JP2002131246A - Method for calibrating imaging magnification at x-ray imager - Google Patents

Method for calibrating imaging magnification at x-ray imager

Info

Publication number
JP2002131246A
JP2002131246A JP2000325720A JP2000325720A JP2002131246A JP 2002131246 A JP2002131246 A JP 2002131246A JP 2000325720 A JP2000325720 A JP 2000325720A JP 2000325720 A JP2000325720 A JP 2000325720A JP 2002131246 A JP2002131246 A JP 2002131246A
Authority
JP
Japan
Prior art keywords
ray
jig
imaging magnification
ray source
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000325720A
Other languages
Japanese (ja)
Other versions
JP4396796B2 (en
Inventor
Taketo Kishi
武人 岸
Shuhei Onishi
修平 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000325720A priority Critical patent/JP4396796B2/en
Publication of JP2002131246A publication Critical patent/JP2002131246A/en
Application granted granted Critical
Publication of JP4396796B2 publication Critical patent/JP4396796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for calibrating an imaging magnification whereby an imaging magnification of X-ray images of a measuring object can be correctly measured using a simple operation, thereby enabling strict analysis and measurement, on the basis of X-ray radiographic images and X-ray tomographic images. SOLUTION: A jig of a known size is placed on a measurement stage, and the imaging magnification is obtained from the X-ray radiographic image of the jig. Similarly, the imaging magnification is obtained from the X-ray radiographic image, after the measurement stage 13, is moved by Δd. A distance Di, between a focal point of an X-ray source 1 and a light-receiving face of an X-ray detector 2, and distances D1 and D2 between the focal point 1a of the X-ray source 1 and positions of the measurement stage, before and after being moved by Δd; can be calculated correctly through geometric calculations by correctly measuring the movement amount Δd. Even if the measurement stage 13 or the X-ray detector 2 is moved closer to or separated from the X-ray source 1 afterwards, the correct imaging magnification can be obtained, by using the calculation results so long as the movement amount can be measured correctly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定対象物(被写
体)の内部形状の解析およぶ計測のために用いられる、
X線透視装置やX線断層像撮像装置等のX線撮像装置に
おいて、撮像倍率を正確に求めるために行う、撮像倍率
の較正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for analyzing and measuring the internal shape of a measurement object (subject).
The present invention relates to a method for calibrating an imaging magnification performed in an X-ray imaging apparatus such as an X-ray fluoroscope and an X-ray tomographic imaging apparatus in order to accurately determine an imaging magnification.

【0002】[0002]

【従来の技術】X線透視装置やX線断層像撮像装置をは
じめとするX線撮像装置においては、一般に、撮像倍率
が正確に判らないと撮像した画像をもとにした厳密な解
析や計測を行うことはできない。
2. Description of the Related Art Generally, in an X-ray imaging apparatus such as an X-ray fluoroscope or an X-ray tomographic imaging apparatus, strict analysis or measurement based on an image taken unless the imaging magnification is accurately determined. Can not do.

【0003】従来のX線撮像装置においては、X線源の
位置と測定対象物(以下、被写体と称する)との間の距
離Doと、X線源の位置と受像部であるイメージ管等の
X線検出手段の位置との間の距離Diを、それぞれサー
ボモータやエンコーダ、あるいはメジャー等で計測し
て、倍率RをR=Di/Doによって計算している。
In a conventional X-ray imaging apparatus, the distance Do between the position of an X-ray source and an object to be measured (hereinafter, referred to as a subject), the position of the X-ray source and the image tube or the like which is an image receiving unit. The distance Di from the position of the X-ray detecting means is measured by a servomotor, an encoder, a measure, or the like, and the magnification R is calculated by R = Di / Do.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
ような従来の撮像倍率の計算方法では、正確な撮像倍率
求めることはできない。その理由は、上記した従来の計
算方法で用いる距離DoおよびDiを求めるための「X
線源の位置」および「X線検出手段の位置」に、不確定
要素を含んでいるためである。
However, with the above-described conventional calculation method of the imaging magnification, an accurate imaging magnification cannot be obtained. The reason is that "X" for obtaining the distances Do and Di used in the above-described conventional calculation method is "X".
This is because the position of the radiation source and the position of the X-ray detecting means include uncertain elements.

【0005】すなわち、上記した計算において用いる
「X線源の位置」とは、X線の焦点を指すものであり、
このX線の焦点は、X線発生装置内部にあり、しかも実
際の焦点がX線発生装置のX線照射口からどれだけ内部
になるのかがX線発生装置の組立精度やX線発生条件と
いったさまざまな要因によって変化し得る。加えて、同
じく上記した従来の計算において用いる「X線検出手段
の位置」についても、その受光部(X線感応面)も凹面
もしくは凹面状になっているため、どこをもってX線検
出手段の位置にするかということが不確定である。この
ようなことから、従来の方法により決定された撮像倍率
は不正確であると言わざるを得ない。
That is, the “position of the X-ray source” used in the above calculation indicates the focal point of the X-ray,
The focal point of the X-rays is inside the X-ray generator, and how much the actual focal point is from the X-ray irradiation port of the X-ray generator depends on the assembly accuracy of the X-ray generator and the X-ray generation conditions. It can vary depending on various factors. In addition, as for the "position of the X-ray detecting means" used in the above-mentioned conventional calculation, the light-receiving portion (X-ray sensitive surface) is also concave or concave, so that the position of the X-ray detecting means is determined everywhere. Is uncertain. For this reason, the imaging magnification determined by the conventional method must be said to be inaccurate.

【0006】本発明はこのような実状に鑑みてなされた
もので、X線透視装置やX線断層像撮像装置における撮
像倍率を正確に求めることができ、もって撮像した画像
をもとにした厳密な解析や計測を可能とする撮像倍率の
較正方法の提供を目的としている。
The present invention has been made in view of such a situation, and it is possible to accurately obtain an imaging magnification in an X-ray fluoroscope or an X-ray tomographic imaging apparatus. It is an object of the present invention to provide a method of calibrating an imaging magnification that enables accurate analysis and measurement.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のX線撮像装置における撮像倍率の較正方法
は、X線源と、そのX線源からのX線が入射するX線検
出手段と、そのX線源とX線検出手段の間に設けられ、
少なくともこれら両者を結ぶ方向への移動機構を備えた
測定台と、その移動機構による測定台の移動距離を計測
する測長手段と、上記X線検出手段の出力を用いて測定
台上に載せられている被写体のX線透視像を構築する画
像処理手段を備えたX線撮像装置における撮像倍率を較
正する方法であって、上記測定台上に寸法既知の治具を
載せた状態で、当該測定台をX線源とX線検出手段を結
ぶ方向に移動させ、その移動前後における治具のX線透
視像の撮像倍率kR1,kR2、もしくはX線検出手段
上への結像倍率R1,R2と、測定台の移動距離Δdを
用いて、X線源の焦点とX線検出手段の受光面間の距離
Diと、X線源の焦点と移動前の位置P1における測定
台上の治具とのなす距離D1、もしくはX線源と移動後
の位置P2における測定台上の治具とのなす距離D2を
算出して、これらを測定台の任意位置における撮像倍率
の演算のためのデータとして記憶もしくは記録すること
によって特徴づけられる。
In order to achieve the above object, a method of calibrating an imaging magnification in an X-ray imaging apparatus according to the present invention comprises an X-ray source, an X-ray to which X-rays from the X-ray source are incident. Detecting means, provided between the X-ray source and the X-ray detecting means,
A measuring table having at least a moving mechanism in a direction connecting the two, a length measuring means for measuring a moving distance of the measuring table by the moving mechanism, and a measuring table mounted on the measuring table by using an output of the X-ray detecting means. A method of calibrating an imaging magnification in an X-ray imaging apparatus including an image processing means for constructing an X-ray fluoroscopic image of a subject, wherein the measurement is performed while a jig of a known size is placed on the measurement table. The table is moved in the direction connecting the X-ray source and the X-ray detection means, and the imaging magnifications kR1 and kR2 of the X-ray fluoroscopic image of the jig before and after the movement, or the imaging magnifications R1 and R2 on the X-ray detection means. And the distance Di between the focal point of the X-ray source and the light receiving surface of the X-ray detection means, and the distance between the focal point of the X-ray source and the jig on the measuring table at the position P1 before the movement using the moving distance Δd of the measuring table. At the distance D1 or at the position P2 after movement with the X-ray source It calculates the eggplant distance D2 between the jig on the weighing platform, characterized by storing or recording them as data for the calculation of the imaging magnification at an arbitrary position of the measuring table.

【0008】本発明は、治具を用いた簡単な操作によっ
て、撮像倍率を正確に求めることを可能とするものであ
って、X線源およびX線検出手段の位置を固定した状態
で、それらの間の測定台上に寸法が既知の治具を載せ、
X線源とX線検出手段を結ぶ方向に移動させ、その移動
量Δdと、移動前後の撮像倍率R1,R2を求めること
によって、以下に示すようにX線源〜X線検出手段間の
距離Diと、移動前の位置P1における測定台上の治具
とX線源とのなす距離D1、もしくは移動後の位置P2
における測定台上の治具とX線源とのなす距離D2を以
下に示す簡単な幾何学演算によって算出することがで
き、その算出結果を用いることにより、X線源とX線検
出手段の位置を大きく変化させたり、あるいは測定台を
大きく移動させない限り、被写体の正確な撮像倍率を求
めることができ、必要に応じてこの較正を実行すること
によって、常に正確な撮像倍率を求めることができる。
The present invention makes it possible to accurately determine the imaging magnification by a simple operation using a jig, and to fix the positions of the X-ray source and the X-ray detection means while fixing the positions thereof. Place a jig of known dimensions on the measuring table between
The distance between the X-ray source and the X-ray detection means is calculated as follows by moving the X-ray source and the X-ray detection means in a direction connecting the X-ray source and the imaging magnification R1 and R2 before and after the movement. Di, the distance D1 between the jig on the measuring table and the X-ray source at the position P1 before the movement, or the position P2 after the movement
The distance D2 between the jig on the measuring table and the X-ray source can be calculated by a simple geometrical operation described below, and the position of the X-ray source and the X-ray detection means can be calculated by using the calculation result. As long as is not greatly changed or the measuring table is not largely moved, an accurate imaging magnification of the subject can be obtained, and by performing this calibration as needed, an accurate imaging magnification can always be obtained.

【0009】以下、本発明の原理を図1を参照しつに説
明する。X線源1の焦点1aとX線検出手段2の受光面
2aとの間の距離をDi(未知)とし、その間に被写体
Wを載せるための測定台3が配置されており、その測定
台3は、X線源1とX線検出手段2とを結ぶ方向に移動
可能であり、かつ、その移動距離については測長手段に
より正確に計測できるものとする。測定台3の当初の位
置をP1とし、その位置P1とX線源1の焦点1aとの
なす距離をD1(未知)とする。また、その位置P1か
ら測定台3をX線検出手段3の向きにΔdだけ移動させ
たときの位置をP2とし、その位置P2とX線源1の焦
点1aとのなす距離をD2(未知)とする。
The principle of the present invention will be described below with reference to FIG. The distance between the focal point 1a of the X-ray source 1 and the light receiving surface 2a of the X-ray detection means 2 is Di (unknown), and a measuring table 3 for placing a subject W therebetween is arranged. Is movable in the direction connecting the X-ray source 1 and the X-ray detection means 2 and the movement distance can be accurately measured by the length measuring means. The initial position of the measuring table 3 is P1, and the distance between the position P1 and the focal point 1a of the X-ray source 1 is D1 (unknown). Further, a position when the measuring table 3 is moved from the position P1 by Δd in the direction of the X-ray detecting means 3 is defined as P2, and a distance between the position P2 and the focal point 1a of the X-ray source 1 is D2 (unknown). And

【0010】X線検出手段2の出力に基づいてモニタ画
面上に形成される被写体WのX線透視画像は、X線検出
手段2の受光面2aに対して入射した被写体の像のk倍
のもとに表示されるものとし、そのモニタ画面上での被
写体WのX線透視画像の大きさと、実際の被写体Wの大
きさとの比が撮像倍率となる。
The X-ray fluoroscopic image of the subject W formed on the monitor screen based on the output of the X-ray detecting means 2 is k times the image of the subject incident on the light receiving surface 2a of the X-ray detecting means 2. The size of the X-ray fluoroscopic image of the subject W on the monitor screen and the actual size of the subject W become the imaging magnification.

【0011】さて、被写体Wとして寸法既知の治具を用
い、P1に位置する測定台3上に載せてモニタ画面4上
のX線透視画像を得たとき、その倍率がkR1倍であっ
たとすると、この状態においてはX線検出手段2の受光
面2a上での像は被写体Wの実寸LのR1倍である。次
に、その状態から測定台3をΔdだけ移動させてP2に
位置させたとき、その撮像倍率がkR2となっていたと
すると、X線検出手段2の受光面2a上での像は同じく
治具の実寸LのR2倍である。
Now, when an X-ray fluoroscopic image on the monitor screen 4 is obtained by using a jig of known dimensions as the subject W and placing it on the measuring table 3 located at P1, the magnification is assumed to be kR1. In this state, the image on the light receiving surface 2a of the X-ray detecting means 2 is R1 times the actual size L of the subject W. Next, when the measuring table 3 is moved by Δd from that state and is positioned at P2, assuming that the imaging magnification is kR2, the image on the light receiving surface 2a of the X-ray detecting means 2 is also a jig. R2 times the actual size L.

【0012】測定台3の移動量Δdは、前記したように
測長手段により正確に計測でき、また、各撮像倍率kR
1,kR2についても、モニタ画面上のX線透視画像の
大きさと治具の既知寸法Lとから容易に知ることがで
き、更に、kについても装置定数としてあらかじめ把握
することができ、従ってR1,R2についても容易に知
ることができる。そして、これらの既知の数値Δd、お
よびR1,R2を用いることにより、以下の計算によっ
てX線源1の焦点1aとX線検出手段2の受光面2aと
のなす距離Di、および、同焦点1aから位置P1並び
にP2とのなす距離を算出することができる。
The movement amount Δd of the measuring table 3 can be accurately measured by the length measuring means as described above.
1 and kR2 can be easily known from the size of the X-ray fluoroscopic image on the monitor screen and the known dimension L of the jig. Further, k can be grasped in advance as a device constant. R2 can also be easily known. Then, by using these known numerical values Δd and R1 and R2, the distance Di between the focal point 1a of the X-ray source 1 and the light receiving surface 2a of the X-ray detecting means 2 and the parfocal point 1a are calculated as follows. Can be calculated from the positions P1 and P2.

【0013】すなわち、図1において、 D1・R1=Di D2・R2=Di D2=D1+Δd であるから、That is, in FIG. 1, D1 · R1 = Di D2 · R2 = Di D2 = D1 + Δd.

【0014】 D1=Δd・R2/(R1−R2)・・・・(1) D2=Δd・R1/(R1−R2)・・・・(2) Di=Δd・R1・R2(R1−R2)・・・・(3) によって算出することができる。D1 = Δd · R2 / (R1−R2) (1) D2 = Δd · R1 / (R1−R2) (2) Di = Δd · R1 · R2 (R1−R2) ) (3) can be calculated.

【0015】以上のDiと、D1もしくはD2を用いる
ことにより、撮像倍率を正確に計算することができる。
すなわち、例えば測定台3の位置をP2を基準として用
いる場合、位置P2にある測定台3上に測定対象物を載
せ、モニタ画面上で適当な大きさとなるように測定台3
を移動させたとき、測長手段によって読み取った移動量
がΔDであったとすると、X線検出手段2の受光面2a
上の像の測定対象物の実寸に対する倍率Rxは、 Rx=Di/(D2+ΔD)・・・・(4) によって正確に求めることができ、モニタ画面上の測定
対象物のX線透視画像の撮像倍率は、前記した比kを乗
じてkRxとして正確に求めることができる。また、X
線源1とX線検出手段2とを相対的に移動可能とした装
置、例えばX線検出手段2をX線源1に対して接近・離
隔する向きに移動可能とした装置においては、測定台3
と同様に、X線検出手段2の移動量については測長手段
を設けることによって正確に計測することができるの
で、その移動量をDiに対して加算もしくは減算するこ
とによって、X線検出手段2を移動させても正確な撮像
倍率を求めることができる。
By using the above Di and D1 or D2, the imaging magnification can be accurately calculated.
That is, for example, when the position of the measurement table 3 is used with P2 as a reference, the measurement target is placed on the measurement table 3 at the position P2, and the measurement table 3 is set to an appropriate size on the monitor screen.
Assuming that the amount of movement read by the length measuring means is ΔD when the light-receiving surface 2a of the X-ray detecting means 2 is moved.
The magnification Rx of the upper image with respect to the actual size of the measurement object can be accurately obtained by the following formula: Rx = Di / (D2 + ΔD) (4), and the imaging of the X-ray fluoroscopic image of the measurement object on the monitor screen The magnification can be accurately obtained as kRx by multiplying the ratio k described above. Also, X
In a device in which the X-ray source 1 and the X-ray detection means 2 can be relatively moved, for example, in a device in which the X-ray detection means 2 can be moved in a direction approaching or separating from the X-ray source 1, a measuring table 3
Similarly to the above, the moving amount of the X-ray detecting means 2 can be accurately measured by providing the length measuring means, and by adding or subtracting the moving amount to or from Di, the X-ray detecting means 2 can be measured. Even if is moved, an accurate imaging magnification can be obtained.

【0016】また、上記のように測定台3上に被写体W
として治具を配置するとともに、X線検出手段2の受光
面に対して他の治具を密着配置した状態でX線透視像を
観察し、測定台3上の治具と受光面に密着した治具のX
線透視像の大きさの相違から、測定台3上の治具のX線
検出手段の受光面上への結像倍率R1,R2を直接的に
知ることができ、この手法を用いて求めたR1,R2を
上記した(1)〜(3)式に代入しても、同等の作用効
果を奏することができ、本発明はこの手法をも包含す
る。
Further, as described above, the subject W
A jig is arranged, and an X-ray fluoroscopic image is observed in a state where another jig is arranged in close contact with the light receiving surface of the X-ray detecting means 2, and the jig on the measuring table 3 is closely attached to the light receiving surface. Jig X
From the difference in the sizes of the fluoroscopic images, the imaging magnifications R1 and R2 on the light receiving surface of the X-ray detection means of the jig on the measuring table 3 can be directly known, and the magnifications R1 and R2 are obtained using this method. Even if R1 and R2 are substituted into the above equations (1) to (3), the same operation and effect can be obtained, and the present invention also includes this method.

【0017】また、以上のような撮像倍率の計算は、X
線透視装置並びにX線断層像撮像装置の双方に等しく適
用することができる。
The calculation of the imaging magnification as described above is performed by X
The present invention can be equally applied to both a fluoroscopic apparatus and an X-ray tomographic imaging apparatus.

【0018】[0018]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について述べる。図2は本発明方法を適用す
るX線撮像装置の構成を示すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram showing a configuration of an X-ray imaging apparatus to which the method of the present invention is applied.

【0019】この例における装置はX線透視装置であっ
て、X線源11と、それに対向して配置された、例えば
イメージインテンシファイアおよびCCDからなるX線
検出器12、これらの間に配置された測定台13、X線
検出器2からの画素出力を用いて測定対象物のX線透視
像を構築して表示装置14に表示させる画像処理機能を
備えた演算・制御装置15を備えている。また、測定台
13は、駆動機構13aによってX線源11とX線検出
器12を結ぶ方向に移動させることができ、その移動量
はリニアエンコーダ13bによって刻々と検出され、演
算・制御装置15に取り込まれる。更に、X線検出器1
2についても、駆動機構12aによってX線源11に対
して接近・離隔する方向に移動させることができ、か
つ、その移動量についてもリニアエンコーダ12bによ
り刻々と検出され、演算・制御装置15に取り込まれ
る。演算・制御装置15では、これらのリニアエンコー
ダ12b,13bの出力に基づき、X線源11とX線検
出器12とのなす距離、および、X線源11と測定台1
3とのなす距離を表示装置14に刻々と表示するように
構成されている。
The apparatus in this example is an X-ray fluoroscope, which comprises an X-ray source 11 and an X-ray detector 12 arranged opposite thereto, for example an image intensifier and a CCD. The measurement table 13 includes a calculation / control device 15 having an image processing function of constructing an X-ray fluoroscopic image of the measurement object using the pixel output from the X-ray detector 2 and displaying the image on the display device 14. I have. The measuring table 13 can be moved in a direction connecting the X-ray source 11 and the X-ray detector 12 by a driving mechanism 13a, and the amount of movement is detected every moment by a linear encoder 13b. It is captured. Further, the X-ray detector 1
2 can be moved in the direction of approaching / separating from the X-ray source 11 by the drive mechanism 12a, and the amount of movement is also momentarily detected by the linear encoder 12b and taken into the arithmetic / control device 15. It is. The arithmetic and control unit 15 calculates the distance between the X-ray source 11 and the X-ray detector 12 and the distance between the X-ray source 11 and the measuring table 1 based on the outputs of the linear encoders 12b and 13b.
3 is displayed on the display device 14 every moment.

【0020】さて、以上の装置において、表示装置14
に表示されるX線源11とX線検出器12とのなす距
離、および、X線源11と測定台13とのなす距離は、
前記したようにX線源11の焦点とX線検出器12の受
光面との距離、および同焦点と測定台13とのなす距離
を正確に表してはおらず、不確定要素を含み、これらを
そのまま用いたのでは正確な撮像倍率を求めることはで
きない。そこで、以下の較正動作を実行する。
Now, in the above device, the display device 14
Is the distance between the X-ray source 11 and the X-ray detector 12 and the distance between the X-ray source 11 and the measuring table 13
As described above, the distance between the focal point of the X-ray source 11 and the light receiving surface of the X-ray detector 12 and the distance between the focal point and the measuring table 13 are not accurately represented, and include uncertain elements, and If used as it is, an accurate imaging magnification cannot be obtained. Therefore, the following calibration operation is performed.

【0021】撮像倍率較正用として、図3に正面図を示
すような治具20を用意する。この治具20は、例えば
アクリル板21に一定の間隔、例えば正確に10mmの
間隔を開けて2本のマーク22a,22bを形成したも
のであり、各マーク22a,22bは、アクリル板21
に細く浅い溝を彫って、そこに鉛の粉を埋め込んだ状態
で接着することによって形成されている。
A jig 20 as shown in the front view of FIG. 3 is prepared for calibration of the imaging magnification. The jig 20 is formed by forming two marks 22a and 22b at predetermined intervals, for example, precisely 10 mm, on an acrylic plate 21, and the marks 22a and 22b are formed on the acrylic plate 21.
It is formed by carving a thin shallow groove and bonding it with lead powder embedded in it.

【0022】較正動作においては、X線検出器12の位
置を固定するとともに、任意の位置における測定台13
上に、マーク22a,22bの広がり方向がX線の光軸
に直交するように治具20をセットしてそのX線透視画
像を表示装置14に表示させる。そのときのX線透視画
像におけるマーク22a,22b間の距離を測定するこ
とにより、その状態における撮像倍率kR1を計測す
る。次に、測定台3をX線源11から遠ざかる向きに適
当量だけ移動させる。リニアエンコーダ13bの出力に
基づいて表示装置14に表示されている測定台13のX
線源11からの距離の表示値は、正確にX線焦点からの
距離を表すものではないが、測定台13の移動量Δdに
ついては、移動前後の表示値の差から正確に知ることが
できる。そして、そのΔdだけ移動させた後、その状態
において表示装置14に表示されている治具20のX線
透視画像におけるマーク22a,22b間の距離を測定
して、撮像倍率kR2を計測する。
In the calibration operation, the position of the X-ray detector 12 is fixed, and the measuring table 13 at an arbitrary position is set.
The jig 20 is set on the upper side so that the spreading direction of the marks 22 a and 22 b is orthogonal to the optical axis of the X-ray, and the X-ray fluoroscopic image is displayed on the display device 14. By measuring the distance between the marks 22a and 22b in the X-ray fluoroscopic image at that time, the imaging magnification kR1 in that state is measured. Next, the measurement table 3 is moved by an appropriate amount in a direction away from the X-ray source 11. The X of the measurement table 13 displayed on the display device 14 based on the output of the linear encoder 13b
The displayed value of the distance from the radiation source 11 does not accurately represent the distance from the X-ray focal point, but the moving amount Δd of the measuring table 13 can be accurately known from the difference between the displayed values before and after the movement. . Then, after moving by Δd, the distance between the marks 22a and 22b in the X-ray fluoroscopic image of the jig 20 displayed on the display device 14 in that state is measured, and the imaging magnification kR2 is measured.

【0023】次に、X線検出器12の受光面への結像の
大きさと、その像の表示装置14の画面上での大きさと
の比k(既知)を用いて、移動前後における撮像倍率k
R1およびkR2から、測定台13の移動前後における
X線検出器12の受光面上での倍率R1,R2を求め
る。
Next, using the ratio k (known) of the size of the image formed on the light receiving surface of the X-ray detector 12 to the size of the image on the screen of the display device 14, the imaging magnification before and after the movement is determined. k
From R1 and kR2, magnifications R1 and R2 on the light receiving surface of the X-ray detector 12 before and after the movement of the measuring table 13 are obtained.

【0024】以上の動作により、X線源11の焦点から
移動前の測定台13(治具20)までの距離D1と、X
線源11の焦点からX線検出器12の受光面までの距離
D2、およびX線源11の焦点からX線検出器12の受
光面までの距離Diを、前記した(1)〜(3)式を用
いて正確に算出することができる。
By the above operation, the distance D1 from the focal point of the X-ray source 11 to the measuring table 13 (the jig 20) before moving, and X
The distance D2 from the focal point of the X-ray detector 12 to the light receiving surface of the X-ray detector 12 and the distance Di from the focal point of the X-ray source 11 to the light receiving surface of the X-ray detector 12 are described in (1) to (3) above. It can be calculated accurately using the equation.

【0025】このDiと、D1もしくはD2を記憶ない
しは記録しておくことによって、測定台13またはX線
検出器12を大きく移動させない限り、これらを任意の
位置に移動させても、その移動量さえリニアエンコーダ
12b,13bにより正確に計測することによって、各
部寸法が未知の測定対象物を測定台13上に載せて、そ
のX線透視画像を表示装置14に表示したときに、その
正確な撮像倍率を求めることができる。具体的には、例
えば較正動作を行った状態で、測定台13のみをX線検
出器12側にΔDだけ移動させた場合には、前記した
(4)式および前記した比kから表示装置14の画面上
での撮像倍率を正確に求めることができる。また、較正
動作の行った状態で測定台13を移動させず、X線検出
器12をX線源11から遠ざかる向きにΔD′だけ移動
させ場合には、 Rx′=(Di+ΔD′)/D2・・・・(5) によりX線検出器12の受光面上での倍率を求め、それ
にkを乗じることによって表示装置14の画面上での撮
像倍率を求めることができる。
By storing or recording this Di and D1 or D2, as long as the measuring table 13 or the X-ray detector 12 is not largely moved, even if these are moved to an arbitrary position, even the amount of movement thereof. By accurately measuring with the linear encoders 12b and 13b, when the measurement target whose dimensions are unknown is placed on the measurement table 13 and its X-ray fluoroscopic image is displayed on the display device 14, the accurate imaging magnification is obtained. Can be requested. Specifically, for example, when only the measurement table 13 is moved to the X-ray detector 12 side by ΔD in a state where the calibration operation is performed, the display device 14 is obtained from the above equation (4) and the above ratio k. The imaging magnification on the screen can be accurately obtained. When the X-ray detector 12 is moved by ΔD ′ in a direction away from the X-ray source 11 without moving the measurement table 13 in a state where the calibration operation is performed, Rx ′ = (Di + ΔD ′) / D2 · (5), the magnification on the light receiving surface of the X-ray detector 12 is obtained, and by multiplying by k, the imaging magnification on the screen of the display device 14 can be obtained.

【0026】ここで、以上の説明においては、較正動作
において、表示装置14の画面上に表示された治具20
のX線透視画像の大きさを計測することによって治具2
0の撮像倍率kR1,kR2を求めたが、以下の手法に
よっても治具20の表示装置14の画面上での像の倍率
R1,R2を求めることができる。
Here, in the above description, the jig 20 displayed on the screen of the display device 14 in the calibration operation is described.
Jig 2 by measuring the size of the X-ray fluoroscopic image of
Although the imaging magnifications kR1 and kR2 of 0 have been obtained, the magnifications R1 and R2 of the image on the screen of the display device 14 of the jig 20 can be obtained by the following method.

【0027】すなわち、図3に示した治具20に加え
て、図4に正面図を示すような治具30を用いる。この
治具30は、治具20と同様にアクリル板31を基体と
し、その表面に複数本のマーク32a,32b,32c
・・・・を付したものであり、互いに隣接するマーク間のピ
ッチは治具20のマーク22a,22b間のピッチと等
しく、例えば10mmである。また、この治具30の各
マーク32a,32b,32c・・・・は、治具20のマー
ク22a,22bと同様に、アクリル板31の表面に浅
い溝を形成してその内部に鉛の粉を埋め込んで接着する
ことによって形成しているのであるが、その幅はマーク
22a,22bよりも太くしている。
That is, in addition to the jig 20 shown in FIG. 3, a jig 30 as shown in a front view in FIG. 4 is used. This jig 30 has an acrylic plate 31 as a base similarly to the jig 20, and has a plurality of marks 32a, 32b, 32c on its surface.
The pitch between adjacent marks is equal to the pitch between the marks 22a and 22b of the jig 20, for example, 10 mm. Each mark 32a, 32b, 32c,... Of the jig 30 has a shallow groove formed on the surface of the acrylic plate 31 and has a lead powder inside the same as the marks 22a, 22b of the jig 20. Are embedded and bonded, and the width is larger than the marks 22a and 22b.

【0028】この治具30を用いることによって、表示
装置14の画面上において治具20のX線透視画像の大
きさを計測することなく、簡易にX線検出器12の受光
面上での治具20の像の倍率R1,R2を求めることが
できる。
By using the jig 30, the jig 20 can be easily set on the light receiving surface of the X-ray detector 12 without measuring the size of the X-ray fluoroscopic image of the jig 20 on the screen of the display device 14. The magnifications R1 and R2 of the image of the tool 20 can be obtained.

【0029】すなわち、較正動作においては、図5に示
すように、先の例と同様に治具20を測定台13上に載
せる一方、治具30をX線検出器12の受光面に密着さ
せた状態で固定する。この状態においてX線源11を駆
動してX線を発生すると、測定台13上の治具20は、
X線源11の焦点とX線検出器12の受光面との距離、
およびX線源11の焦点と治具20間の距離に応じた倍
率のもとにX線検出器12の受光面上に結像する一方、
X線検出器12の受光面に密着配置された治具30の像
は、その受光面上に実物大で結像する。
That is, in the calibration operation, as shown in FIG. 5, the jig 20 is placed on the measuring table 13 and the jig 30 is brought into close contact with the light receiving surface of the X-ray detector 12, as in the previous example. And fix it. In this state, when the X-ray source 11 is driven to generate X-rays, the jig 20 on the measurement table 13
The distance between the focal point of the X-ray source 11 and the light receiving surface of the X-ray detector 12,
And an image is formed on the light receiving surface of the X-ray detector 12 under a magnification corresponding to the distance between the focal point of the X-ray source 11 and the jig 20,
The image of the jig 30 closely attached to the light receiving surface of the X-ray detector 12 forms an actual size image on the light receiving surface.

【0030】そこで、治具20および30のX線透視画
像を表示装置14の画面上で観察しながら測定台13を
適宜に移動させ、まず、治具20のX線検出器12の受
光面上での像の倍率が第1の規定の整数倍、例えば4倍
になった位置で測定台13を停止させる。結像倍率が整
数倍になったことは、図6に表示装置14の画面を例示
するように、治具20のマーク22a,22bの画像の
双方が、治具30のマーク32a,32b,32c・・・・
の画像のいずれかに重なり合うことによって知ることが
でき、図6(A)は4倍を、同図(B)は3倍になった
状態示している。
Therefore, the observation table 13 is appropriately moved while observing the X-ray fluoroscopic images of the jigs 20 and 30 on the screen of the display device 14, and firstly, on the light receiving surface of the X-ray detector 12 of the jig 20. The measuring table 13 is stopped at a position where the magnification of the image at the point has become a first specified integral multiple, for example, four times. The fact that the imaging magnification has become an integer multiple means that both the images of the marks 22a and 22b of the jig 20 are displayed on the marks 32a, 32b and 32c of the jig 30 as illustrated in the screen of the display device 14 in FIG. ...
6A shows a state where the magnification is quadrupled, and FIG. 6B shows a state where the magnification is tripled.

【0031】次に、測定台3をX線検出器12側に移動
させ、同様にして治具20の結像の倍率が第2の規定の
整数倍、例えば3倍、になった位置で測定台13を停止
させる。そして、その移動前後のリニアエンコーダ13
bの出力から、その移動量Δdを正確に知り、前記した
(1)〜(3)式において、第1の整数倍をR1,第の
整数倍をR2としてX線源11の焦点と移動前の測定台
13との間の距離D1、X線源11と移動後の測定台1
3との間の距離D2、およびX線源11の焦点とX線検
出器12の検出面との間の距離Diを求める。これらを
記憶もしくは記憶しておくことにより、測定対象物を測
定台13上に載せ、測定台13もしくはX線検出器12
を任意に移動させたときの表示装置14の画面上での撮
像倍率を、(4)または(5)式を用いてRxないしは
Rx′を求め、定数kを乗じることによって正確に求め
ることができる。
Next, the measuring table 3 is moved to the X-ray detector 12 side, and measurement is similarly performed at a position where the imaging magnification of the jig 20 is a second integral multiple, for example, 3 times. The platform 13 is stopped. Then, the linear encoder 13 before and after the movement
From the output of b, the movement amount Δd is accurately known, and in the above-described equations (1) to (3), the first integer multiple is R1 and the second integer multiple is R2, and the focal point of the X-ray source 11 and the position before the movement are determined. D1 between the measurement table 13 and the X-ray source 11 and the measurement table 1 after the movement
3 and the distance Di between the focal point of the X-ray source 11 and the detection surface of the X-ray detector 12 are determined. By storing or storing these, the object to be measured is placed on the measuring table 13 and the measuring table 13 or the X-ray detector 12 is
The imaging magnification on the screen of the display device 14 when is arbitrarily moved can be accurately obtained by obtaining Rx or Rx ′ using the formula (4) or (5) and multiplying by the constant k. .

【0032】なお、以上の各較正動作の例において用い
た治具20あるいは30の形状や構造については、特に
限定されるものではなく、上記した各説明において明ら
かとなっている機能を有してさえいれば、任意の形状・
構造のものを用い得ることは勿論である。
The shape and structure of the jig 20 or 30 used in each of the above-described examples of the calibration operation are not particularly limited, and have the functions evident in the above description. Any shape, any shape
Needless to say, a structure can be used.

【0033】また、以上はX線透視装置に対して本発明
を適用した例を示したが、X線断層像撮像装置(CT装
置)についても、そのX線透視像の撮像機能を用いるこ
とによって、上記した各例と同等の較正動作のもとに正
確にその撮像倍率を求めることができる。
In the above, an example in which the present invention is applied to an X-ray fluoroscopic apparatus has been described. However, an X-ray tomographic image imaging apparatus (CT apparatus) can also be realized by using the imaging function of the X-ray fluoroscopic image. The imaging magnification can be accurately obtained based on the same calibration operation as in each of the above examples.

【0034】[0034]

【発明の効果】以上のように、本発明によれば、簡単な
治具を用いて測定台上に載せ、その測定台を2箇所に移
動させてX線透視像を撮像することにより、X線源の焦
点とX線検出手段の受光面とのなす距離、およびX線源
の焦点と測定台とのなす距離を簡単な計算によって正確
に求めることができ、以後、X線検出手段および/また
は測定台を適宜に移動させても、その移動量さえ正確に
計測する機能を有してさえいれば、測定対象物の撮像倍
率を正確に求めることができ、測定対象物のX線透視像
もしくは断層像をもとにした厳密な解析ないしは計測を
行うことができるようになった。
As described above, according to the present invention, an X-ray fluoroscopic image is obtained by mounting the measuring table to two places by using a simple jig and moving the measuring table to two locations. The distance between the focal point of the X-ray source and the light receiving surface of the X-ray detector and the distance between the focal point of the X-ray source and the measuring table can be accurately obtained by a simple calculation. Or, even if the measuring table is moved appropriately, as long as it has a function of accurately measuring the amount of movement, the imaging magnification of the measuring object can be accurately obtained, and the X-ray fluoroscopic image of the measuring object can be obtained. Or, strict analysis or measurement based on tomographic images can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明方法を適用して撮像倍率の較正を行うこ
とのできるX線撮像装置の構成例を示すブロック図であ
る。
FIG. 2 is a block diagram showing an example of the configuration of an X-ray imaging apparatus capable of calibrating an imaging magnification by applying the method of the present invention.

【図3】本発明方法を適用した撮像倍率の較正動作の一
例に用いる治具の構成例を示す正面図である。
FIG. 3 is a front view showing a configuration example of a jig used for an example of an imaging magnification calibration operation to which the method of the present invention is applied.

【図4】本発明方法を適用した撮像倍率の較正動作の他
の例において、図3の治具20と併せて用いる治具の構
成例を示す正面図である。
FIG. 4 is a front view showing a configuration example of a jig used in combination with the jig 20 of FIG. 3 in another example of the operation of calibrating the imaging magnification to which the method of the present invention is applied.

【図5】図3および図4の治具20,30を用いる撮像
倍率の較正動作の説明図である。
FIG. 5 is an explanatory diagram of a calibration operation of an imaging magnification using the jigs 20 and 30 of FIGS. 3 and 4;

【図6】図5の較正動作において表示装置14の画面か
ら、治具20のX線検出器12の受光面上で結像倍率を
知る方法の説明図で、(A)は4倍を、(B)は3倍に
なった状態を示す図である。
6 is an explanatory diagram of a method of knowing an image magnification on a light receiving surface of the X-ray detector 12 of the jig 20 from a screen of the display device 14 in the calibration operation of FIG. (B) is a figure which shows the state which tripled.

【符号の説明】[Explanation of symbols]

11 X線源 12 X線検出器 12a 駆動機構 12b リニアエンコーダ 13 測定台 13a 駆動機構 13b リニアエンコーダ 14 表示装置 15 演算・制御装置 20 治具 21 アクリル板 22a,22b マーク 30 治具 31 アクリル板 32a,32b,32c マーク DESCRIPTION OF SYMBOLS 11 X-ray source 12 X-ray detector 12a Drive mechanism 12b Linear encoder 13 Measuring stand 13a Drive mechanism 13b Linear encoder 14 Display device 15 Operation / control device 20 Jig 21 Acrylic plate 22a, 22b Mark 30 Jig 31 Acrylic plate 32a, 32b, 32c mark

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線源と、そのX線源からのX線が入射
するX線検出手段と、そのX線源とX線検出手段の間に
設けられ、少なくともこれら両者を結ぶ方向への駆動機
構を備えた測定台と、その駆動機構による測定台の移動
距離を計測する測長手段と、上記X線検出手段の出力を
用いて測定台上に載せられている被写体のX線透視像を
構築する画像処理手段を備えたX線撮像装置における撮
像倍率を較正する方法であって、 上記測定台上に寸法既知の治具を載せた状態で、当該測
定台をX線源とX線検出手段を結ぶ方向に移動させ、そ
の移動前後における治具のX線透視像の撮像倍率kR
1,kR2、もしくはX線検出手段上への結像倍率R
1,R2と、測定台の移動距離Δdを用いて、X線源の
焦点とX線検出手段の受光面間の距離Diと、X線源の
焦点と移動前の位置P1における測定台上の治具とのな
す距離D1、もしくはX線源と移動後の位置P2におけ
る測定台上の治具とのなす距離D2を算出して、これら
を測定台の任意位置における撮像倍率の演算のためのデ
ータとして記憶もしくは記録することを特徴とするX線
撮像装置における撮像倍率の較正方法。
An X-ray source, X-ray detecting means for receiving X-rays from the X-ray source, and an X-ray source provided between the X-ray source and the X-ray detecting means, at least in a direction connecting the two. A measuring table provided with a driving mechanism, length measuring means for measuring a moving distance of the measuring table by the driving mechanism, and an X-ray fluoroscopic image of a subject placed on the measuring table using an output of the X-ray detecting means A method for calibrating an imaging magnification in an X-ray imaging apparatus having image processing means for constructing a measurement table, comprising: mounting a jig of known dimensions on the measurement table; The detecting means is moved in the direction connecting the detecting means, and the imaging magnification kR of the X-ray fluoroscopic image of the jig before and after the movement is obtained.
1, kR2, or imaging magnification R on X-ray detection means
The distance Di between the focal point of the X-ray source and the light receiving surface of the X-ray detecting means, the focal point of the X-ray source, and the position P1 before the movement on the measuring table using R1, and the moving distance Δd of the measuring table. The distance D1 between the jig and the distance D2 between the X-ray source and the jig on the measurement table at the moved position P2 is calculated, and these are used to calculate the imaging magnification at an arbitrary position on the measurement table. A method of calibrating an imaging magnification in an X-ray imaging apparatus, which is stored or recorded as data.
JP2000325720A 2000-10-25 2000-10-25 Calibration method of imaging magnification in X-ray imaging apparatus Expired - Lifetime JP4396796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325720A JP4396796B2 (en) 2000-10-25 2000-10-25 Calibration method of imaging magnification in X-ray imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325720A JP4396796B2 (en) 2000-10-25 2000-10-25 Calibration method of imaging magnification in X-ray imaging apparatus

Publications (2)

Publication Number Publication Date
JP2002131246A true JP2002131246A (en) 2002-05-09
JP4396796B2 JP4396796B2 (en) 2010-01-13

Family

ID=18803038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325720A Expired - Lifetime JP4396796B2 (en) 2000-10-25 2000-10-25 Calibration method of imaging magnification in X-ray imaging apparatus

Country Status (1)

Country Link
JP (1) JP4396796B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184122A (en) * 2002-11-29 2004-07-02 Shimadzu Corp Center axis calibrating fixture in x-ray ct equipment and calibration method using the fixture
JP2005207827A (en) * 2004-01-21 2005-08-04 Nagoya Electric Works Co Ltd X-ray inspection device and method, and control program of x-ray inspection device
JP2006258626A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd X-ray inspection device and x-ray inspection method
JP2006292462A (en) * 2005-04-07 2006-10-26 Shimadzu Corp Computer tomographic photography system
JP2007064906A (en) * 2005-09-02 2007-03-15 Shimadzu Corp X-ray photographing device
JP2010185859A (en) * 2009-02-10 2010-08-26 Toshiba It & Control Systems Corp Ct (computed tomography) device, and method of calibrating the same
WO2016190218A1 (en) * 2015-05-26 2016-12-01 株式会社島津製作所 Measuring method and radiation photography apparatus
JP2017223468A (en) * 2016-06-13 2017-12-21 オムロン株式会社 X-ray inspection device and x-ray inspection method
KR101837119B1 (en) * 2016-09-09 2018-03-09 주식회사 쎄크 X-ray inspecting system for regulating automatic resolution according to x-ray magnification
WO2018083930A1 (en) * 2016-11-01 2018-05-11 株式会社島津製作所 Imaging magnification calibration method for radiation tomography device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184122A (en) * 2002-11-29 2004-07-02 Shimadzu Corp Center axis calibrating fixture in x-ray ct equipment and calibration method using the fixture
JP2005207827A (en) * 2004-01-21 2005-08-04 Nagoya Electric Works Co Ltd X-ray inspection device and method, and control program of x-ray inspection device
JP4494026B2 (en) * 2004-01-21 2010-06-30 名古屋電機工業株式会社 X-ray inspection apparatus, X-ray inspection method, and control program for X-ray inspection apparatus
JP2006258626A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd X-ray inspection device and x-ray inspection method
JP2006292462A (en) * 2005-04-07 2006-10-26 Shimadzu Corp Computer tomographic photography system
JP4636258B2 (en) * 2005-09-02 2011-02-23 株式会社島津製作所 X-ray equipment
JP2007064906A (en) * 2005-09-02 2007-03-15 Shimadzu Corp X-ray photographing device
JP2010185859A (en) * 2009-02-10 2010-08-26 Toshiba It & Control Systems Corp Ct (computed tomography) device, and method of calibrating the same
WO2016190218A1 (en) * 2015-05-26 2016-12-01 株式会社島津製作所 Measuring method and radiation photography apparatus
JP2017223468A (en) * 2016-06-13 2017-12-21 オムロン株式会社 X-ray inspection device and x-ray inspection method
US10605748B2 (en) 2016-06-13 2020-03-31 Omron Corporation X-ray inspection apparatus and X-ray inspection method
KR101837119B1 (en) * 2016-09-09 2018-03-09 주식회사 쎄크 X-ray inspecting system for regulating automatic resolution according to x-ray magnification
WO2018083930A1 (en) * 2016-11-01 2018-05-11 株式会社島津製作所 Imaging magnification calibration method for radiation tomography device
US10754049B2 (en) 2016-11-01 2020-08-25 Shimadzu Corporation Method for calibrating imaging magnification of radiation computed tomography scanner

Also Published As

Publication number Publication date
JP4396796B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
US8353628B1 (en) Method and system for tomographic projection correction
Mingard et al. Towards high accuracy calibration of electron backscatter diffraction systems
EP2702449B1 (en) System and method for correction of geometric distortion of multi-camera flat panel x-ray detectors
JP2007136163A5 (en)
JP2020536691A (en) Determining subject profile using camera
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
JP4396796B2 (en) Calibration method of imaging magnification in X-ray imaging apparatus
US6115449A (en) Apparatus for quantitative stereoscopic radiography
JPWO2018083930A1 (en) Imaging magnification calibration method of radiation tomography apparatus
US20030016781A1 (en) Method and apparatus for quantitative stereo radiographic image analysis
JP2009142497A (en) X-ray diagnostic apparatus
JP4636258B2 (en) X-ray equipment
EP3671111A1 (en) Method for calibrating a 3d camera for patient thickness measurements
CN112461871A (en) X-ray CT apparatus for measurement
JP3487292B2 (en) X-ray fluoroscope
JP3219565B2 (en) Defect depth position detection apparatus and method
KR100489711B1 (en) Parallax Radiographic Testing for the Measurement of Flaw Depth
JP2011145127A (en) Radiation measurement apparatus
JP5648891B2 (en) Radiation measurement method and radiation measurement apparatus
JP2014038034A (en) X-ray analyzing apparatus
JPH0866388A (en) Radiation image pick-up device
KR20130002760A (en) Surface roughness measurement apparatus and method having intermediate view generator
JP2003329430A (en) Method for measuring thickness of work
Rathnayaka et al. A novel stereo-radiation detection device calibration method using planar homography
JPH03109050A (en) X-ray image display equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

EXPY Cancellation because of completion of term