JP2002134137A - Cell of solid electrolyte fuel cell - Google Patents

Cell of solid electrolyte fuel cell

Info

Publication number
JP2002134137A
JP2002134137A JP2000331420A JP2000331420A JP2002134137A JP 2002134137 A JP2002134137 A JP 2002134137A JP 2000331420 A JP2000331420 A JP 2000331420A JP 2000331420 A JP2000331420 A JP 2000331420A JP 2002134137 A JP2002134137 A JP 2002134137A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
air electrode
solid electrolyte
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000331420A
Other languages
Japanese (ja)
Inventor
Kazumasa Marutani
和正 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000331420A priority Critical patent/JP2002134137A/en
Publication of JP2002134137A publication Critical patent/JP2002134137A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a cell of a solid electrolyte fuel cell, capable of generating electric power in a short time. SOLUTION: The cell 11 of the solid electrolyte fuel cell is formed, by stacking in order a solid electrolyte 2 and a fuel electrode 3 on an air electrode 1 comprising ceramics, and has an active part A contributing to power generation, where the air electrode 1, the solid electrolyte 2, and the fuel electrode 3 are piled up, and an inactive part B which does not contribute to power generation. A pair of terminal electrodes 5 are installed on the surface of the air electrode 1 in the inactive part B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell.

【0002】[0002]

【従来技術】固体電解質型燃料電池は、小型であること
に加え、作動温度が1000〜1050℃と高温で、熱
も利用できるためエネルギー効率が高く、第3世代の発
電システムとして大いに期待されている。
2. Description of the Related Art In addition to being small in size, a solid oxide fuel cell has a high operating temperature of 1000 to 1050.degree. C. and can utilize heat, so that it has high energy efficiency and is greatly expected as a third generation power generation system. I have.

【0003】一般に、固体電解質型燃料電池セルには、
円筒型燃料電池セルと平板型燃料電池セルと呼ばれる2
種類の構造が知られている。平板型燃料電池セルは、単
位体積当たりの出力密度が高いという特長を有するが、
実用化においてはガスシールの不完全性やセル内の温度
分布の不均一性による熱応力の問題がある。一方、円筒
型燃料電池セルは、円筒形状であるため機械的強度が高
いという特長を有するが、一般に出力密度が低いという
問題がある。以下、円筒型燃料電池セルを例にとり、固
体電解質型燃料電池セルを説明する。
[0003] In general, solid oxide fuel cells include:
2 called a cylindrical fuel cell and a flat fuel cell
Different types of structures are known. Flat fuel cells have the feature that the power density per unit volume is high,
In practical use, there is a problem of thermal stress due to imperfect gas seal and non-uniform temperature distribution in the cell. On the other hand, the cylindrical fuel cell has the advantage of high mechanical strength due to its cylindrical shape, but generally has a problem of low power density. Hereinafter, a solid oxide fuel cell will be described using a cylindrical fuel cell as an example.

【0004】円筒型燃料電池セルは、従来、開気孔率が
30%程度のCaO安定化ZrO2を支持管とし、その
上にLaMnO3系材料からなる多孔性の空気極を形成
し、その表面にY23安定化ZrO2からなる緻密な固
体電解質を被覆し、さらに、この表面に多孔性のNi/
ZrO2の燃料極が設けられていた。
Conventionally, a cylindrical fuel cell has a support tube made of CaO-stabilized ZrO 2 having an open porosity of about 30%, on which a porous air electrode made of a LaMnO 3 material is formed. Is coated with a dense solid electrolyte made of ZrO 2 stabilized with Y 2 O 3 , and a porous Ni /
A ZrO 2 fuel electrode was provided.

【0005】近年、この円筒型燃料電池セルの製造プロ
セスを単純化するため、空気極を直接支持管に用いる試
みがなされている。空気極としての機能を併せ持つ支持
管としてはLaをCa、Srで10〜20原子%置換し
たLaMnO3系材料が検討されている。
In recent years, attempts have been made to use an air electrode directly as a support tube in order to simplify the manufacturing process of the cylindrical fuel cell. As a support tube having a function as an air electrode, a LaMnO 3 material in which La and Ca are substituted by 10 to 20 atomic% is studied.

【0006】燃料電池モジュールは、セルの収納容器
(発電炉)内に前記の円筒型燃料電池セルを複数セット
し、隣り合う一方の燃料電池セルの空気極と他方の燃料
電池セルの燃料極を接続して直列回路を形成し、あるい
は一方の燃料電池セルの燃料極と他方の燃料電池セルの
燃料極を接続して並列回路を形成することにより構成さ
れる。
In a fuel cell module, a plurality of the cylindrical fuel cells are set in a cell storage container (power generation furnace), and the air electrode of one adjacent fuel cell and the fuel electrode of the other fuel cell are connected. The connection is made by forming a series circuit, or by connecting the fuel electrode of one fuel cell and the fuel electrode of the other fuel cell to form a parallel circuit.

【0007】このような燃料電池セルの発電は、発電炉
を囲むように設けられた外部ヒーターを用い、燃料電池
セルを電気化学的に活性とするために約1000℃の温
度に保持した状態で、空気極側に空気を燃料極側に水素
等の燃料ガスを供給することにより行われていた。
The power generation of such a fuel cell uses an external heater provided so as to surround the power generating furnace, and is maintained at a temperature of about 1000 ° C. in order to electrochemically activate the fuel cell. This has been done by supplying air to the air electrode side and fuel gas such as hydrogen to the fuel electrode side.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
固体電解質型燃料電池セルは、発電システムの起動、即
ち作動温度である1000℃までの昇温を、発電炉を囲
む外部ヒーターにより行っていたため、外部ヒーターに
よる固体電解質型燃料電池モジュールの加熱は、熱源で
ある外部ヒーターと燃料電池セルとの間に燃料ガス等の
ガスを挟んで行われ、加熱効率が非常に低いという問題
があった。
However, in the conventional solid oxide fuel cell, the starting of the power generation system, that is, the temperature rise to the operating temperature of 1000 ° C. is performed by the external heater surrounding the power generation furnace. The heating of the solid oxide fuel cell module by the external heater is performed by sandwiching a gas such as a fuel gas between the external heater, which is a heat source, and the fuel cell, and has a problem that the heating efficiency is extremely low.

【0009】即ち、外部ヒーターと燃料電池セルとの間
には、空気極の還元、燃料極の酸化を抑制するために、
空気極側に空気等の酸化ガス、燃料極側に水素等の還元
ガスが介在しており、これらのガスは、熱伝導率が低く
熱を伝えにくいため、また、発電炉内で熱を吸収した後
は炉外に排気されるため、エネルギー損失が大きく、加
熱効率が非常に低いという問題があった。
That is, between the external heater and the fuel cell, in order to suppress reduction of the air electrode and oxidation of the fuel electrode,
An oxidizing gas such as air is interposed on the air electrode side, and a reducing gas such as hydrogen is interposed on the fuel electrode side. These gases have low thermal conductivity and are difficult to conduct heat. After that, since the gas is exhausted outside the furnace, there is a problem that the energy loss is large and the heating efficiency is very low.

【0010】このため、固体電解質型燃料電池セルを1
000℃まで加熱する時間、即ち固体電解質型燃料電池
の起動時間に数時間という非常に長い時間を要するとい
う問題があった。
For this reason, one solid oxide fuel cell is used.
There is a problem that it takes a very long time of several hours to heat up to 000 ° C., that is, several hours to start up the solid oxide fuel cell.

【0011】本発明は、短時間で発電させることができ
る固体電解質型燃料電池セルを提供することを目的とす
る。
An object of the present invention is to provide a solid oxide fuel cell which can generate electric power in a short time.

【0012】[0012]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、セラミックスからなる空気極に、固体電
解質、燃料極を順次積層してなり、前記空気極、前記固
体電解質、および前記燃料極が重畳した発電に寄与する
活性部と、発電に寄与しない非活性部とを有する固体電
解質型燃料電池セルにおいて、前記非活性部における空
気極の表面に一対の端子電極を設けてなるものである。
A solid oxide fuel cell according to the present invention comprises an air electrode made of ceramics, a solid electrolyte and a fuel electrode laminated in this order, and the air electrode, the solid electrolyte and the fuel In a solid oxide fuel cell having an active portion contributing to power generation with superposed poles and an inactive portion not contributing to power generation, a pair of terminal electrodes is provided on the surface of the air electrode in the non-active portion. is there.

【0013】本発明では、固体電解質型燃料電池セルの
構成パーツである空気極に端子電極を付設し、空気極を
発熱源として兼用し、燃料電池セルを自己発熱させるこ
とができ、この結果、熱源から燃料電池セルへ直接に熱
エネルギーの供給ができるようになり、加熱効率が飛躍
的に向上し、燃料電池セルの1000℃までの昇温時
間、即ち燃料電池セルの起動時間(発電までの時間)
を、数時間レベルから数分あるいは数秒レベルに短縮で
きる。
According to the present invention, a terminal electrode is attached to the air electrode, which is a component part of the solid oxide fuel cell, and the air electrode can also be used as a heat source to cause the fuel cell to self-heat. Thermal energy can be directly supplied from the heat source to the fuel cell, the heating efficiency is dramatically improved, and the temperature rise time of the fuel cell to 1000 ° C., that is, the startup time of the fuel cell (the time until power generation) time)
Can be reduced from hours to minutes or seconds.

【0014】さらに、従来の燃料電池セルと構造的にほ
とんど変化がなく、単に空気極に一対の端子電極を設け
るだけで、加熱することができるため、従来のセル構造
をそのまま流用できる。
Further, the structure of the fuel cell is almost the same as that of the conventional fuel cell, and the heating can be performed only by providing a pair of terminal electrodes at the air electrode, so that the conventional cell structure can be used as it is.

【0015】そして、本発明の固体電解質型燃料電池セ
ルでは、発電に寄与しない非活性部における空気極の表
面に一対の端子電極を設けたので、空気極、固体電解
質、および燃料極が重畳し、発電に寄与する活性部にお
ける空気極のみを発熱させることができ、この結果、発
電反応に関係する領域のみを選択的に加熱できるように
なり、燃料電池セルを電気化学的に活性とするために必
要とされる消費電力を大幅に低減でき、発電システムの
急速起動に必要な消費電力を低減させることができる。
In the solid oxide fuel cell according to the present invention, a pair of terminal electrodes is provided on the surface of the air electrode in the inactive portion that does not contribute to power generation, so that the air electrode, the solid electrolyte, and the fuel electrode overlap. Therefore, only the air electrode in the active portion contributing to power generation can be heated, and as a result, only the region related to the power generation reaction can be selectively heated, and the fuel cell is electrochemically activated. Can be greatly reduced, and the power consumption required for rapid startup of the power generation system can be reduced.

【0016】また、加熱領域を限定できるためセルの熱
容量を低減でき、この結果、セルの1000℃までの昇
温時間、即ち、燃料電池の起動時間をさらに短縮でき
る。
Further, since the heating area can be limited, the heat capacity of the cell can be reduced, and as a result, the time required for the cell to be heated up to 1000 ° C., that is, the startup time of the fuel cell can be further reduced.

【0017】また、本発明の固体電解質型燃料電池セル
では、端子電極は、非活性部における空気極の全表面に
形成されていることが望ましい。これにより、活性部に
おける空気極のみを発熱させることができ、より消費電
力を低減できる。
Further, in the solid oxide fuel cell of the present invention, the terminal electrode is preferably formed on the entire surface of the air electrode in the inactive portion. As a result, only the air electrode in the active portion can generate heat, and the power consumption can be further reduced.

【0018】さらに、本発明では、空気極が円筒状であ
り、該空気極の両端面に端面端子電極、両端部内面に内
面端子電極が設けられており、端面端子電極と内面端子
電極が接続されていることが望ましい。
Further, according to the present invention, the air electrode has a cylindrical shape, and an end terminal electrode is provided on both end surfaces of the air electrode, and an inner terminal electrode is provided on the inner surfaces of both ends, so that the end terminal electrode and the inner terminal electrode are connected. It is desirable to have been.

【0019】このような固体電解質型燃料電池セルで
は、空気極側に空気を燃料極側に水素等の燃料ガスを供
給した状態で、先ず、空気極に設けられた一対の端子電
極をヒーター用電源と電気的に接続して電圧を印加し、
該空気極を発熱させ、固体電解質型燃料電池セルを電気
化学的に活性とするために約1000℃まで昇温し、次
に、端子電極間を電気的に絶縁させてから、該空気極と
燃料極を起電力の給電対象となる外部負荷に接続するこ
とにより行われる。
In such a solid oxide fuel cell, a pair of terminal electrodes provided on the air electrode are first connected to a heater while supplying air to the air electrode side and fuel gas such as hydrogen to the fuel electrode side. Electrically connected to the power supply and apply voltage,
The air electrode is heated, the temperature is raised to about 1000 ° C. in order to electrochemically activate the solid oxide fuel cell, and then the terminal electrodes are electrically insulated. This is performed by connecting the fuel electrode to an external load to be supplied with electromotive force.

【0020】また、本発明では、活性部における空気極
の表面に抵抗体を設け、該抵抗体の両端を一対の端子電
極にそれぞれ接続してなることが望ましい。
In the present invention, it is preferable that a resistor is provided on the surface of the air electrode in the active portion, and both ends of the resistor are connected to a pair of terminal electrodes, respectively.

【0021】これは、空気極材料の抵抗は低温で高く、
高温で指数関数的に低くなる温度依存性をもつ為、起動
時の昇温速度は低温で遅く、高温で速くなる。そこで、
空気極材料の温度依存性と反対の特性、即ち抵抗が低温
で低く、高温で高くなる温度依存性をもつ抵抗体を、端
子電極間の空気極(抵抗体と見なせる)と並列回路をな
すように、活性部における空気極の表面に設けて、低温
から高温にかけて端子電極間の抵抗が低く一定となるよ
うに調整することにより、低温から高温にわたって無理
のない安定した昇温ができるようになり、低温での昇温
速度を飛躍的に速くすることができる。
This is because the resistance of the cathode material is high at low temperatures,
Due to the temperature dependence that decreases exponentially at high temperatures, the rate of temperature rise at startup is slow at low temperatures and fast at high temperatures. Therefore,
A resistor having a characteristic opposite to the temperature dependence of the air electrode material, that is, a resistance having a low resistance at a low temperature and a high resistance at a high temperature, forms a parallel circuit with an air electrode (can be regarded as a resistor) between terminal electrodes. In addition, by providing the surface of the air electrode in the active part and adjusting the resistance between the terminal electrodes to be low and constant from low to high temperatures, it is possible to achieve a reasonable and stable temperature increase from low to high temperatures. The rate of temperature rise at low temperatures can be dramatically increased.

【0022】即ち、低温領域では、主に抵抗体が発熱
し、高温領域では、主に活性部における空気極が発熱す
ることになる。
That is, the resistor mainly generates heat in the low temperature region, and the air electrode in the active portion mainly generates heat in the high temperature region.

【0023】[0023]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルは、図1および図2に示すように、円筒状の空気極1
の外表面に固体電解質2を形成し、この固体電解質2の
外表面に燃料極3を形成して構成されている。固体電解
質2は、図2に示すように、空気極1の外表面のほぼ全
面に形成され、燃料極3は、固体電解質2の外表面の長
さ方向中央部に形成されており、セルには、空気極1、
固体電解質2、および燃料極3が重畳した発電に寄与す
る活性部Aと、この活性部Aの両側に形成された発電に
寄与しない非活性部Bとから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid oxide fuel cell according to the present invention has a cylindrical air electrode 1 as shown in FIGS.
The solid electrolyte 2 is formed on the outer surface of the solid electrolyte 2, and the fuel electrode 3 is formed on the outer surface of the solid electrolyte 2. As shown in FIG. 2, the solid electrolyte 2 is formed on almost the entire outer surface of the air electrode 1, and the fuel electrode 3 is formed at the center of the outer surface of the solid electrolyte 2 in the longitudinal direction. Is the air electrode 1,
The active portion A is composed of the solid electrolyte 2 and the active portion A which contributes to the power generation with the fuel electrode 3 superposed thereon, and the non-active portions B which are formed on both sides of the active portion A and do not contribute to the power generation.

【0024】そして、セルの両端面、即ち、円筒状の空
気極1の両端面にはそれぞれ端面端子電極5が設けられ
ている。また、燃料極3と対になっていない(活性部)
空気極1の両端部内面に内面端子電極6が形成され、端
面端子電極5と内面端子電極6が接続されている。尚、
図1では、理解を容易にするために、固体電解質2、内
面端子電極6を斜線を引いて記載し、図2では、内面端
子電極6を斜線を引いて記載した。
End terminal electrodes 5 are provided on both end surfaces of the cell, that is, on both end surfaces of the cylindrical air electrode 1. Not paired with fuel electrode 3 (active part)
Inner terminal electrodes 6 are formed on inner surfaces of both ends of the air electrode 1, and the end terminal electrodes 5 and the inner terminal electrodes 6 are connected. still,
In FIG. 1, for easy understanding, the solid electrolyte 2 and the inner terminal electrode 6 are shown with diagonal lines, and in FIG. 2, the inner terminal electrode 6 is drawn with diagonal lines.

【0025】本発明では、図3(a)に示すように、活
性部Aにおける空気極1の表面に抵抗体7を設け、抵抗
体7の両端を一対の内面端子電極6にそれぞれ接続する
ことが望ましい。理解を容易にするため、図3(a)
に、端面端子電極5と内面端子電極6と抵抗体7のみを
記載した。抵抗体7は、空気極材料の温度依存性と反対
の特性、即ち、抵抗が低温で低く高温で高くなる温度依
存性を有する、例えば、金属抵抗体であることが望まし
い。このような抵抗体7と活性部Aにおける空気極1が
並列接続されることにより、低温から高温にかけて抵抗
が低く一定となるように調整することができる。
In the present invention, as shown in FIG. 3A, a resistor 7 is provided on the surface of the air electrode 1 in the active portion A, and both ends of the resistor 7 are connected to a pair of inner terminal electrodes 6, respectively. Is desirable. In order to facilitate understanding, FIG.
Only the end face terminal electrode 5, the inner face terminal electrode 6, and the resistor 7 are described. The resistor 7 is desirably a metal resistor, for example, having a characteristic opposite to the temperature dependence of the cathode material, that is, a temperature dependence in which the resistance is low at low temperatures and high at high temperatures. By connecting the resistor 7 and the air electrode 1 in the active portion A in parallel, the resistance can be adjusted so as to be low and constant from low to high temperatures.

【0026】尚、抵抗体7の抵抗は、図3(b)に示す
ように、活性部Aにおける空気極1の内面に蛇行した抵
抗体7aの電極パターンを形成して調整しても良く、図
3(c)に示すように、活性部Aにおける空気極1の内
面の全面に一様な抵抗体7bを形成し、電極厚みで調整
しても良い。このような抵抗体を用いることにより、抵
抗体の抵抗を調整できる。
The resistance of the resistor 7 may be adjusted by forming an electrode pattern of a meandering resistor 7a on the inner surface of the air electrode 1 in the active portion A, as shown in FIG. As shown in FIG. 3C, a uniform resistor 7b may be formed on the entire inner surface of the air electrode 1 in the active portion A, and the resistance may be adjusted by the electrode thickness. By using such a resistor, the resistance of the resistor can be adjusted.

【0027】空気極1は、公知の形状、材料を用いるこ
とができるが、例えば、先ず、LaMnO3系あるいは
LaCoO3系の空気極材料を、押し出し成形等により
円筒状に成形し、所定の温度で焼成して形成される。こ
の空気極1は支持体を兼ねるものであり、空気と接する
場合のみならず、酸素等と接触するものである。
The air electrode 1 can be made of a known shape and material. For example, first, a LaMnO 3 -based or LaCoO 3 -based air electrode material is formed into a cylindrical shape by extrusion molding or the like, and a predetermined temperature is obtained. And formed by firing. The air electrode 1 also serves as a support, and is in contact not only with air but also with oxygen or the like.

【0028】固体電解質2は、例えば、Y23、Yb2
3等を含有するZrO2あるいはY23、Yb23、S
23、Nd23、Sm23、CaO等を含有するCe
2の固体電解質材料を、空気極1の外表面に溶射法あ
るいはEVD法により厚みが50〜200μmとなるよ
うに被覆して形成されている。
The solid electrolyte 2 is, for example, Y 2 O 3 , Yb 2
ZrO 2 containing O 3 or the like, Y 2 O 3 , Yb 2 O 3 , S
Ce containing c 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , CaO, etc.
The outer surface of the air electrode 1 is coated with a solid electrolyte material of O 2 by thermal spraying or EVD so as to have a thickness of 50 to 200 μm.

【0029】燃料極3は、例えば、固体電解質2の外表
面に、NiOまたはRuを含有するZrO2の燃料極材
料を被覆して所定の温度で焼成することにより形成され
ている。
The fuel electrode 3 is formed, for example, by coating the outer surface of the solid electrolyte 2 with a fuel electrode material of ZrO 2 containing NiO or Ru and firing it at a predetermined temperature.

【0030】固体電解質型燃料電池セルは、上記例に限
定されるものではなく、例えば、先ず、円筒状の空気極
成形体を作製し、次に、Y23、Yb23等を含有する
ZrO2、あるいはY23、Yb23、Sc23、Nd2
3、Sm23、CaO等を含有するCeO2の固体電解
質材料と、NiOまたはRuを含有するZrO2の燃料
極材料を、ドクターブレード法等によりそれぞれグリー
ンシートに成形し、これを該空気極成形体に巻き付けて
所定の温度で同時焼成することによっても形成すること
ができる。また、上記例では、円筒型燃料電池セルにつ
いて説明したが、平板型燃料電池セルについても本発明
を適用できる。
The solid oxide fuel cell is not limited to the above example. For example, first, a cylindrical air electrode molded body is prepared, and then Y 2 O 3 , Yb 2 O 3 and the like are formed. ZrO 2 , Y 2 O 3 , Yb 2 O 3 , Sc 2 O 3 , Nd 2
A solid electrolyte material of CeO 2 containing O 3 , Sm 2 O 3 , CaO and the like and a fuel electrode material of ZrO 2 containing NiO or Ru are formed into green sheets by a doctor blade method or the like, and this is formed into a green sheet. It can also be formed by winding around an air electrode molded body and co-firing at a predetermined temperature. In the above example, the cylindrical fuel cell has been described, but the present invention can also be applied to a flat fuel cell.

【0031】端面端子電極5は、円筒状の空気極1の両
端面に、内面端子電極6は、非活性部Bにおける空気極
1の内面に、導電性ペーストを塗布することにより、形
成され、端面端子電極5と内面端子電極6は接続され
る。これらの導電性ペーストは、金属材料として、酸化
されにくいPt等の非酸化電極材料が望ましい。また、
抵抗体7は、活性部Aにおける空気極の内面に形成され
るため、空気等の酸素によって酸化されにくいPt等の
非酸化電極材料によって形成されている。
The end face terminal electrodes 5 are formed on both end faces of the cylindrical air electrode 1, and the inner face terminal electrodes 6 are formed by applying a conductive paste on the inner surface of the air electrode 1 in the inactive portion B. The end face terminal electrode 5 and the inner face terminal electrode 6 are connected. In these conductive pastes, a non-oxidized electrode material such as Pt which is hardly oxidized is desirable as a metal material. Also,
Since the resistor 7 is formed on the inner surface of the air electrode in the active portion A, it is formed of a non-oxidized electrode material such as Pt which is not easily oxidized by oxygen such as air.

【0032】このような固体電解質型燃料電池セルは、
図4に示すように、端面端子電極5同士を接続する回路
と、発電用回路が形成されており、先ず、端面端子電極
5同士を接続して、固体電解質型燃料電池セルを加熱し
た後、端面端子電極5の一方と燃料極3が接続され、発
電するようになっている。
Such a solid oxide fuel cell has the following features:
As shown in FIG. 4, a circuit for connecting the end face terminal electrodes 5 and a circuit for power generation are formed. First, the end face terminal electrodes 5 are connected to each other to heat the solid oxide fuel cell, One of the end face terminal electrodes 5 is connected to the fuel electrode 3 to generate power.

【0033】活性部Aにおける端面端子電極5間の空気
極1と抵抗体7は端面端子電極5に並列に接続されてい
るため、低温では抵抗体7が発熱し、高温になるにつれ
て活性部Aにおける空気極1が発熱する割合が多くな
り、高温域では主に活性部Aにおける空気極1が発熱
し、全体的に低温から高温まで端面端子電極5間の抵抗
が低く一定となるため、発熱量は一定となる。
Since the air electrode 1 and the resistor 7 between the end face terminal electrodes 5 in the active portion A are connected in parallel to the end face terminal electrode 5, the resistor 7 generates heat at a low temperature and becomes active at a high temperature. In the high temperature range, the air electrode 1 mainly generates heat in the active portion A, and the resistance between the end face terminal electrodes 5 is low and constant as a whole from low temperature to high temperature. The amount will be constant.

【0034】図5は、燃料電池モジュールを示すもの
で、発電炉9内に複数の固体電解質型燃料電池セル11
が収容されており、これらの固体電解質型燃料電池セル
11が直列に接続されている。
FIG. 5 shows a fuel cell module, in which a plurality of solid oxide fuel cells 11
, And these solid oxide fuel cells 11 are connected in series.

【0035】以上のように構成された固体電解質型燃料
電池セルでは、高温での空気極1の還元、燃料極3の酸
化を抑制するために、空気極1側に酸化ガス、燃料極3
側に還元ガスを流しながら行われる。先ず、一対の端面
端子電極5間にヒーター用電源13を電気的に接続して
電圧を印加し、活性部Aにおける空気極1、即ち、燃料
電池セル11の発電領域のみを選択的に電気化学的に活
性となる温度である約1000℃まで昇温させる。
In the solid oxide fuel cell unit constructed as described above, in order to reduce the cathode 1 at high temperature and to suppress the oxidation of the anode 3, oxidizing gas and fuel
This is performed while flowing a reducing gas to the side. First, a heater power supply 13 is electrically connected between the pair of end face terminal electrodes 5 to apply a voltage, and only the air electrode 1 in the active part A, that is, only the power generation area of the fuel cell 11 is selectively electrochemically applied. The temperature is raised to about 1000 ° C., which is a temperature at which it becomes active.

【0036】次に、空気極1の端面端子電極5間を電気
的に絶縁してから、空気極1と燃料極3を起電力の給電
対象となる外部負荷15に接続して発電を開始する。発
電開始後は、発電による電気化学反応で生じる反応熱
と、燃料ガスの廃熱等を利用して、固体電解質2が電気
化学的に活性となる1000℃を維持する。
Next, after electrically insulating the end face terminal electrodes 5 of the air electrode 1, the air electrode 1 and the fuel electrode 3 are connected to the external load 15 to which the electromotive force is supplied, and power generation is started. . After the start of power generation, 1000 ° C. at which the solid electrolyte 2 becomes electrochemically active is maintained by utilizing the reaction heat generated by the electrochemical reaction due to the power generation and the waste heat of the fuel gas.

【0037】従って、本発明の固体電解質型燃料電池セ
ルでは、端面端子電極5をヒーター用電源13と電気的
に接続することにより、空気極1を発熱源として兼用
し、燃料電池セル11を自己発熱させることができ、こ
の結果、セル全体をほぼ均一に自己発熱させることがで
き、昇温時の燃料電池セル11内の温度分布をほぼ均一
とできるとともに、熱源から燃料電池セル11へ直接に
熱エネルギーの供給ができるようになり、加熱効率が飛
躍的に向上し、燃料電池セル11の1000℃までの昇
温時間を大幅に短縮できる。
Therefore, in the solid oxide fuel cell of the present invention, the end electrode 5 is electrically connected to the power source 13 for the heater, so that the air electrode 1 is also used as a heat source and the fuel cell 11 is self-contained. Heat can be generated, and as a result, the entire cell can be self-generated almost uniformly, and the temperature distribution in the fuel cell 11 at the time of temperature rise can be made substantially uniform. Heat energy can be supplied, the heating efficiency is dramatically improved, and the time for raising the temperature of the fuel cell 11 to 1000 ° C. can be greatly reduced.

【0038】また、端面端子電極5をヒーター用電源1
3と電気的に接続し、空気極1を発熱源として兼用し、
燃料電池セル11を自己発熱させる際、活性部Aにおけ
る空気極1を選択的に発熱させることができ、この結
果、発電反応に関係する領域のみを選択的に加熱できる
ようになり、燃料電池セルを電気化学的に活性にするた
めに必要とされる消費電力を大幅に低減できる。
The end terminal electrode 5 is connected to the heater power source 1.
3 and electrically connected to the air electrode 1 as a heat source,
When the fuel cell 11 self-generates heat, the air electrode 1 in the active part A can be selectively heated, and as a result, only the area related to the power generation reaction can be selectively heated, and the fuel cell 11 can be selectively heated. Power consumption required for electrochemically activating the compound can be greatly reduced.

【0039】また、加熱領域を限定できるので、セルの
熱容量を低減でき、この結果、セルの1000℃までの
昇温時間、即ち、燃料電池の起動時間を短縮できる。
In addition, since the heating region can be limited, the heat capacity of the cell can be reduced, and as a result, the time required to raise the temperature of the cell up to 1000 ° C., that is, the startup time of the fuel cell can be reduced.

【0040】また、空気極材料の温度依存性と反対の特
性、即ち、抵抗が低温で低く、高温で高くなる温度依存
性をもつ抵抗体7を、活性部Aにおける空気極1と並列
回路を成すように該空気極1上に設けて、低温から高温
にかけて抵抗が低く一定となるように調整することによ
り、低温での昇温速度を飛躍的に速くすることができ
る。
Further, a resistor 7 having a characteristic opposite to the temperature dependence of the air electrode material, that is, a temperature dependence whose resistance is low at a low temperature and high at a high temperature, is connected to a parallel circuit with the air electrode 1 in the active part A. By providing the air electrode 1 such that the resistance is low and constant from low to high temperatures, the rate of temperature rise at low temperatures can be drastically increased.

【0041】尚、上記例では、図1および図2に示すよ
うに、抵抗体を形成しなくても、燃料電池セルの100
0℃までの昇温時間を短縮できる。
In the above example, as shown in FIGS. 1 and 2, even if the resistor is not formed, the fuel cell 100
The time for raising the temperature to 0 ° C. can be shortened.

【0042】[0042]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、燃料電池セルの構成パーツである空気極に端子電極
を付設し、これを発熱源として兼用し、空気極を自己発
熱させることができるため、熱源から燃料電池セルへ直
接に熱エネルギーの供給ができ、加熱効率が向上し、燃
料電池セルの1000℃までの昇温時間、即ち燃料電池
セルの起動時間を飛躍的に短縮できる。
According to the solid oxide fuel cell of the present invention, a terminal electrode is attached to the air electrode which is a constituent part of the fuel cell, and the terminal electrode is also used as a heat source, so that the air electrode can generate heat by itself. Therefore, heat energy can be directly supplied from the heat source to the fuel cell, the heating efficiency can be improved, and the time required to raise the temperature of the fuel cell up to 1000 ° C., that is, the startup time of the fuel cell, can be drastically reduced.

【0043】さらに、発電に寄与しない非活性部におけ
る空気極の表面に一対の端子電極を設けたので、空気
極、固体電解質、および燃料極が重畳し、発電に寄与す
る活性部における空気極のみを発熱させることができ、
この結果、発電反応に関係する領域のみを選択的に加熱
できるようになり、燃料電池セルを電気化学的に活性と
するために必要とされる消費電力を大幅に低減でき、発
電システムの急速起動に必要な消費電力を低減させるこ
とができる。
Further, since a pair of terminal electrodes is provided on the surface of the air electrode in the non-active portion which does not contribute to power generation, the air electrode, the solid electrolyte, and the fuel electrode are superposed, and only the air electrode in the active portion which contributes to power generation is provided. Can generate heat,
As a result, only the region related to the power generation reaction can be selectively heated, the power consumption required to activate the fuel cell electrochemically can be significantly reduced, and the power generation system can be quickly started. Required power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質型燃料電池セルを示す断面
図である。
FIG. 1 is a cross-sectional view showing a solid oxide fuel cell unit of the present invention.

【図2】図1の固体電解質型燃料電池セルを示すもの
で、(a)は斜視図、(b)は側面図である。
FIGS. 2A and 2B show the solid oxide fuel cell unit of FIG. 1, wherein FIG. 2A is a perspective view and FIG. 2B is a side view.

【図3】(a)に、内面端子電極、端面端子電極および
抵抗体のみを記載した斜視図、(b)は蛇行した抵抗体
を形成した断面図、(c)は内面全面に一様な抵抗体を
形成した断面図である。
3A is a perspective view illustrating only an inner terminal electrode, an end terminal electrode, and a resistor, FIG. 3B is a cross-sectional view illustrating a meandering resistor, and FIG. 3C is uniform over the entire inner surface. It is sectional drawing in which the resistor was formed.

【図4】固体電解質型燃料電池セルの起動用ヒーター回
路と発電用回路を示す図である。
FIG. 4 is a diagram showing a heater circuit for starting a solid oxide fuel cell and a circuit for power generation.

【図5】固体電解質型燃料電池モジュールの説明図であ
る。
FIG. 5 is an explanatory diagram of a solid oxide fuel cell module.

【符号の説明】[Explanation of symbols]

1・・・空気極 2・・・固体電解質 3・・・燃料極 5・・・端面端子電極 6・・・内面端子電極 7、7a、7b・・・抵抗体 11・・・固体電解質型燃料電池セル A・・・活性部 B・・・非活性部 DESCRIPTION OF SYMBOLS 1 ... Air electrode 2 ... Solid electrolyte 3 ... Fuel electrode 5 ... End terminal electrode 6 ... Inner terminal electrode 7, 7a, 7b ... Resistor 11 ... Solid electrolyte type fuel Battery cell A: Active part B: Inactive part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セラミックスからなる空気極に、固体電解
質、燃料極を順次積層してなり、前記空気極、前記固体
電解質、および前記燃料極が重畳した発電に寄与する活
性部と、発電に寄与しない非活性部とを有する固体電解
質型燃料電池セルにおいて、前記非活性部における空気
極の表面に一対の端子電極を設けてなることを特徴とす
る固体電解質型燃料電池セル。
1. An active part which is formed by sequentially laminating a solid electrolyte and a fuel electrode on an air electrode made of ceramics and which contributes to power generation in which the air electrode, the solid electrolyte and the fuel electrode are superimposed, and which contributes to power generation. A solid oxide fuel cell having a non-active portion, wherein a pair of terminal electrodes are provided on a surface of an air electrode in the non-active portion.
【請求項2】端子電極は、非活性部における空気極の全
表面に形成されていることを特徴とする請求項1記載の
固体電解質型燃料電池セル。
2. The solid oxide fuel cell according to claim 1, wherein the terminal electrode is formed on the entire surface of the air electrode in the inactive portion.
【請求項3】空気極が円筒状であり、該空気極の両端面
に端面端子電極、両端部内面に内面端子電極が設けられ
ており、前記端面端子電極と前記内面端子電極が接続さ
れていることを特徴とする請求項1または2記載の固体
電解質型燃料電池セル。
3. An air electrode having a cylindrical shape, an end surface terminal electrode provided on both end surfaces of the air electrode, and an inner surface terminal electrode provided on inner surfaces of both end portions, wherein the end surface terminal electrode and the inner surface terminal electrode are connected. The solid oxide fuel cell according to claim 1, wherein:
【請求項4】活性部における空気極の表面に抵抗体を設
け、該抵抗体の両端を一対の端子電極にそれぞれ接続し
てなることを特徴とする請求項1乃至3のうちいずれか
に記載の固体電解質型燃料電池セル。
4. The device according to claim 1, wherein a resistor is provided on the surface of the air electrode in the active portion, and both ends of the resistor are connected to a pair of terminal electrodes, respectively. Solid electrolyte fuel cell.
JP2000331420A 2000-10-30 2000-10-30 Cell of solid electrolyte fuel cell Withdrawn JP2002134137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331420A JP2002134137A (en) 2000-10-30 2000-10-30 Cell of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331420A JP2002134137A (en) 2000-10-30 2000-10-30 Cell of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2002134137A true JP2002134137A (en) 2002-05-10

Family

ID=18807766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331420A Withdrawn JP2002134137A (en) 2000-10-30 2000-10-30 Cell of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2002134137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186666A (en) * 2007-01-29 2008-08-14 Kyocera Corp Fuel cell
JP2008235286A (en) * 2008-05-26 2008-10-02 Kyocera Corp Fuel cell and method for operating it
JP2018195496A (en) * 2017-05-19 2018-12-06 アイシン精機株式会社 Power collection structure for fuel battery cell, and manufacturing method thereof
JP2020194757A (en) * 2019-05-30 2020-12-03 大阪瓦斯株式会社 Solid oxide fuel battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186666A (en) * 2007-01-29 2008-08-14 Kyocera Corp Fuel cell
JP2008235286A (en) * 2008-05-26 2008-10-02 Kyocera Corp Fuel cell and method for operating it
JP2018195496A (en) * 2017-05-19 2018-12-06 アイシン精機株式会社 Power collection structure for fuel battery cell, and manufacturing method thereof
JP2020194757A (en) * 2019-05-30 2020-12-03 大阪瓦斯株式会社 Solid oxide fuel battery system
JP7285698B2 (en) 2019-05-30 2023-06-02 大阪瓦斯株式会社 Solid oxide fuel cell system

Similar Documents

Publication Publication Date Title
JP3731650B2 (en) Fuel cell
US7662497B2 (en) Solid oxide fuel cell with a metal bearing structure
JP2004179071A (en) Cell for fuel cell, and fuel cell
JP4009179B2 (en) Fuel cell and fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JP4688263B2 (en) Solid electrolyte fuel cell and starting method thereof
JP2002134137A (en) Cell of solid electrolyte fuel cell
JP2002367633A (en) Cell indirect connection method for solid oxide fuel cell
JP2004063226A (en) Fuel battery cell, its manufacturing method, and fuel battery
JP4057822B2 (en) Fuel cell, cell stack and fuel cell
JP5920880B2 (en) Mounting structure of stacked solid oxide fuel cell
US6528197B1 (en) Bipolar plate with porous wall for a fuel cell stack
JP6386364B2 (en) Cell stack device, module and module housing device
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
JP2013140766A (en) Tubular solid oxide fuel cell module and method of manufacturing the same
JP2006019044A (en) Solid oxide fuel cell
JP2012022856A (en) Solid oxide fuel cell and method for manufacturing the same
CA3016512C (en) Method for manufacturing fuel cell stack
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JP2002358980A (en) Solid electrolyte fuel cell
JP4484481B2 (en) Fuel cell, cell stack and fuel cell
JP4646511B2 (en) Fuel cell, cell stack and fuel cell
JPH03112058A (en) Solid electrolyte fuel cell
JP4705336B2 (en) Electrolyte / electrode assembly and method for producing the same
JP5178004B2 (en) Fuel cell, cell stack and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100622