JP2002130874A - Refrigerating cycle device - Google Patents
Refrigerating cycle deviceInfo
- Publication number
- JP2002130874A JP2002130874A JP2000319315A JP2000319315A JP2002130874A JP 2002130874 A JP2002130874 A JP 2002130874A JP 2000319315 A JP2000319315 A JP 2000319315A JP 2000319315 A JP2000319315 A JP 2000319315A JP 2002130874 A JP2002130874 A JP 2002130874A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- gas
- liquid
- phase
- liquid separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3286—Constructional features
- B60H2001/3298—Ejector-type refrigerant circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/02—Centrifugal separation of gas, liquid or oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
Landscapes
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、エジェクタを組み
込んだ冷凍サイクル装置に関するものであり、特に気液
分離器の構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus incorporating an ejector, and more particularly to a structure of a gas-liquid separator.
【0002】[0002]
【従来の技術】エジェクタを組み込んだ冷凍サイクル装
置では、例えば特開平6−11197号公報などで開示
されているように、冷媒を減圧膨張させて蒸発器にて蒸
発した気相冷媒を吸引するとともに、膨張エネルギーを
圧力エネルギーに変換して圧縮機の吸入圧を上昇させる
ものである。2. Description of the Related Art In a refrigeration cycle apparatus incorporating an ejector, as disclosed in, for example, JP-A-6-11197, a refrigerant is decompressed and expanded, and a vapor-phase refrigerant evaporated in an evaporator is sucked. The compressor converts the expansion energy into pressure energy to increase the suction pressure of the compressor.
【0003】[0003]
【発明が解決しようとする課題】ところで、エジェクタ
を組み込んだ冷凍サイクル装置に限らず、一般的に冷凍
サイクルでは、冷媒中に潤滑油(冷凍機油)を混合する
ことにより圧縮機内の潤滑を行っている。By the way, in general, not only in a refrigeration cycle apparatus incorporating an ejector but also in a refrigeration cycle, lubrication in a compressor is performed by mixing lubricating oil (refrigeration oil) in a refrigerant. I have.
【0004】一方、蒸発器内では冷媒が蒸発するので、
潤滑油と冷媒とが分離しやすい。このため、上記公報に
記載の発明では、連続的に長時間エジェクタを運転し続
けると、蒸発器側内に潤滑油が溜まってしまい、蒸発器
内表面に付着した潤滑油により、図8に示すように、蒸
発器の吸熱能力(冷凍能力)が低下するとともに、圧縮
機に戻ってくる潤滑油量が減少し、圧縮機を十分に潤滑
できなくなるおそれれがある。また、放熱器での加熱能
力も低下してしまう。On the other hand, since the refrigerant evaporates in the evaporator,
Lubricating oil and refrigerant are easily separated. For this reason, in the invention described in the above publication, when the ejector is continuously operated for a long time, the lubricating oil accumulates in the evaporator side, and the lubricating oil adhered to the inner surface of the evaporator causes the lubricating oil shown in FIG. As described above, the heat absorbing capacity (refrigeration capacity) of the evaporator is reduced, and the amount of lubricating oil returning to the compressor is reduced, so that the compressor may not be sufficiently lubricated. In addition, the heating capacity of the radiator also decreases.
【0005】そこで、本発明の目的は、上記点に鑑み、
エジェクタを長時間運転し続けた場合であっても、十分
な量の潤滑油を圧縮機に供給することが可能な冷凍サイ
クル装置を提供することにある。In view of the above, an object of the present invention is to provide
An object of the present invention is to provide a refrigeration cycle device capable of supplying a sufficient amount of lubricating oil to a compressor even when an ejector has been operated for a long time.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1ないし請求項5に記載の技術的手段を採用
する。In order to achieve the above object, the technical means described in claims 1 to 5 is adopted.
【0007】すなわち、請求項1の発明では、冷媒圧縮
機(100)、冷媒放熱器(200)、エジェクタ(4
00)および冷媒を気相冷媒と液相冷媒とに分離して冷
媒を蓄える気液分離器(500)を冷媒流路(600)
で環状に連結するとともに、気液分離器(500)の液
相冷媒側とエジェクタ(400)の吸引部とをバイパス
流路(610)で連結し、バイパス流路(610)の途
中に冷媒蒸発器(300)を介在させて成る冷凍サイク
ル装置において、気液分離器(500)は、エジェクタ
(400)の吐出部側と連結され、気液分離器(50
0)内に気液混合の冷媒を吸入させる吸入配管(52
0)と、気液分離器(500)内の気相部に開口し、冷
媒圧縮機(100)の吸入側へ気相冷媒を吐出する気相
冷媒出口配管(530)と、気液分離器(500)内の
液相部に開口し、冷媒蒸発器(300)の吸入側へ液相
冷媒を吐出する液相冷媒出口配管(540)と、気液分
離器(500)内に溜まった冷媒から分離した潤滑油を
冷媒圧縮機(100)の吸入側へ戻すオイル戻り回路
(510)とを備えることを特徴としている。That is, according to the first aspect of the present invention, the refrigerant compressor (100), the refrigerant radiator (200), and the ejector (4)
00) and a gas-liquid separator (500) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and storing the refrigerant, and a refrigerant flow path (600)
And the liquid-phase refrigerant side of the gas-liquid separator (500) and the suction part of the ejector (400) are connected by a bypass flow path (610), and the refrigerant evaporates in the bypass flow path (610). In the refrigeration cycle apparatus including the intermediary device (300), the gas-liquid separator (500) is connected to the discharge section side of the ejector (400), and is connected to the gas-liquid separator (50).
0), a suction pipe (52) for sucking a gas-liquid mixed refrigerant.
0), a gas-phase refrigerant outlet pipe (530) that opens to the gas-phase part in the gas-liquid separator (500) and discharges the gas-phase refrigerant to the suction side of the refrigerant compressor (100); A liquid-phase refrigerant outlet pipe (540) that opens to the liquid-phase part in (500) and discharges liquid-phase refrigerant to the suction side of the refrigerant evaporator (300), and refrigerant accumulated in the gas-liquid separator (500) And an oil return circuit (510) for returning the lubricating oil separated from the oil to the suction side of the refrigerant compressor (100).
【0008】請求項1の発明によれば、気液分離器(5
00)内に溜まった冷媒から分離した潤滑油を冷媒圧縮
機(100)の吸入側へ戻すオイル戻り回路(510)
を備えることにより、エジェクタ(400)を連続的に
長時間運転し続けた場合であっても、十分な量の潤滑油
を冷媒圧縮機(100)に供給できるので、冷媒蒸発器
(300)内に多量の潤滑油が溜まることを防止しつつ
冷媒圧縮機(100)が潤滑油不足により焼き付いてし
まうことを未然に防止できる。According to the invention of claim 1, the gas-liquid separator (5
Oil return circuit (510) for returning the lubricating oil separated from the refrigerant stored in the refrigerant compressor (00) to the suction side of the refrigerant compressor (100).
Is provided, a sufficient amount of lubricating oil can be supplied to the refrigerant compressor (100) even when the ejector (400) is continuously operated for a long time. It is possible to prevent the refrigerant compressor (100) from seizing due to lack of lubricating oil while preventing a large amount of lubricating oil from accumulating in the compressor.
【0009】ここで、「冷媒から分離した」とは、10
0%潤滑油と言う意味ではなく、潤滑油と冷媒と混合流
体のうち潤滑油を多量に含む(潤滑油の濃度が高い)混
合流体と言う意味である。Here, "separated from the refrigerant" means 10
It does not mean 0% lubricating oil, but rather a mixed fluid containing a large amount of lubricating oil (high lubricating oil concentration) among lubricating oil, refrigerant and mixed fluid.
【0010】また、本来、冷媒蒸発器(300)側に吸
入されなければならない液相冷媒が冷媒圧縮機(10
0)側に吸入されてしまうことを防止できるので、冷媒
蒸発器(300)に吸入される液相冷媒量が減少してし
まうことを防止できる。従って、冷媒蒸発器(300)
で発生する吸熱量(冷凍能力)が低下してしまうことを
防止できる。[0010] Also, the liquid-phase refrigerant which should be originally drawn into the refrigerant evaporator (300) is supplied to the refrigerant compressor (10).
Since it is possible to prevent the refrigerant from being sucked into the 0) side, it is possible to prevent the amount of the liquid-phase refrigerant sucked into the refrigerant evaporator (300) from decreasing. Therefore, the refrigerant evaporator (300)
It is possible to prevent the amount of heat absorbed (refrigeration capacity) from being reduced.
【0011】また、吸熱量の低下に伴って、冷媒放熱器
(200)での加熱能力の低下も防止できる。Further, a decrease in the heating capacity of the refrigerant radiator (200) can be prevented with a decrease in the heat absorption.
【0012】請求項2の発明では、オイル戻り回路(5
10)の気液分離器(500)側は、気液分離器(50
0)において、潤滑油の濃度が冷媒濃度より大きくなる
部位に接続されていることを特徴としている。According to the second aspect of the present invention, the oil return circuit (5
The gas-liquid separator (500) side of 10) is the gas-liquid separator (50).
0), the lubricating oil is connected to a portion where the lubricating oil concentration is higher than the refrigerant concentration.
【0013】請求項2の発明によれば、冷凍サイクル装
置に使用する冷媒および潤滑油の液密度によって、気液
分離器(500)内で潤滑油の濃度が冷媒濃度より大き
くなる部位が異なるため、オイル戻り回路(510)を
潤滑油の濃度が大きい部位に接続させることが良い。こ
れにより、気液分離器(500)内に溜まった潤滑油を
圧縮機(100)側へ戻すことができる。According to the second aspect of the present invention, a portion where the concentration of the lubricating oil is higher than the refrigerant concentration in the gas-liquid separator (500) differs depending on the liquid densities of the refrigerant and the lubricating oil used in the refrigeration cycle apparatus. Preferably, the oil return circuit (510) is connected to a portion where the concentration of the lubricating oil is high. Thereby, the lubricating oil accumulated in the gas-liquid separator (500) can be returned to the compressor (100) side.
【0014】また、冷媒圧縮機(100)は、潤滑油の
濃度が大きい部位から潤滑油を吸入するため、液相冷媒
の吸入量が少量となり液圧縮の恐れが少ない。Further, since the refrigerant compressor (100) sucks the lubricating oil from a portion where the concentration of the lubricating oil is high, the suction amount of the liquid-phase refrigerant is small and the possibility of liquid compression is small.
【0015】請求項3の発明では、液相冷媒出口配管
(540)は、気液分離器(500)内の液相部に開口
させるとともに、開口から下方側に所定の深さ寸法を有
する位置に開口部(541)を形成させたことを特徴と
している。According to the third aspect of the present invention, the liquid-phase refrigerant outlet pipe (540) is opened to the liquid-phase portion in the gas-liquid separator (500), and has a predetermined depth below the opening. An opening (541) is formed in the opening.
【0016】請求項3の発明によれば、開口から下方側
に所定の深さ寸法を有する位置に開口部(541)を形
成させることにより、例えば、冷房サイクル時と暖房冷
房サイクル時ではガス相と液相の比率が異なり、液相部
の液面が変動しても所定の深さ分、すなわち潤滑油の濃
度の低い部分の液相冷媒を冷媒蒸発器(300)側へ確
実に吐出することができる。According to the third aspect of the present invention, by forming the opening (541) at a position having a predetermined depth dimension below the opening, for example, during the cooling cycle and the heating / cooling cycle, the gas phase is formed. And the liquid phase ratio is different, and even if the liquid level of the liquid phase part fluctuates, the liquid refrigerant of a predetermined depth, that is, the portion of the lubricating oil having a low concentration is reliably discharged to the refrigerant evaporator (300) side. be able to.
【0017】請求項4の発明では、気相出口配管(53
0)は、気液分離器(500)の本体の上方側に配設さ
れたことを特徴としている。In the invention according to claim 4, the gas-phase outlet pipe (53
0) is characterized in that it is disposed above the main body of the gas-liquid separator (500).
【0018】請求項4の発明によれば、気液分離器(5
00)の上方側から気相出口配管(530)を配設され
たことにより冷媒圧縮機(100)側へ確実に気相冷媒
が吸引される。According to the invention of claim 4, the gas-liquid separator (5
Since the gas-phase outlet pipe (530) is arranged from the upper side of the refrigerant compressor (00), the gas-phase refrigerant is reliably sucked into the refrigerant compressor (100).
【0019】請求項5の発明では、気液分離器(50
0)内の気相部には、吸入配管(520)から吸入され
る気液混合の冷媒を衝突させる衝突板(550)を設け
たことを特徴としている。According to the fifth aspect of the present invention, the gas-liquid separator (50)
A collision plate (550) is provided in the gas phase portion in (0) for colliding the refrigerant of the gas-liquid mixture sucked from the suction pipe (520).
【0020】請求項5の発明によれば、衝突板(55
0)を設けたことにより、気液混合の冷媒を衝突板(5
50)に衝突させて分散させることで気相と液相に分離
しやすくできる。According to the invention of claim 5, the collision plate (55)
0), the gas-liquid mixed refrigerant is supplied to the collision plate (5).
By causing the particles to collide with and disperse in 50), separation into a gas phase and a liquid phase can be facilitated.
【0021】請求項6の発明では、気液分離器(50
0)は、略円筒状の形状で形成され、上方端に吸入配管
(520)および気相冷媒出口配管(530)を配設
し、下方端に液相冷媒出口配管(540)およびオイル
戻り回路(510)を配設された圧力容器で構成された
ことを特徴としている。According to the invention of claim 6, the gas-liquid separator (50)
0) is formed in a substantially cylindrical shape, and has a suction pipe (520) and a gas-phase refrigerant outlet pipe (530) at the upper end, and a liquid-phase refrigerant outlet pipe (540) and an oil return circuit at the lower end. (510) is constituted by a pressure vessel provided therein.
【0022】請求項6の発明によれば、略円筒状の形状
で上方端および下方端にこれら4本の配管、回路を配設
させたことにより、例えば、まず、上方端および下方端
に4本の配管、回路を端板の両側から気密の溶接などで
接合した後に、略円筒状の筒に端板を接合すれば、圧力
容器を製造する際の溶接などの気密工程の作業がし易く
気密の信頼性が高い。According to the sixth aspect of the present invention, the four pipes and the circuit are disposed at the upper end and the lower end in a substantially cylindrical shape. After joining the pipes and circuits from both sides of the end plate by airtight welding, etc., and then joining the end plate to a substantially cylindrical tube, the work of the airtight process such as welding when manufacturing the pressure vessel is easy. High airtight reliability.
【0023】なお、上記各手段の括弧内の符号は、後述
する実施形態の具体的手段との対応関係を示すものであ
る。The reference numerals in the parentheses of the above means indicate the correspondence with the concrete means of the embodiment described later.
【0024】[0024]
【発明の実施の形態】(第1実施形態)以下、エジェク
タを組み込んだ冷凍サイクル装置を二酸化炭素を冷媒と
する車両用空調装置に適用したものであり、図1ないし
図3に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) Hereinafter, a refrigeration cycle device incorporating an ejector is applied to a vehicle air conditioner using carbon dioxide as a refrigerant, and will be described with reference to FIGS. 1 to 3. .
【0025】まず、図1に示すように、本発明の冷凍サ
イクル装置は、車両に搭載された動力エンジンの駆動力
によって気相冷媒(以下、ガス冷媒と呼ぶ)を圧縮する
圧縮機100と、圧縮されたガス冷媒を凝縮気化させる
冷媒放熱器200と、凝縮気化された液相冷媒(以下、
液冷媒と呼ぶ)を減圧膨張させるエジェクタ400と、
減圧膨張された気液二相冷媒を気液分離する気液分離器
500と、気液分離された液冷媒を吸引し気化させる蒸
発器300とから構成されている。First, as shown in FIG. 1, a refrigeration cycle apparatus of the present invention includes a compressor 100 for compressing a gas-phase refrigerant (hereinafter, referred to as a gas refrigerant) by a driving force of a power engine mounted on a vehicle. A refrigerant radiator 200 for condensing and vaporizing the compressed gas refrigerant; and a condensed and vaporized liquid-phase refrigerant (hereinafter, referred to as a refrigerant).
An ejector 400 for decompressing and expanding the liquid refrigerant).
It comprises a gas-liquid separator 500 for gas-liquid separation of the gas-liquid two-phase refrigerant decompressed and expanded, and an evaporator 300 for sucking and vaporizing the gas-liquid separated liquid refrigerant.
【0026】そして、圧縮機100、冷媒放熱器20
0、エジェクタ400および気液分離器500は、冷媒
配管(冷媒流路)600によって環状に連結されるとと
もに、蒸発器300は、気液分離器500の液相冷媒出
口配管540とエジェクタ400の吸引部440とを連
結するバイパス配管(バイパス流路)610の途中に設
置され室内に吹き出す空気から吸熱して液冷媒を蒸発さ
せることにより冷凍能力を発揮する。The compressor 100 and the refrigerant radiator 20
0, the ejector 400 and the gas-liquid separator 500 are annularly connected by a refrigerant pipe (refrigerant flow path) 600, and the evaporator 300 is connected to the liquid-phase refrigerant outlet pipe 540 of the gas-liquid separator 500 and the suction of the ejector 400. It is installed in the middle of a bypass pipe (bypass flow path) 610 connecting to the section 440, and exhibits a refrigeration capacity by absorbing heat from air blown into the room and evaporating the liquid refrigerant.
【0027】ここで、エジェクタ400は、冷媒放熱器
200から流出する冷媒を減圧膨張させて蒸発器300
にて蒸発したガス冷媒を吸引するとともに、膨張エネル
ギーを圧力エネルギーに変換して圧縮機100の吸入圧
を上昇させるものである.具体的には、冷媒放熱器20
0から流出した高圧冷媒の圧力エネルギー(圧力ヘッ
ド)を速度エネルギー(速度ヘッド)に変換して冷媒を
減圧膨張させるノズル410、ノズル410から噴射す
る高い速度の冷媒流(ジェット流)により蒸発器300
にて蒸発したガス冷媒を吸引する混合部420、および
ノズル410から噴射する冷媒と蒸発器300から吸引
した冷媒とを混合させながら速度エネルギーを圧力エネ
ルギーに変換して冷媒の圧力を昇圧させるディフューザ
430(吐出部)などからなるものである。Here, the ejector 400 decompresses and expands the refrigerant flowing out of the refrigerant radiator 200 to evaporate the refrigerant.
In addition to sucking the gas refrigerant evaporated in the above, the expansion energy is converted into pressure energy to increase the suction pressure of the compressor 100. Specifically, the refrigerant radiator 20
The nozzle 410 for converting the pressure energy (pressure head) of the high-pressure refrigerant flowing out from the nozzles into velocity energy (speed head) to decompress and expand the refrigerant, and the evaporator 300 by the high-speed refrigerant flow (jet flow) injected from the nozzle 410
And a diffuser 430 for converting the velocity energy into pressure energy to increase the pressure of the refrigerant while mixing the refrigerant injected from the nozzle 410 and the refrigerant sucked from the evaporator 300. (Ejection unit).
【0028】次に、図1および図2に示す500は、エ
ジェクタ400から流出した気液混合の冷媒が吸入配管
520を介して流入するとともに、その流入した冷媒を
ガス冷媒と液冷媒とに分離して冷媒を蓄える気液分離器
である。Next, 500 shown in FIG. 1 and FIG. 2 indicates that the gas-liquid mixed refrigerant flowing out of the ejector 400 flows in through the suction pipe 520 and separates the flowed refrigerant into gas refrigerant and liquid refrigerant. This is a gas-liquid separator that stores refrigerant.
【0029】本実施形態では、潤滑油として冷媒の液密
度より大きい液密度を有するポリグリコール(PAG)
などの鉱物油を使用しているので、気液分離器500の
上方側にガス冷媒、中程から下方側にかけて液冷媒とが
分離される。この液冷媒には、液冷媒と潤滑油が混合さ
れており、液冷媒の上方側が潤滑油の濃度が低く下方側
が潤滑油の濃度が高くなるように層を形成して蓄えられ
ている。In the present embodiment, polyglycol (PAG) having a liquid density higher than the liquid density of the refrigerant is used as the lubricating oil.
Since such a mineral oil is used, the gas refrigerant is separated above the gas-liquid separator 500, and the liquid refrigerant is separated from the middle to the lower side. The liquid refrigerant is a mixture of the liquid refrigerant and the lubricating oil. The liquid refrigerant is stored in a layer such that the upper side of the liquid refrigerant has a lower lubricating oil concentration and the lower side has a higher lubricating oil concentration.
【0030】そして、分離されたガス冷媒は、気液分離
器500内の上方側のガス冷媒が蓄えられる部位に一端
が開口された気相冷媒出口配管530を介して圧縮機1
00の吸引側に吸引される。また、一方の液冷媒は、潤
滑油の比較的濃度の低い液冷媒領域内に一端が開口され
た液相冷媒出口配管540を介して蒸発器300側に吸
引されるように配設されている。Then, the separated gas refrigerant is supplied to the compressor 1 via a gas-phase refrigerant outlet pipe 530 having one end opened at an upper portion of the gas-liquid separator 500 where the gas refrigerant is stored.
00 is sucked into the suction side. One of the liquid refrigerants is disposed so as to be sucked toward the evaporator 300 via a liquid refrigerant outlet pipe 540 having one end opened in a liquid refrigerant region having a relatively low concentration of lubricating oil. .
【0031】また、気液分離器500の最下位には、潤
滑油の比較的濃度の高い領域内に一端が開口されたオイ
ル戻し管(オイル戻り回路)510を配設して気液分離
器500内で冷媒から分離した潤滑油を圧縮機100の
吸引側へ戻すように他端が圧縮機100の吸引側に連結
されている。At the bottom of the gas-liquid separator 500, an oil return pipe (oil return circuit) 510 having one end opened in a region where the lubricating oil has a relatively high concentration is disposed. The other end is connected to the suction side of the compressor 100 so that the lubricating oil separated from the refrigerant in the 500 is returned to the suction side of the compressor 100.
【0032】なお、吸入配管520は、気液分離器50
0内に流入する気液混合の冷媒を、気液分離器500内
のガス冷媒領域に形成された衝突部材550に衝突させ
るように配設されている。これにより、気液分離の促進
を図ることを目的としている。The suction pipe 520 is connected to the gas-liquid separator 50.
The gas-liquid mixed refrigerant flowing into the gas refrigerant 0 is arranged to collide with a collision member 550 formed in a gas refrigerant region in the gas-liquid separator 500. This aims to promote gas-liquid separation.
【0033】また、気液分離器500と蒸発器300と
を結ぶ冷媒流路610aは、蒸発器300に吸引される
冷媒を減圧して蒸発器300内の圧力(蒸発圧力)を確
実に低下させるために、キャピラリチューブや固定絞り
のごとく、冷媒が流通することにより所定の圧力損失が
発生するように設定されている。Further, a refrigerant flow path 610a connecting the gas-liquid separator 500 and the evaporator 300 reduces the pressure of the refrigerant sucked into the evaporator 300 to reliably reduce the pressure in the evaporator 300 (evaporation pressure). For this reason, it is set such that a predetermined pressure loss occurs due to the flow of the refrigerant, like a capillary tube or a fixed throttle.
【0034】なお、気液分離器500は、圧力容器であ
るため気密性が要求される。そこで、容器本体部501
を略円筒形状の筒状に形成させて上方端と下方端を溶接
などで気密させると良い。ただし、上方端および下方端
に配設される吸入配管520、気相冷媒出口配管530
および液相冷媒出口配管540、オイル戻し管510
は、予め、これらの配管520、530、540、51
0をそれぞれの端板の両面側から溶接などで接合して後
に筒状の容器本体部501に溶接などで気密すると良
い。これにより、圧力容器を製造する際の溶接などの気
密工程の作業がし易く気密の信頼性が高い。The gas-liquid separator 500 is required to be airtight because it is a pressure vessel. Therefore, the container body 501
Is formed in a substantially cylindrical shape, and the upper end and the lower end are preferably hermetically sealed by welding or the like. However, the suction pipe 520 and the gas-phase refrigerant outlet pipe 530 provided at the upper end and the lower end, respectively.
And liquid phase refrigerant outlet pipe 540, oil return pipe 510
, 520, 530, 540, 51
It is preferable that the ends of the end plates are joined by welding or the like from both sides of each end plate, and then airtight to the cylindrical container body 501 by welding or the like. Thereby, the work of the airtight process such as welding when manufacturing the pressure vessel is easy, and the reliability of the airtightness is high.
【0035】次に、以上の構成による冷凍サイクル装置
の作動を、図3に示す冷媒のモリエル線図(p−h線
図)を用いて説明する。ここで、図3に示す番号は、図
1に示す番号の位置における冷媒の状態を示すものであ
る。また、図3中のPHは冷凍サイクルの高圧圧力(凝
縮圧力)で、PSは圧縮機100の吸入圧力で、PEは低
圧圧力(蒸発圧力)である。Next, the operation of the refrigeration cycle apparatus having the above configuration will be described with reference to a Mollier diagram (ph diagram) of the refrigerant shown in FIG. Here, the numbers shown in FIG. 3 indicate the state of the refrigerant at the positions of the numbers shown in FIG. Further, in P H is the high-side pressure of the refrigeration cycle in FIG. 3 (condensing pressure) and P S in the suction pressure of the compressor 100, the P E is a low pressure (evaporation pressure).
【0036】そして、ΔPは圧縮機100の吸入圧上昇
分でエジェクタ400の混合部420およびディフュー
ザ430での効率によってその絶対値は変化するものの
ノズル410の冷媒入口(図3に示す6)とディフュー
ザ430の冷媒入口(図3に示す6)での比エンタルピ
差(断熱熱落差)が大きくなるほど大きくなる。.DELTA.P is an increase in the suction pressure of the compressor 100, and although its absolute value changes depending on the efficiency in the mixing section 420 of the ejector 400 and the diffuser 430, the refrigerant inlet (6 shown in FIG. 3) of the nozzle 410 and the diffuser The specific enthalpy difference (adiabatic heat drop) at the refrigerant inlet 430 (6 shown in FIG. 3) increases as the difference increases.
【0037】まず、圧縮機100で圧縮されて高温高圧
となったガス冷媒(状態点1)は、冷媒放熱器200で
凝縮液化されて高温高圧の液冷媒になって(状態点
2)、エジェクタ400内に流入する。エジェクタ40
0内に流入した液冷媒は、ノズル410を通過する際に
減圧されて状態点3 に至り、さらにディフューザ43
0を通過する際に昇圧されて状態点6となる。First, the gas refrigerant which has been compressed by the compressor 100 to have a high temperature and high pressure (state point 1) is condensed and liquefied by the refrigerant radiator 200 to become a high temperature and high pressure liquid refrigerant (state point 2). 400. Ejector 40
The liquid refrigerant flowing into the nozzle 0 is decompressed when passing through the nozzle 410 to reach the state point 3 and further diffuser 43
When passing through 0, the voltage is boosted to state point 6.
【0038】このとき、ノズル410を液冷媒が通過す
る際にノズル410から高速で噴出する冷媒回りの圧力
低下を利用して、エジェクタ400の吸引部440にバ
イパス配管610から状態点8のガス冷媒が吸引され
る。このため、冷媒放熱器200から流入した液冷媒と
バイパス配管610から吸引されたガス冷媒とがディフ
ューザ430内で混合する。これにより、エジェクタ4
00より流出する気液二相状態の冷媒は、状態点3 、
8および冷媒放熱器200からの冷媒流量と蒸発器30
0からの冷媒流量とにより決まる状態点6となる。At this time, the gas refrigerant at the state point 8 is connected to the suction portion 440 of the ejector 400 from the bypass pipe 610 by utilizing the pressure drop around the refrigerant ejected at a high speed from the nozzle 410 when the liquid refrigerant passes through the nozzle 410. Is sucked. Therefore, the liquid refrigerant flowing from the refrigerant radiator 200 and the gas refrigerant sucked from the bypass pipe 610 are mixed in the diffuser 430. Thereby, the ejector 4
The refrigerant in the gas-liquid two-phase state flowing out of the state 00 is state point 3,
8 and the refrigerant flow rate from the refrigerant radiator 200 and the evaporator 30
State point 6 is determined by the refrigerant flow rate from zero.
【0039】その後に、気液二相状態の冷媒は、冷媒配
管600を通って吸入配管520から気液分離器500
内に流入してガス冷媒と液冷媒とに分離する。このうち
ガス冷媒(状態点6g)は、圧縮機100の吸引力によ
って気液分離器500の気相出口配管530から流出し
て冷媒配管600を通って圧縮機100に吸入される。After that, the refrigerant in the gas-liquid two-phase state passes through the refrigerant pipe 600 and flows from the suction pipe 520 to the gas-liquid separator 500.
And separated into a gas refrigerant and a liquid refrigerant. Among them, the gas refrigerant (state point 6 g) flows out of the gas-phase outlet pipe 530 of the gas-liquid separator 500 by the suction force of the compressor 100 and is sucked into the compressor 100 through the refrigerant pipe 600.
【0040】一方の気液分離器500内の液冷媒(状態
点6I)は、エジェクタ400に吸引されて気液分離器
500の液相出口配管540から流出してバイパス配管
610内に流入する。そして、バイパス配管610内に
流入した液冷媒は、エジェクタ400の吸引効果により
昇圧した(状態点7)後に、蒸発器300内に流入す
る。蒸発器300内に流入した液冷媒は、蒸発器300
を通過する蒸発気化した(状態点8)後に、エジェクタ
400の吸引部440に吸引されるものである。The liquid refrigerant (state point 6I) in one gas-liquid separator 500 is sucked by the ejector 400, flows out of the liquid-phase outlet pipe 540 of the gas-liquid separator 500, and flows into the bypass pipe 610. Then, the liquid refrigerant flowing into the bypass pipe 610 flows into the evaporator 300 after being pressurized by the suction effect of the ejector 400 (state point 7). The liquid refrigerant flowing into the evaporator 300 is
After being vaporized and vaporized (state point 8), the liquid is sucked into the suction unit 440 of the ejector 400.
【0041】従って、エジェクタ400を連続的に長時
間運転し続けても、気液分離器500の最下位には、冷
媒から分離された高濃度の潤滑油が蓄えられるととも
に、この潤滑油をオイル戻し管510から圧縮機100
の吸入側に吸引されるようになっているので圧縮機10
0が潤滑油不足にはならない。Therefore, even if the ejector 400 is continuously operated for a long time, the lowermost part of the gas-liquid separator 500 stores the high-concentration lubricating oil separated from the refrigerant and disperses the lubricating oil into the oil. From the return pipe 510 to the compressor 100
The suction side of the compressor 10
0 does not mean lubrication oil shortage.
【0042】ところで、エジェクタ400内に存在する
潤滑油の量は一定であるので、圧縮機100に十分な量
の潤滑油が戻ってくるということは、蒸発器300ない
に滞留する潤滑油の量が減少することを意味する。これ
により、蒸発器300の熱交換能力(冷凍能力)が低下
してしまうことを防止できる。By the way, since the amount of the lubricating oil present in the ejector 400 is constant, the return of a sufficient amount of the lubricating oil to the compressor 100 means that the amount of the lubricating oil remaining in the evaporator 300 does not. Means decrease. This can prevent the heat exchange capacity (refrigeration capacity) of the evaporator 300 from being reduced.
【0043】以上の第1実施形態の冷凍サイクル装置に
よれば、エジェクタ400を用いて、蒸発器300側に
液冷媒を吸入させて蒸発させる冷凍サイクル装置おい
て、エジェクタ400によって形成された気液混合の冷
媒を、気液分離させて蓄える気液分離器500の最下位
に、オイル戻し管510を配設させ圧縮機100の吸入
側に吸引させるように構成することにより、圧縮機10
0に十分な潤滑油が供給でき焼き付きを未然に防止して
エジェクタ400の信頼性を向上させつつ、蒸発器30
0で発生する冷凍能力が低下してしまうことを防止でき
る。According to the refrigeration cycle apparatus of the first embodiment, in the refrigeration cycle apparatus in which the liquid refrigerant is sucked into the evaporator 300 and evaporated by using the ejector 400, the gas-liquid formed by the ejector 400 By arranging an oil return pipe 510 at the lowest position of the gas-liquid separator 500 that stores the mixed refrigerant by gas-liquid separation and storing the mixed refrigerant, the oil is sucked to the suction side of the compressor 100.
In addition, it is possible to supply sufficient lubricating oil to the evaporator 30 while preventing the seizure and improving the reliability of the ejector 400.
It is possible to prevent the refrigeration capacity generated at 0 from being reduced.
【0044】また、圧縮機100に吸引される潤滑油
は、濃度の大きい部位から吸引するため、液冷媒の吸引
量が少量となり液圧縮の恐れが少ない。Further, since the lubricating oil sucked into the compressor 100 is sucked from a portion having a high concentration, the suction amount of the liquid refrigerant is small and the possibility of liquid compression is small.
【0045】また、本来、蒸発器300側に吸入されな
ければならない液冷媒が圧縮機100側に吸入されてし
まうことを防止できる。延いては、蒸発器300で発生
する冷凍能力が低下してしまうことを防止できる。Further, it is possible to prevent the liquid refrigerant that should be drawn into the evaporator 300 from being drawn into the compressor 100. As a result, it is possible to prevent the refrigeration capacity generated in the evaporator 300 from being reduced.
【0046】また、冷凍能力の低下に伴なって冷媒放熱
器200での加熱能力の低下も防止できる。Further, a decrease in the heating capacity of the refrigerant radiator 200 due to a decrease in the refrigeration capacity can be prevented.
【0047】(第2実施形態)以上の実施形態では、気
液分離器500内の中程に蓄えられる液相部に、一端を
開口させた液相冷媒出口配管540を配設させて、気液
分離器500内の液冷媒を蒸発器300の吸入側に吸引
させる構成を説明した。ところが、気液分離器500内
では、冷房サイクル時とか暖房サイクル時などで圧力や
温度が異なることにより液相部の液面の高さに変動があ
る。ここでは、液面の高さに変動が生じても液冷媒の上
方から所定の深さまで変動しても液冷媒の上方側(潤滑
油の濃度が低い)から吸引するように一端の開口の下方
に開口部を設けると良い。(Second Embodiment) In the above embodiment, a liquid-phase refrigerant outlet pipe 540 having an open end is provided in the liquid-phase portion stored in the middle of the gas-liquid separator 500 to provide a gas-liquid separator. The configuration in which the liquid refrigerant in the liquid separator 500 is sucked into the suction side of the evaporator 300 has been described. However, in the gas-liquid separator 500, the pressure and the temperature are different during a cooling cycle, a heating cycle, and the like, so that the liquid level in the liquid phase portion varies. Here, even if the height of the liquid level fluctuates, even if it fluctuates from above the liquid refrigerant to a predetermined depth, the liquid refrigerant is sucked from the upper side (the concentration of lubricating oil is low) below the opening at one end. It is preferable to provide an opening in the opening.
【0048】具体的には、図4に示すように、一端を液
相部に開口させるとともに、開口の下方側に、液面変動
相当に値する所定の深さ分の離れた位置に開口部541
を形成させた液相冷媒出口配管540を配設すると良
い。これにより、冷凍サイクルの圧力変動による気液分
離器500内の液面変動に対して、所定の深さ分の変動
が生じても蒸発器300への液冷媒(潤滑油の濃度が低
い)を確実に吸引できる。More specifically, as shown in FIG. 4, one end is opened in the liquid phase portion, and the opening 541 is located below the opening at a position separated by a predetermined depth corresponding to the liquid level fluctuation.
Is preferably provided. Accordingly, the liquid refrigerant (low lubricating oil concentration) to the evaporator 300 is supplied to the evaporator 300 even if the liquid level fluctuation in the gas-liquid separator 500 due to the pressure fluctuation of the refrigeration cycle fluctuates by a predetermined depth. Can be sucked reliably.
【0049】(第3実施形態)また、以上の実施形態で
は、冷媒を二酸化炭素を用い、潤滑油として冷媒のより
も大きい液密度を有するポリグリコール(PAG)など
の鉱物油を使用したときの気液分離器500について説
明したが、これに限らず、冷媒としてフロン(R404
a)を用い、潤滑油としては冷媒よりも小さい液密度を
有するポリグリコール(PAG)などの鉱物油を用いた
ものでも良い。(Third Embodiment) In the above embodiment, carbon dioxide is used as the refrigerant, and mineral oil such as polyglycol (PAG) having a higher liquid density than the refrigerant is used as the lubricating oil. Although the gas-liquid separator 500 has been described, the present invention is not limited to this.
a), and a lubricant using a mineral oil such as polyglycol (PAG) having a lower liquid density than the refrigerant may be used as the lubricating oil.
【0050】図5に示すように、気液分離器500の上
方側にガス冷媒、中程から下方側にかけて液冷媒と潤滑
油が混合されており、液冷媒の液面の上方側には潤滑油
の濃度が高く下方側が潤滑油の濃度が低くなるように層
を形成して蓄えられている。As shown in FIG. 5, a gas refrigerant is mixed above the gas-liquid separator 500, and a liquid refrigerant and lubricating oil are mixed from the middle to the lower side, and a lubricating oil is mixed above the liquid surface of the liquid refrigerant. A layer is formed and stored such that the concentration of oil is high and the concentration of lubricating oil is low on the lower side.
【0051】ここでは、気液分離器500の下方側、す
なわち、潤滑油の比較的濃度の低い液冷媒領域内に一端
が開口された液相冷媒出口配管540を介して蒸発器3
00側に吸引されるように配設するとともに、一端が潤
滑油の比較的濃度の高い領域内に開口させたオイル戻し
管510を介して圧縮機100の吸入側に連結されてい
る。これにより、圧縮機100は高濃度潤滑油が吸引で
きるとともに、蒸発器300側へ低濃度の潤滑油が混合
された液冷媒を吸引することができる。従って、第1実
施形態と同様の効果を奏する。Here, the evaporator 3 is connected via a liquid-phase refrigerant outlet pipe 540, one end of which is opened below the gas-liquid separator 500, that is, in a liquid refrigerant region where the lubricating oil has a relatively low concentration.
The lubricating oil is disposed on the suction side of the compressor 100 via an oil return pipe 510 that opens into a region where the lubricating oil has a relatively high concentration. Thereby, the compressor 100 can suck the high-concentration lubricating oil and also can suck the liquid refrigerant in which the low-concentration lubricating oil is mixed into the evaporator 300 side. Therefore, the same effects as those of the first embodiment can be obtained.
【0052】なお、オイル戻し管510の開口の下方側
に開口部511を形成させることにより、オイル面の変
動に対して所定の深さ分の変動が生じても圧縮機100
へ高濃度の潤滑油を確実に供給できる。By forming the opening 511 below the opening of the oil return pipe 510, even if the oil level fluctuates by a predetermined depth, the compressor 100
High-concentration lubricating oil.
【0053】(第4実施形態)以上の実施形態では、気
液分離器500内に流入する気液混合の冷媒を、気液分
離器500内のガス冷媒領域に形成された衝突部材55
0に衝突させるように吸入配管520を配設させたが、
衝突部材550を設けず、気液分離器500内の内壁面
に衝突させるように吸入配管520を配設しても良い。(Fourth Embodiment) In the above embodiment, the gas-liquid mixed refrigerant flowing into the gas-liquid separator 500 is supplied to the collision member 55 formed in the gas refrigerant region in the gas-liquid separator 500.
Although the suction pipe 520 was arranged so as to collide with zero,
Instead of providing the collision member 550, the suction pipe 520 may be provided so as to collide with the inner wall surface in the gas-liquid separator 500.
【0054】具体的には、図6に示すように、吸入配管
520の開口を気液分離器500の内壁面に旋回流を生
ずるように傾きを設けるように気液分離器500の側面
に配設すると良い。これにより、吸入された気液混合の
冷媒が気液分離器500の内面で遠心分離されること
で、衝突部材550を設けなくても気液分離が良好とな
る。Specifically, as shown in FIG. 6, the opening of the suction pipe 520 is arranged on the side surface of the gas-liquid separator 500 so as to be inclined so as to generate a swirling flow on the inner wall surface of the gas-liquid separator 500. It is good to set up. Thereby, the sucked refrigerant of the gas-liquid mixture is centrifuged on the inner surface of the gas-liquid separator 500, so that the gas-liquid separation is improved without providing the collision member 550.
【0055】(他の実施形態)以上の実施形態では、二
酸化炭素またはフロンを冷媒としたが、本発明はこれに
限定されるものでなく、例えばエチレン、エタン、酸化
窒素、プロパンなどの炭化水素系冷媒などのその他の冷
媒であっても良い。(Other Embodiments) In the above embodiments, carbon dioxide or chlorofluorocarbon is used as the refrigerant, but the present invention is not limited to this. For example, hydrocarbons such as ethylene, ethane, nitrogen oxide, and propane Other refrigerants such as a system refrigerant may be used.
【0056】また、潤滑油は、ポリグリコール(PA
G)などの鉱物に限定されるものではなくその他のもの
であっても良い。なおこの時のオイル戻し管510の接
続位置は、冷媒の液密度と潤滑油の液密度との差を考慮
して適宜選定する必要がある。The lubricating oil is polyglycol (PA
The material is not limited to minerals such as G), and may be other materials. At this time, the connection position of the oil return pipe 510 needs to be appropriately selected in consideration of the difference between the liquid density of the refrigerant and the liquid density of the lubricating oil.
【0057】また、第2実施形態では、一端を液相部に
開口させるとともに、開口の下方側に、液面変動相当に
値する所定の深さ分の離れた位置に開口部541を形成
させた液相冷媒出口配管540で液相部の液面変動に対
して所定の深さ分の変動を考慮したが、液面変動範囲を
試験などで予め求めておき、その求めた液面変動範囲に
基づいて、液相冷媒出口配管540が液面を基準に所定
の深さ範囲に位置するように開口部541を設けずに液
相冷媒出口配管540を固定配置しても良い。また、図
7に示すように、気液分離器500の側面に液相冷媒出
口配管540を配設して液冷媒を吸引しても良い。In the second embodiment, one end is opened in the liquid phase portion, and an opening 541 is formed below the opening at a position separated by a predetermined depth corresponding to the liquid level fluctuation. The liquid-phase refrigerant outlet pipe 540 considers the fluctuation of the liquid level in the liquid part by a predetermined depth. However, the liquid-level fluctuation range is obtained in advance by a test or the like, and the obtained liquid-level fluctuation range is determined. Based on this, the liquid-phase refrigerant outlet pipe 540 may be fixedly arranged without providing the opening 541 so that the liquid-phase refrigerant outlet pipe 540 is located in a predetermined depth range based on the liquid level. Further, as shown in FIG. 7, a liquid-phase refrigerant outlet pipe 540 may be provided on a side surface of the gas-liquid separator 500 to suck the liquid refrigerant.
【0058】また、本実施形態では、本発明を車両用空
調装置に適用したが、本発明を車両用冷房装置、車両用
冷蔵装置または車両用冷凍装置に適用しても良い。ま
た、本発明を定置式の冷凍装置、空調装置、暖房装置お
よび給湯装置に適用しても良い。In the present embodiment, the present invention is applied to a vehicle air conditioner. However, the present invention may be applied to a vehicle cooling device, a vehicle refrigeration device, or a vehicle refrigeration device. Further, the present invention may be applied to a stationary refrigeration device, an air conditioner, a heating device, and a hot water supply device.
【0059】また、本実施形態では、圧縮機100を車
両走行用の動力エンジンにより回転駆動したが、圧縮機
100を車両走行用の動力エンジンとは別の補助エンジ
ン(サブエンジン)により回転駆動しても良い。また、
圧縮機100を電動モータ等の他の駆動手段により回転
駆動しても良い。Further, in the present embodiment, the compressor 100 is rotationally driven by the power engine for traveling the vehicle, but the compressor 100 is rotationally driven by an auxiliary engine (sub engine) different from the power engine for traveling the vehicle. May be. Also,
The compressor 100 may be rotationally driven by another driving means such as an electric motor.
【図1】本発明の第1実施形態における冷凍サイクル装
置の全体構成を示す模式図である。FIG. 1 is a schematic diagram illustrating an overall configuration of a refrigeration cycle device according to a first embodiment of the present invention.
【図2】本発明の第1実施形態における冷凍サイクル装
置に適用される気液分離器の構成を示す縦断面図であ
る。FIG. 2 is a longitudinal sectional view illustrating a configuration of a gas-liquid separator applied to the refrigeration cycle device according to the first embodiment of the present invention.
【図3】本発明の第1実施形態における冷凍サイクル装
置の冷媒の状態を示すモリエル線図(p−h線図)であ
る。FIG. 3 is a Mollier diagram (ph diagram) showing the state of the refrigerant in the refrigeration cycle device according to the first embodiment of the present invention.
【図4】本発明の第2実施形態における気液分離器の構
成を示す縦断面図である。FIG. 4 is a longitudinal sectional view illustrating a configuration of a gas-liquid separator according to a second embodiment of the present invention.
【図5】本発明の第3実施形態における気液分離器の構
成を示す縦断面図である。FIG. 5 is a longitudinal sectional view illustrating a configuration of a gas-liquid separator according to a third embodiment of the present invention.
【図6】本発明の第4実施形態における気液分離器の構
成を示す平面図である。FIG. 6 is a plan view illustrating a configuration of a gas-liquid separator according to a fourth embodiment of the present invention.
【図7】他の実施形態における気液分離器の構成を示す
縦断面図である。FIG. 7 is a longitudinal sectional view illustrating a configuration of a gas-liquid separator according to another embodiment.
【図8】従来技術における冷凍能力および蒸発器内のオ
イル量と経過時間との関係を示す特性図である。FIG. 8 is a characteristic diagram showing a relationship between a refrigerating capacity and an oil amount in an evaporator and an elapsed time according to a conventional technique.
100…圧縮機(冷媒圧縮機) 200…冷媒放熱器 300…蒸発器(冷媒蒸発器) 400…エジェクタ 500…気液分離器 510…オイル戻し管(オイル戻り回路) 520…吸入配管 530…気相冷媒出口配管 540…液相冷媒出口配管 541…開口部 550…衝突部材 600…冷媒配管(冷媒流路) 610…バイパス配管(バイパス流路) Reference Signs List 100 compressor (refrigerant compressor) 200 refrigerant radiator 300 evaporator (refrigerant evaporator) 400 ejector 500 gas-liquid separator 510 oil return pipe (oil return circuit) 520 suction pipe 530 gas phase Refrigerant outlet pipe 540 ... Liquid phase refrigerant outlet pipe 541 ... Opening 550 ... Collision member 600 ... Refrigerant pipe (refrigerant flow path) 610 ... Bypass pipe (Bypass flow path)
Claims (6)
00)、エジェクタ(400)および冷媒を気相冷媒と
液相冷媒とに分離して冷媒を蓄える気液分離器(50
0)を冷媒流路(600)で環状に連結するとともに、
前記気液分離器(500)の液相冷媒側と前記エジェク
タ(400)の吸引部とをバイパス流路(610)で連
結し、前記バイパス流路(610)の途中に冷媒蒸発器
(300)を介在させて成る冷凍サイクル装置におい
て、 前記気液分離器(500)は、前記エジェクタ(40
0)の吐出部側と連結され、前記気液分離器(500)
内に気液混合の冷媒を吸入させる吸入配管(520)
と、 前記気液分離器(500)内の気相部に開口し、前記冷
媒圧縮機(100)の吸入側へ気相冷媒を吐出する気相
冷媒出口配管(530)と、 前記気液分離器(500)内の液相部に開口し、前記冷
媒蒸発器(300)の吸入側へ液相冷媒を吐出する液相
冷媒出口配管(540)と、 前記気液分離器(500)内に溜まった冷媒から分離し
た潤滑油を前記冷媒圧縮機(100)の吸入側へ戻すオ
イル戻り回路(510)とを備えることを特徴とする冷
凍サイクル装置。A refrigerant compressor (100), a refrigerant radiator (2)
00), an ejector (400) and a gas-liquid separator (50) that separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and stores the refrigerant.
0) is connected annularly by the refrigerant flow path (600),
The liquid refrigerant side of the gas-liquid separator (500) and the suction part of the ejector (400) are connected by a bypass flow path (610), and a refrigerant evaporator (300) is provided in the middle of the bypass flow path (610). Wherein the gas-liquid separator (500) is provided with the ejector (40).
0) The gas-liquid separator (500) connected to the discharge section side of (0).
Suction pipe (520) for sucking gas-liquid mixed refrigerant into the inside
A gas-phase refrigerant outlet pipe (530) that opens to a gas-phase part in the gas-liquid separator (500) and discharges a gas-phase refrigerant to a suction side of the refrigerant compressor (100); A liquid-phase refrigerant outlet pipe (540) for opening a liquid-phase refrigerant to the suction side of the refrigerant evaporator (300), the liquid-phase refrigerant outlet pipe opening (540) to the liquid-phase part in the vessel (500); An oil return circuit (510) for returning lubricating oil separated from accumulated refrigerant to the suction side of the refrigerant compressor (100).
液分離器(500)側は、前記気液分離器(500)に
おいて、潤滑油の濃度が冷媒濃度より大きくなる部位に
接続されていることを特徴とする請求項1に記載の冷凍
サイクル装置。2. The gas-liquid separator (500) side of the oil return circuit (510) is connected to a portion of the gas-liquid separator (500) where the lubricating oil concentration is higher than the refrigerant concentration. The refrigeration cycle apparatus according to claim 1, wherein:
記気液分離器(500)内の液相部に開口させるととも
に、前記開口から下方側に所定の深さ寸法を有する位置
に開口部(541)を形成させたことを特徴とする請求
項1に記載の冷凍サイクル装置。3. The liquid-phase refrigerant outlet pipe (540) has an opening at a liquid-phase portion in the gas-liquid separator (500), and has an opening at a position having a predetermined depth below the opening. The refrigeration cycle apparatus according to claim 1, wherein a portion (541) is formed.
記気液分離器(500)の本体の上方側に配設されたこ
とを特徴とする請求項1に記載の冷凍サイクル装置。4. The refrigeration cycle apparatus according to claim 1, wherein the gas-phase refrigerant outlet pipe (530) is disposed above a main body of the gas-liquid separator (500).
は、前記吸入配管(520)から吸入される気液混合の
冷媒を衝突させる衝突部材(550)を設けたことを特
徴とする請求項1ないし請求項4のいずれか1項に記載
の冷凍サイクル装置。5. A collision member (550) for colliding a gas-liquid mixed refrigerant sucked from the suction pipe (520) is provided in a gas phase portion in the gas-liquid separator (500). The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein
の形状で形成され、上方端に前記吸入配管(520)お
よび前記気相冷媒出口配管(530)を配設し、下方端
に前記液相冷媒出口配管(540)および前記オイル戻
り回路(510)を配設された圧力容器で構成されたこ
とを特徴とする請求項1ないし請求項5のいずれか1項
に記載の冷凍サイクル装置。6. The gas-liquid separator (500) is formed in a substantially cylindrical shape, and has the suction pipe (520) and the gas-phase refrigerant outlet pipe (530) disposed at an upper end thereof. The refrigeration system according to any one of claims 1 to 5, further comprising a pressure vessel provided with the liquid-phase refrigerant outlet pipe (540) and the oil return circuit (510). Cycle equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000319315A JP2002130874A (en) | 2000-10-19 | 2000-10-19 | Refrigerating cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000319315A JP2002130874A (en) | 2000-10-19 | 2000-10-19 | Refrigerating cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002130874A true JP2002130874A (en) | 2002-05-09 |
Family
ID=18797797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000319315A Pending JP2002130874A (en) | 2000-10-19 | 2000-10-19 | Refrigerating cycle device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002130874A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002349978A (en) * | 2000-08-04 | 2002-12-04 | Denso Corp | Ejector cycle |
FR2834553A1 (en) * | 2002-01-10 | 2003-07-11 | Denso Corp | GAS-LIQUID SEPARATOR FOR EJECTOR CYCLE |
US6675609B2 (en) * | 2002-01-30 | 2004-01-13 | Denso Corporation | Refrigerant cycle system with ejector pump |
US6729158B2 (en) * | 2002-02-07 | 2004-05-04 | Denso Corporation | Ejector decompression device with throttle controllable nozzle |
JP2008202810A (en) * | 2007-02-16 | 2008-09-04 | Denso Corp | Refrigerating cycle device |
JP2010048549A (en) * | 2009-12-02 | 2010-03-04 | Fuji Electric Retail Systems Co Ltd | Refrigerant circuit |
US7694528B2 (en) | 2002-06-11 | 2010-04-13 | Denso Corporation | Heat exchanging apparatus |
WO2010090288A1 (en) * | 2009-02-06 | 2010-08-12 | 東芝キヤリア株式会社 | Refrigeration cycle container and refrigeration cycle device |
WO2011135876A1 (en) | 2010-04-27 | 2011-11-03 | 三菱電機株式会社 | Refrigeration cycle device and refrigerant circulation method |
CN105115204A (en) * | 2015-08-14 | 2015-12-02 | 浙江大学 | Gas-liquid separator capable of controlling lubricating oil circulation volume and control method thereof |
CN106440575A (en) * | 2016-11-09 | 2017-02-22 | 珠海格力电器股份有限公司 | Gas-liquid separator and air conditioning system |
CN109099620A (en) * | 2018-08-07 | 2018-12-28 | 珠海格力电器股份有限公司 | air conditioning system |
CN109307378A (en) * | 2018-08-07 | 2019-02-05 | 珠海格力电器股份有限公司 | air conditioning system |
CN109357449A (en) * | 2018-10-29 | 2019-02-19 | 中国科学院理化技术研究所 | Gas-liquid separator and refrigeration/heat pump system |
CN109373650A (en) * | 2018-11-06 | 2019-02-22 | 珠海格力电器股份有限公司 | injection system and air conditioning system |
EP3495755A4 (en) * | 2016-12-27 | 2020-01-01 | Fujikoki Corporation | Refrigerant container |
CN114608229A (en) * | 2022-05-10 | 2022-06-10 | 新乡市特美特热控技术股份有限公司 | Novel gas-liquid separation device for air conditioning unit and control system |
CN114992913A (en) * | 2022-05-25 | 2022-09-02 | 青岛冰岩制冷设备有限公司 | Flooded refrigerating system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5777875U (en) * | 1980-10-28 | 1982-05-14 | ||
JPH0611197A (en) * | 1992-06-29 | 1994-01-21 | Nippondenso Co Ltd | Refrigerating cycle |
JP3046267U (en) * | 1997-08-15 | 1998-03-06 | クォ フ チェン | Cooling system |
JPH10141813A (en) * | 1996-11-06 | 1998-05-29 | Mitsubishi Electric Corp | Accumulator |
JPH11257805A (en) * | 1998-03-13 | 1999-09-24 | Matsushita Electric Ind Co Ltd | Lubricant return device for freezing cycle |
-
2000
- 2000-10-19 JP JP2000319315A patent/JP2002130874A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5777875U (en) * | 1980-10-28 | 1982-05-14 | ||
JPH0611197A (en) * | 1992-06-29 | 1994-01-21 | Nippondenso Co Ltd | Refrigerating cycle |
JPH10141813A (en) * | 1996-11-06 | 1998-05-29 | Mitsubishi Electric Corp | Accumulator |
JP3046267U (en) * | 1997-08-15 | 1998-03-06 | クォ フ チェン | Cooling system |
JPH11257805A (en) * | 1998-03-13 | 1999-09-24 | Matsushita Electric Ind Co Ltd | Lubricant return device for freezing cycle |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002349978A (en) * | 2000-08-04 | 2002-12-04 | Denso Corp | Ejector cycle |
FR2834553A1 (en) * | 2002-01-10 | 2003-07-11 | Denso Corp | GAS-LIQUID SEPARATOR FOR EJECTOR CYCLE |
US6675609B2 (en) * | 2002-01-30 | 2004-01-13 | Denso Corporation | Refrigerant cycle system with ejector pump |
US6729158B2 (en) * | 2002-02-07 | 2004-05-04 | Denso Corporation | Ejector decompression device with throttle controllable nozzle |
US7694528B2 (en) | 2002-06-11 | 2010-04-13 | Denso Corporation | Heat exchanging apparatus |
JP2008202810A (en) * | 2007-02-16 | 2008-09-04 | Denso Corp | Refrigerating cycle device |
DE102008009196A1 (en) | 2007-02-16 | 2008-09-18 | Denso Corp., Kariya | Refrigerant cycle device |
CN102272539A (en) * | 2009-02-06 | 2011-12-07 | 东芝开利株式会社 | Refrigeration cycle container and refrigeration cycle device |
WO2010090288A1 (en) * | 2009-02-06 | 2010-08-12 | 東芝キヤリア株式会社 | Refrigeration cycle container and refrigeration cycle device |
JPWO2010090288A1 (en) * | 2009-02-06 | 2012-08-09 | 東芝キヤリア株式会社 | Refrigeration cycle container and refrigeration cycle equipment |
JP2010048549A (en) * | 2009-12-02 | 2010-03-04 | Fuji Electric Retail Systems Co Ltd | Refrigerant circuit |
WO2011135876A1 (en) | 2010-04-27 | 2011-11-03 | 三菱電機株式会社 | Refrigeration cycle device and refrigerant circulation method |
US9207004B2 (en) | 2010-04-27 | 2015-12-08 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
CN105115204A (en) * | 2015-08-14 | 2015-12-02 | 浙江大学 | Gas-liquid separator capable of controlling lubricating oil circulation volume and control method thereof |
CN106440575A (en) * | 2016-11-09 | 2017-02-22 | 珠海格力电器股份有限公司 | Gas-liquid separator and air conditioning system |
CN106440575B (en) * | 2016-11-09 | 2022-03-18 | 珠海格力电器股份有限公司 | Gas-liquid separator and air conditioning system |
EP3495755A4 (en) * | 2016-12-27 | 2020-01-01 | Fujikoki Corporation | Refrigerant container |
CN109099620A (en) * | 2018-08-07 | 2018-12-28 | 珠海格力电器股份有限公司 | air conditioning system |
CN109307378A (en) * | 2018-08-07 | 2019-02-05 | 珠海格力电器股份有限公司 | air conditioning system |
CN109357449A (en) * | 2018-10-29 | 2019-02-19 | 中国科学院理化技术研究所 | Gas-liquid separator and refrigeration/heat pump system |
CN109373650A (en) * | 2018-11-06 | 2019-02-22 | 珠海格力电器股份有限公司 | injection system and air conditioning system |
CN114608229A (en) * | 2022-05-10 | 2022-06-10 | 新乡市特美特热控技术股份有限公司 | Novel gas-liquid separation device for air conditioning unit and control system |
CN114992913A (en) * | 2022-05-25 | 2022-09-02 | 青岛冰岩制冷设备有限公司 | Flooded refrigerating system |
CN114992913B (en) * | 2022-05-25 | 2023-11-21 | 青岛冰岩制冷设备有限公司 | Flooded refrigerating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002130874A (en) | Refrigerating cycle device | |
JP5482767B2 (en) | Ejector refrigeration cycle | |
JP3331604B2 (en) | Refrigeration cycle device | |
US7779647B2 (en) | Ejector and ejector cycle device | |
JP4661449B2 (en) | Ejector refrigeration cycle | |
US6742356B2 (en) | Gas-liquid separator for ejector cycle | |
CN1171055C (en) | Dual inlet oil separator for chiller | |
JP2006125823A (en) | Ejector cycle | |
JP2002318019A (en) | Ejector cycle, gas and liquid separator employed for the same and hot-water supplier, and heat control system employing the ejector cycle | |
JP2004044906A (en) | Ejector cycle | |
US7040117B2 (en) | Gas-liquid separator and ejector refrigerant cycle using the same | |
JP2003114063A (en) | Ejector cycle | |
US20040255610A1 (en) | Ejector cycle | |
JP4400522B2 (en) | Ejector refrigeration cycle | |
US6925835B2 (en) | Ejector cycle | |
JP2000055488A (en) | Refrigerating device | |
JP4147793B2 (en) | Gas-liquid separator for ejector cycle | |
US6829905B2 (en) | Ejector cycle and arrangement structure thereof in vehicle | |
JP2003222445A (en) | Gas liquid separator for ejector cycle and oil separator | |
JP2004353979A (en) | Accumulator | |
JP2008309343A (en) | Expansion mechanism and refrigerating apparatus having the same | |
JP4888050B2 (en) | Refrigeration cycle equipment | |
JP2003004319A (en) | Ejector cycle | |
JP2000035251A (en) | Three layers separator in cooling cycle | |
JP2006118799A (en) | Refrigeration cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20040416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050613 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050905 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050912 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20051007 |