光源が2線化する
原因は、両端を除く隣接する磁石列の最大磁束密度が等
しいために、図6(a)のX線31X及び32Xは磁束
密度が等しい場所から発生するためにX線強度も等しく
なるためである。
When the above-described conventional wiggler 3 (FIG. 5) is used, the strength of the wiggler magnet 3 is the same except at both ends, because the magnetic flux density (magnetic field strength) is the same.
As shown in (a), the electron trajectory becomes vertically symmetrical, and when the magnetic flux density is high, the generation point of the emitted light in the adjacent magnet is largely shifted in the vertical direction. There is a problem to say. This light source is converted into two lines because the maximum magnetic flux densities of the adjacent magnet rows except for both ends are equal, and the X-rays 31X and 32X in FIG. This is because the strengths are also equal.

【0028】以上述べた実施形態は、ウィグラー3の磁
場構成を変更することで、2線化したX線源の強度を変
化させて、実効的に光源を1線化するために、隣接する
ウィグラー磁石の磁束密度を1:2に変化させている。
磁束密度の変化は1:2であるが、放射光強度の変化
は、図3に示すように適当なX線エネルギーを選べば実
効的に問題がなくなる強度に設定できる。
In the embodiment described above, by changing the magnetic field configuration of the wiggler 3 to change the intensity of the X-ray source which has been converted into two lines and effectively convert the light source into one line, the adjacent wiggler is used. The magnetic flux density of the magnet is changed to 1: 2.
The change in the magnetic flux density is 1: 2, but the change in the intensity of the emitted light can be set to such an intensity that there is no problem by selecting an appropriate X-ray energy as shown in FIG.

【0029】次に、本発明の第2の実施形態について説
明する。前述の第1の実施形態において、第1の磁石列
37と第2の磁石列38の各磁石間の磁束密度Bを予め
定めた値としたが、これを各磁石間の磁束密度Bを可変
できるように構成し、運転モードを変えるようにしても
よい。
Next, a second embodiment of the present invention will be described. In the above-described first embodiment, the magnetic flux density B between the magnets of the first magnet row 37 and the second magnet row 38 is set to a predetermined value. The configuration may be such that the operation mode can be changed.

【0030】具体的には、例えば、それほど高いX線が
必要でないときは、最高磁束密度を第1の実施形態より
下げて5Tで運転する。また、B1=3T,B2=6
T,B3=3T,B4=2T,B5=4T,B6=2T
の配置にする。このように構成することにより、2つの
高いX線を有するスペクトルを出すことができる。
More specifically, for example, when not so high X-rays are required, the operation is performed at 5 T with the maximum magnetic flux density lower than that of the first embodiment. B1 = 3T, B2 = 6
T, B3 = 3T, B4 = 2T, B5 = 4T, B6 = 2T
Arrangement. With this configuration, a spectrum having two high X-rays can be obtained.

【0031】さらに、第3の実施形態について、図4を
参照して説明する。第1の実施形態の両磁石列37,3
8の各磁石を、何らかの手段により電子ビームの軸36
のまわりに回転可能に構成したものである。
Further, a third embodiment will be described with reference to FIG. Both magnet rows 37, 3 of the first embodiment
8 are connected to the axis 36 of the electron beam by some means.
It is configured to be rotatable around.

【0032】通常は、図4(a)に示すように磁束の方
向を上下方向にし、偏光面を水平にするが、図4(b)
に示すように磁束の方向を横にし、垂直偏光にできる。
また斜めの磁場方向にし、斜めの偏光のX線をとりだす
こともできる。この時、偏光面が可変でかつ一線上に光
源が並ぶ。
Normally, as shown in FIG. 4A, the direction of the magnetic flux is set in the vertical direction, and the plane of polarization is made horizontal.
As shown in (1), the direction of the magnetic flux can be made horizontal, and the polarization can be made vertically.
In addition, X-rays of obliquely polarized light can be taken out in an oblique magnetic field direction. At this time, the polarization plane is variable and the light sources are aligned.

【0033】以上述べた実施形態の磁石列37,38を
構成する磁石としては、NbTiやNb3Snの超伝導
線を巻いたコイルを用いた超電導磁石、また常伝導導線
を巻いたコイルを用いた常電導磁石、或は永久磁石を用
いてもよい。
As the magnets constituting the magnet arrays 37 and 38 of the above-described embodiments, a superconducting magnet using a coil wound with a superconducting wire of NbTi or Nb3Sn, or a regular magnet using a coil wound with a normal conducting wire is used. A conductive magnet or a permanent magnet may be used.

【0034】磁石を超電導磁石とすることで、磁束密度
の高い磁束(高い磁場)の発生ができる。また、磁石を
常道電導磁石とすることで、磁場強度の可変が容易であ
る。
When the magnet is a superconducting magnet, a magnetic flux having a high magnetic flux density (high magnetic field) can be generated. In addition, by using a normal-way conductive magnet as the magnet, the magnetic field strength can be easily changed.

【0035】さらに、磁石を永久磁石とすることで、磁
石列37,38相互の間隔を可変にすることが容易に行
える。
Further, by using permanent magnets for the magnets, the distance between the magnet rows 37 and 38 can be easily changed.

【0036】[0036]

【発明の効果】本発明によれば、ウィグラー磁石を多極
にしても、光が一つの線上を並び、従来問題になってい
た画像のボケが生じず、鮮明な画像が得られるウィグラ
ー磁石装置を提供できる。
According to the present invention, even if the wiggler magnet has multiple poles, the light is arranged on one line, and blurring of the image which has been a problem in the related art does not occur, and a clear image can be obtained. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されるシンクロトロン放射装置の
一例を説明するための図。
FIG. 1 is a diagram for explaining an example of a synchrotron radiation device to which the present invention is applied.

【図2】本発明のウィグラー磁石装置の第1の実施形態
を説明するための磁石列の構成と電子ビームの軌道と放
射光の発生を示す図。
FIG. 2 is a diagram showing a configuration of a magnet array, a trajectory of an electron beam, and generation of emitted light for describing a first embodiment of a wiggler magnet device of the present invention.

【図3】図2の磁石から出るX線の強度を示すスペクト
ル図。
FIG. 3 is a spectrum diagram showing the intensity of X-rays emitted from the magnet of FIG.

【図4】本発明のウィグラー磁石装置の第3の実施形態
を説明するための磁石列の構成図。
FIG. 4 is a configuration diagram of a magnet row for describing a third embodiment of the wiggler magnet device of the present invention.

【図5】従来のウィグラー磁石装置を説明するための磁
石列の構成図。
FIG. 5 is a configuration diagram of a magnet array for explaining a conventional wiggler magnet device.

【図6】従来のウィグラー磁石装置での問題点を説明す
るための図。
FIG. 6 is a diagram for explaining a problem in a conventional wiggler magnet device.

【符号の説明】[Explanation of symbols]

36…電子ビームの軌道 37…第1の磁石列 38…第2の磁石列 37X…磁石列のうちの3.5T側のX線 38X…磁石列のうちの7T側のX線 33…電子ビームの軌道 31…第1の磁石列 32…第2の磁石列 20…被写体 30…検出器 35…画像のぼけ 36: electron beam trajectory 37 ... first magnet row 38 ... second magnet row 37X ... 3.5T side X-ray of magnet row 38X ... 7T side X-ray of magnet row 33 ... electron beam Orbit 31 ... first magnet array 32 ... second magnet array 20 ... subject 30 ... detector 35 ... image blur

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の磁石列と、第2の磁石列を対向配
置し、両磁石列間に電子ビームが通過するようにしたも
のであって、該両磁石列はいずれも六面体の磁石を複数
個直線状に一体的に併設すると共に、該両磁石列間に発
生する磁束の向きが各磁石列の隣接する磁石毎に逆方向
になるようにしたウィグラー磁石装置において、 該両磁石列の両端部の磁石を除く各列の隣接する磁石の
磁束密度が1:2になるように構成し、かつ該両磁石列
の両端部の磁石間の磁束密度の大きさと前記電子ビーム
に沿った該両端部の磁石としての有効長さとの積を基準
としたとき、該両端部以外の磁石間の磁束密度の大きさ
と該電子ビームに沿った該両端部以外の磁石としての有
効長さとの積が該基準の2倍となるように構成したウィ
グラー磁石装置。
A first magnet row and a second magnet row are arranged to face each other so that an electron beam passes between the two magnet rows, and both of the magnet rows are hexahedral magnets. In a wiggler magnet apparatus in which a plurality of magnets are integrally provided in a straight line, and the directions of magnetic fluxes generated between the two magnet rows are opposite to each other for adjacent magnets in each magnet row. Are arranged so that the magnetic flux densities of the adjacent magnets of each row except for the magnets at both ends of the magnet row are 1: 2, and the magnitude of the magnetic flux density between the magnets at both end parts of both the magnet rows and The product of the magnitude of the magnetic flux density between the magnets other than the two ends and the effective length of the magnet other than the two ends along the electron beam, based on the product of the effective lengths of the two ends as magnets. Is a wiggler magnet device configured to be twice the reference.
【請求項2】 前記両磁石列の各磁石間の磁束密度を可
変可能に構成した請求項1に記載のウィグラー磁石装
置。
2. The wiggler magnet device according to claim 1, wherein a magnetic flux density between the magnets of the two magnet rows is variable.
【請求項3】 前記両磁石列の各磁石を、前記電子ビー
ムの軸のまわりに回転可能に構成した請求項1に記載の
ウィグラー磁石装置。
3. The wiggler magnet device according to claim 1, wherein each magnet of the two magnet rows is configured to be rotatable around an axis of the electron beam.
JP2000327185A 2000-10-26 2000-10-26 Wiggler-magnet equipment Pending JP2002134300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000327185A JP2002134300A (en) 2000-10-26 2000-10-26 Wiggler-magnet equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000327185A JP2002134300A (en) 2000-10-26 2000-10-26 Wiggler-magnet equipment

Publications (1)

Publication Number Publication Date
JP2002134300A true JP2002134300A (en) 2002-05-10

Family

ID=18804257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000327185A Pending JP2002134300A (en) 2000-10-26 2000-10-26 Wiggler-magnet equipment

Country Status (1)

Country Link
JP (1) JP2002134300A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393929B1 (en) * 2017-09-12 2018-09-26 大学共同利用機関法人 高エネルギー加速器研究機構 Magnet for undulator, undulator and synchrotron radiation generator
CN109561566A (en) * 2018-11-27 2019-04-02 中国原子能科学研究院 The cyclotron radial convergence method of the magnet assemblies of track is rocked based on generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393929B1 (en) * 2017-09-12 2018-09-26 大学共同利用機関法人 高エネルギー加速器研究機構 Magnet for undulator, undulator and synchrotron radiation generator
US10312006B2 (en) 2017-09-12 2019-06-04 Inter-University Research Institute Corporation Hi Undulator magnet, undulator, and radiation light generating device
CN109561566A (en) * 2018-11-27 2019-04-02 中国原子能科学研究院 The cyclotron radial convergence method of the magnet assemblies of track is rocked based on generation
CN109561566B (en) * 2018-11-27 2019-10-15 中国原子能科学研究院 The cyclotron radial convergence method of the magnet assemblies of track is rocked based on generation

Similar Documents

Publication Publication Date Title
US9916961B2 (en) X-ray tube having magnetic quadrupoles for focusing and steering
US5117212A (en) Electromagnet for charged-particle apparatus
EP3268976B1 (en) X-ray tube having magnetic quadrupoles for focusing and magnetic dipoles for steering
RU2693565C1 (en) Compact deflecting magnet
Elleaume Insertion devices for the new generation of synchrotron sources: A review
JP2002134300A (en) Wiggler-magnet equipment
US5565747A (en) Magnetic field generator for use with insertion device
JPS5826616B2 (en) Takiyokujiba Souchi
JPH0661000A (en) Circular accelerator and circular accelerator operating method and semiconductor exposure device
Völker et al. Introducing GunLab–a compact test facility for SRF photoinjectors
US3781732A (en) Coil arrangement for adjusting the focus and/or correcting the aberration of streams of charged particles by electromagnetic deflection, particularly for sector field lenses in mass spectrometers
US4538127A (en) Magnetic quadripole
JP3219376B2 (en) Low emittance electron storage ring
KR900004819B1 (en) Cathode ray tube
Martovetsky et al. Focusing Magnets for HIF based on Racetracks
JPH06103640B2 (en) Charge beam device
JP3164771B2 (en) Magnetic Field Adjustment Method for Planar Variable Polarization Undulator
US20240098871A1 (en) Drift tube electrode arrangement having direct current optics
Clark et al. Design and Construction of the Axial Injection System for the 88-Inch Cyclotron
JP4106500B2 (en) Insertion type polarization generator
Scahill Self-modulation of photoemitted bunches at the picosecond timescale
Mikhailichenko Few Comments on the Status of Detectors for ILC
USRE25440E (en) engelman
Bassalat et al. High Field Hybrid Permanent Magnet Wiggler Optimized for Tunable Synchrotron Radiation Spectrum
Green et al. Optimization of superconducting bending magnets for a 1.0 to 1.5 GeV compact light source