JP2002129211A - Method for operating blast furnace - Google Patents
Method for operating blast furnaceInfo
- Publication number
- JP2002129211A JP2002129211A JP2000331711A JP2000331711A JP2002129211A JP 2002129211 A JP2002129211 A JP 2002129211A JP 2000331711 A JP2000331711 A JP 2000331711A JP 2000331711 A JP2000331711 A JP 2000331711A JP 2002129211 A JP2002129211 A JP 2002129211A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- coke
- ore
- radial direction
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炉内に多量の微粉
炭を吹き込んで行う高炉の操業方法、より詳細には、炉
内通気性を良好に保つために炉上部の装入物分布制御を
行う高炉の操業方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace by blowing a large amount of pulverized coal into a furnace, and more particularly, to controlling a charge distribution in an upper part of a furnace in order to maintain good air permeability in the furnace. And a method of operating a blast furnace.
【0002】[0002]
【従来の技術】通常、高炉操業では炉頂部から鉱石とコ
ークスを交互に装入し、炉下部の羽口部から吹き込まれ
る1200℃程度の熱風でコークスを燃焼させ、その発
生したガスにより鉱石を還元して溶銑を得るものであ
る。最近の高炉操業では、コークス炉の寿命延長や溶銑
コストの低減などを目的としてコークスの代わりに羽口
部から微粉炭を吹き込む操業が主流となっており、その
吹き込み量も年々増加する傾向にある。2. Description of the Related Art Normally, in blast furnace operation, ore and coke are charged alternately from the top of a furnace, and coke is burned with hot air of about 1200 ° C. blown from a tuyere at the bottom of the furnace, and the ore is generated by the generated gas. It is to obtain hot metal by reduction. In recent blast furnace operations, pulverized coal has been blown from the tuyere instead of coke for the purpose of extending the life of the coke oven and reducing the cost of hot metal, etc. .
【0003】微粉炭を溶銑トン当り180kg以上吹き
込む高微粉炭吹込み操業においては、溶銑トン当りの鉱
石装入量とコークス装入量の比(O/C比)の増加によ
る装入物層内の空隙率の低下、溶銑トン当りの装入物重
量と炉内ガス量の比(熱流比)の低下による炉内ガス温
度の上昇、それに伴う炉内ガス流速の増加といった原因
により、炉上部での通気抵抗及び圧損の増加を招くこと
が知られている。[0003] In a high pulverized coal injection operation in which pulverized coal is blown by 180 kg or more per ton of hot metal, the charged material layer is increased by increasing the ratio (O / C ratio) of the amount of ore charged to the amount of coke charged per ton of hot metal. In the upper part of the furnace due to a decrease in the porosity of the furnace, an increase in the furnace gas temperature due to a decrease in the ratio of the charge weight per ton of hot metal to the furnace gas amount (heat flow ratio), and an accompanying increase in the furnace gas flow velocity. It is known that this causes an increase in airflow resistance and pressure loss.
【0004】このような状態が生じると、送風圧力の著
しい上昇や装入物が安定して降下せずに炉上部に吹き上
げられる吹き抜け現象が引き起こされ、その結果、高炉
の安定操業が大きく阻害され、操業弾力性が著しく低下
する。したがって、高微粉炭吹込み操業下での安定操業
を実現するためには、炉上部での装入物の通気性を改善
することが重要である。[0004] When such a state occurs, a blow-up phenomenon in which the blowing pressure rises remarkably and the charged material is blown up to the upper part of the furnace without being stably lowered is caused. As a result, the stable operation of the blast furnace is greatly impaired. , Operation elasticity is remarkably reduced. Therefore, in order to realize stable operation under high pulverized coal injection operation, it is important to improve the permeability of the charge in the upper part of the furnace.
【0005】一方、高微粉炭操業下で従来から行われて
きた装入物分布制御法として、第89回製銑部会資料
「加古川1高炉の高PCI操業」(以下、先行技術1と
いう)や第84回製銑部会資料「君津3高炉における微
粉炭多量吹込み操業試験」(以下、先行技術2という)
に記載されているような、周辺部(炉壁側部分)の鉱石
層とコークス層の層厚の比[Lo/Lc]を大きくすること
で周辺部のガス流速(以下、周辺流という)を抑制し、
その一方で、中心部(炉中心側部分)のガス流速(以
下、中心流という)を強化する方法がある。On the other hand, as the charge distribution control method conventionally performed under the operation of high pulverized coal, materials of the 89th Ironmaking Subcommittee, “High PCI Operation of Kakogawa 1 Blast Furnace” (hereinafter referred to as Prior Art 1), Materials from the 84th Ironmaking Subcommittee, "Operation Test of Injecting Large Pulverized Coal in Kimitsu 3 Blast Furnace" (hereinafter referred to as Prior Art 2)
By increasing the ratio [Lo / Lc] of the layer thickness of the ore layer and the coke layer in the peripheral part (furnace wall side part) as described in the above, the gas flow velocity in the peripheral part (hereinafter referred to as peripheral flow) is increased. Curb,
On the other hand, there is a method of strengthening the gas flow velocity (hereinafter, referred to as the central flow) in the central part (furnace central side part).
【0006】図7は先行技術1に示されている、装入物
分布制御を実施する前後での炉半径方向における[Lo/
Lc]の分布である。この先行技術1によれば、図7のよ
うに微粉炭吹込み比を溶銑トン当り200kgから25
0kgまで増加させたのに伴い、周辺部での[Lo/Lc]
が高くなるように装入物分布制御を行った結果、高微粉
炭吹込みに伴う高酸素富化送風下において羽口部での衝
風エネルギーが低下したものの、中心流が強化され周辺
流が抑制された炉内ガス流速分布となり、この結果、炉
壁部への熱損失を比較的低位に維持することができ、安
定操業が可能となったとしている。FIG. 7 shows [Lo / Lo] in the furnace radial direction before and after the charge distribution control shown in Prior Art 1.
Lc]. According to the prior art 1, as shown in FIG.
[Lo / Lc] at the periphery with increasing to 0kg
As a result, the blast energy at the tuyere was reduced under high oxygen-enriched blast due to high pulverized coal injection, but the central flow was strengthened and the peripheral flow was reduced. It is said that the gas flow velocity distribution in the furnace is suppressed, and as a result, heat loss to the furnace wall can be maintained at a relatively low level, thereby enabling stable operation.
【0007】また、図8は先行技術2に示されている、
装入物分布制御を実施したときの炉半径方向でのガス利
用率分布の変化を示している。ここで、ガス利用率はそ
の値が小さいほどその部位でのガス流速が大きいことを
意味している。この先行技術2によれば、微粉炭吹込み
比を溶銑トン当り118kgから203kgまで増加さ
せたのに伴い、コークスの装入モードを炉中心側に、鉱
石の装入モードを炉壁側にそれぞれ変更して炉壁側での
[Lo/Lc]が高くなるように装入物分布制御を行った結
果、図8に示されるように周辺流が抑制され、中心流が
強化された炉内ガス流速分布となり、炉上部でも安定し
たガス流れを維持できたとしている。FIG. 8 is shown in prior art 2.
It shows a change in gas utilization distribution in the furnace radial direction when charge distribution control is performed. Here, the smaller the value of the gas utilization rate, the higher the gas flow rate at that site. According to the prior art 2, as the pulverized coal injection ratio was increased from 118 kg to 203 kg per ton of hot metal, the charging mode of coke was set to the furnace center side, and the charging mode of ore was set to the furnace wall side. As a result of changing the charge distribution control so that [Lo / Lc] on the furnace wall side becomes higher, as shown in FIG. 8, the peripheral flow is suppressed and the central flow is strengthened. It is said that the flow velocity distribution was obtained, and a stable gas flow was maintained even in the upper part of the furnace.
【0008】[0008]
【発明が解決しようとする課題】以上の上記先行技術
1,2が示すような装入物分布制御法を用いることで、
高微粉炭吹込み時に顕著となる炉下部領域での炉壁部へ
の熱負荷増大現象を抑制したり、融着帯形状を逆V字型
に作り込むことにより融着帯を含む領域での炉内の圧力
損失を低減することが可能となる。しかし、これら先行
技術1,2には、以下のような問題点がある。By using the charge distribution control method as described in the above prior arts 1 and 2,
By suppressing the increase in heat load on the furnace wall in the lower part of the furnace, which is conspicuous when high-pulverized coal is injected, or by forming the shape of the cohesive zone in an inverted V-shape, The pressure loss in the furnace can be reduced. However, these prior arts 1 and 2 have the following problems.
【0009】即ち、高炉原料(焼結鉱、コークス等)と
して通気性に対して悪影響を与えるような性状のものを
使用する場合に上記先行技術の方法を実施すると、周辺
流が極端に低下する結果、周辺部での鉱石の還元停滞に
より炉熱が低下したり、炉壁部に停滞層が形成されて炉
内実容積が減少することにより通気性が悪化するなどの
現象が顕著となる。ここで、先行技術1,2の装入物分
布制御法では融着帯形状が逆V字型になることにより、
この部位での圧力損失の低減効果が期待されるが、融着
帯での通気性は、単にその形状だけでなく鉱石の溶け落
ち挙動や融着層の厚さ、さらにはコークススリットの厚
さや数といった要因により大きく左右されるため、十分
な効果が得られない場合がある。したがって、先行技術
1,2をもってしても上述した要因による炉内通気性の
悪化を十分に改善することはできず、高微粉炭吹き込み
操業を安定的に実施することは非常に困難であった。That is, when the above-mentioned prior art method is used in the case of using blast furnace raw materials (sinter ore, coke, etc.) that have a bad influence on air permeability, the peripheral flow is extremely reduced. As a result, phenomena such as a decrease in furnace heat due to ore reduction stagnation in the peripheral portion and a decrease in the actual volume in the furnace due to the formation of a stagnant layer on the furnace wall and a decrease in the actual volume inside the furnace become remarkable. Here, in the charge distribution control methods of the prior arts 1 and 2, the shape of the cohesive zone is inverted V-shaped,
The effect of reducing the pressure loss at this part is expected, but the permeability in the cohesive zone is not limited to its shape, but also the ore burn-through behavior, the thickness of the cohesive layer, and the thickness of the coke slit. Since it is greatly influenced by factors such as the number, a sufficient effect may not be obtained in some cases. Therefore, even with the prior arts 1 and 2, the deterioration of the in-furnace air permeability due to the above-described factors could not be sufficiently improved, and it was very difficult to stably perform the operation of injecting high pulverized coal. .
【0010】したがって本発明の目的は、微粉炭を溶銑
トン当り180kg以上吹き込んで行う高炉操業におい
て、炉上部の装入物層での圧力損失を低減することによ
り炉内通気性を良好に保ち、安定した高微粉炭吹き込み
操業を可能とする高炉の操業方法を提供することにあ
る。Therefore, an object of the present invention is to maintain good air permeability in a furnace by reducing pressure loss in a charge layer at the upper part of a furnace in a blast furnace operation in which pulverized coal is blown at 180 kg or more per ton of hot metal. It is an object of the present invention to provide a method of operating a blast furnace that enables stable high-pulverized coal injection operation.
【0011】[0011]
【課題を解決するための手段】このような目的を達成す
るための本発明の高炉操業方法は、炉内装入層の最上部
におけるコークス層厚Lcとコークス層厚Lc及び鉱石層厚
Loを合わせた装入層厚(Lc+Lo)との比[Lc/(Lc+L
o)]の炉半径方向での分布が、炉中心部側と炉壁側で
大きく、且つそれらの中間部で小さくなるように装入物
分布制御を行うことを骨子とするものであり、その特徴
は以下のとおりである。In order to achieve the above object, a method of operating a blast furnace according to the present invention comprises the steps of: providing a coke layer thickness Lc, a coke layer thickness Lc, and an ore layer thickness at the uppermost part of the furnace interior layer.
The ratio [Lc / (Lc + L) to the charging layer thickness (Lc + Lo) with Lo
o)] is to control the charge distribution so that the distribution in the furnace radial direction is large on the furnace center side and the furnace wall side and small on the middle part between them. The features are as follows.
【0012】[1] 炉頂部からコークスと鉱石を交互に装
入し、コークス層と鉱石層とを交互に積層させる原料装
入を行い、且つ炉内に微粉炭を溶銑トン当り180kg
以上吹き込んで行う高炉操業において、炉内装入層の最
上部におけるコークス層厚Lcとコークス層厚Lc及び鉱石
層厚Loを合わせた装入層厚(Lc+Lo)との比[Lc/(Lc
+Lo)]が、炉半径方向における各領域で下記(1)〜(3)
の条件を満足するよう、炉頂部からコークス及び鉱石を
装入することを特徴とする高炉の操業方法。 (1) 炉半径方向における炉中心部側領域:平均値で[Lc
/(Lc+Lo)]≧0.9 (2) 炉半径方向における中間部領域:平均値で[Lc/(L
c+Lo)]≦0.4 (3) 炉半径方向における炉周辺部側領域:平均値で[Lc
/(Lc+Lo)]≧0.5[1] Coke and ore are charged alternately from the furnace top, and raw materials for alternately laminating a coke layer and an ore layer are charged, and pulverized coal is charged into the furnace at a rate of 180 kg per ton of hot metal.
In the blast furnace operation performed by blowing as described above, the ratio [Lc / (Lc) of the charged layer thickness (Lc + Lo) obtained by adding the coke layer thickness Lc and the coke layer thickness Lc and the ore layer thickness Lo at the top of the furnace interior layer
+ Lo)] in each area in the furnace radial direction.
A method of operating a blast furnace, comprising charging coke and ore from the furnace top so as to satisfy the following conditions. (1) Furnace center side area in the furnace radial direction: [Lc
/(Lc+Lo)]≧0.9 (2) Middle area in the furnace radial direction: [Lc / (L
c + Lo)] ≤ 0.4 (3) Furnace peripheral side area in the furnace radial direction: [Lc
/(Lc+Lo)]≧0.5
【0013】[2] 上記[1]の操業方法において、炉半径
方向における炉中心部側領域、中間部領域及び炉周辺部
側領域を、それぞれ下記の領域に設定して炉頂部からコ
ークス及び鉱石を装入することを特徴とする高炉の操業
方法。 (a) 炉半径方向における炉中心部側領域:r/Rt≦0.
1の領域 (b) 炉半径方向における中間部領域:0.1<r/Rt≦
0.6の領域 (c) 炉半径方向における炉周辺部側領域:0.6<r/
Rtの領域 但し r:炉半径方向における炉中心からの距離(m) Rt:炉口部での炉内半径(m)[2] In the operation method of the above [1], the furnace center side region, the middle region region, and the furnace peripheral side region in the furnace radial direction are respectively set to the following regions, and coke and ore are set from the furnace top. A method for operating a blast furnace, comprising charging a blast furnace. (a) Furnace center side region in the furnace radial direction: r / Rt ≦ 0.
Region 1 (b) Middle region in the furnace radial direction: 0.1 <r / Rt ≦
Area of 0.6 (c) Area around the furnace periphery in the furnace radial direction: 0.6 <r /
Rt region where r: distance from furnace center in furnace radius direction (m) Rt: furnace radius at furnace port (m)
【0014】[0014]
【発明の実施の形態】図1は、本発明法を実施した場合
の炉上部(炉内装入層の最上部)における炉径方向での
装入物堆積形態と[Lc/(Lc+Lo)]の分布を示す説明
図である。ここで、Lc:炉上部におけるコークス層厚、
Lo:炉上部における鉱石層厚であり、したがって(Lc+
Lo)は炉上部におけるコークス層及び鉱石層を合わせた
装入物層厚である。また、図1において、1は鉱石層、
2はコークス層、3は下層である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a graph showing a state of a charge accumulation in a furnace radial direction at an upper portion of a furnace (uppermost portion of an inner layer of a furnace) and a ratio of [Lc / (Lc + Lo)] when the method of the present invention is carried out. It is explanatory drawing which shows a distribution. Here, Lc: the coke layer thickness at the upper part of the furnace,
Lo: The ore layer thickness at the top of the furnace, and therefore (Lc +
Lo) is the bed thickness of the combined coke and ore layers at the furnace top. In FIG. 1, 1 is an ore layer,
2 is a coke layer and 3 is a lower layer.
【0015】本発明法では、炉頂部からコークスと鉱石
を交互に装入し、コークス層と鉱石層とを交互に積層さ
せる原料装入を行うに当たり、コークス層厚Lcとコーク
ス層厚Lc及び鉱石層厚Loを合わせた装入層厚(Lc+Lo)
との比[Lc/(Lc+Lo)]が、炉半径方向における各領域
で下記(1)〜(3)の条件を満足するようにコークス及び鉱
石を装入する。 (1) 炉半径方向における炉中心部側領域:平均値で[Lc
/(Lc+Lo)]≧0.9 (2) 炉半径方向における中間部領域:平均値で[Lc/(L
c+Lo)]≦0.4 (3) 炉半径方向における炉周辺部側領域:平均値で[Lc
/(Lc+Lo)]≧0.5 ここで、図1に示すように[Lc/(Lc+Lo)]は、炉半径
方向における炉中心部側、中間部、炉周辺部側の各領域
において平均値として上記(1)〜(3)の条件を満たせばよ
い。In the method of the present invention, coke and ore are charged alternately from the furnace top and raw material charging for alternately laminating a coke layer and an ore layer is performed. Inserted layer thickness (Lc + Lo) with layer thickness Lo
The coke and the ore are charged so that the ratio [Lc / (Lc + Lo)] satisfies the following conditions (1) to (3) in each region in the furnace radial direction. (1) Furnace center side area in the furnace radial direction: [Lc
/(Lc+Lo)]≧0.9 (2) Middle area in the furnace radial direction: [Lc / (L
c + Lo)] ≤ 0.4 (3) Furnace peripheral side area in the furnace radial direction: [Lc
/(Lc+Lo)]≧0.5 Here, as shown in FIG. 1, [Lc / (Lc + Lo)] is an average value in each region on the furnace center side, the middle part, and the furnace peripheral side in the furnace radial direction. It suffices if the above conditions (1) to (3) are satisfied.
【0016】以上のような装入物分布形態を採ることに
より、炉上部の装入物層の圧力損失が効果的に低減し、
炉内通気性を良好に保つことができる。これは、上記の
ような装入分布形態では、炉半径方向における炉周辺部
側領域に通気抵抗の小さい固体充填層が形成されること
になるが、円筒形の固体充填層に一定のガス量を通過さ
せる場合、断面積の大きい炉周辺部側領域に炉中間部領
域(炉半径方向における中間部領域)よりも通気抵抗の
小さい充填層を形成させると、ガスが炉周辺部側領域に
対して優先的に低い圧損で流れる結果、固体充填層全体
の圧力損失が低下するからである。By adopting the above charge distribution form, the pressure loss in the charge layer at the upper part of the furnace is effectively reduced,
Good air permeability in the furnace can be maintained. This is because, in the charging distribution mode as described above, a solid packed bed with small airflow resistance is formed in the furnace peripheral side region in the furnace radial direction, but a fixed gas amount is formed in the cylindrical solid packed bed. When gas is passed through the furnace peripheral area, a gas-permeable layer is formed in the furnace peripheral area where the cross-sectional area is larger than the furnace intermediate area (intermediate area in the furnace radial direction). This is because, as a result, the pressure loss of the entire solid packed bed is reduced as a result of the flow with preferentially low pressure loss.
【0017】さらに、上記装入分布形態では炉半径方向
における炉中心部側領域にコークス主体で鉱石の割合が
非常に少ない充填層が形成されるが、炉中心部側領域に
このような充填層が形成されると、この炉中心部側領域
では羽口からのCOガスによる還元反応(FeO+CO
=Fe+CO2)があまり生じないため、CO2ガスの
生成量が少なくなる。このためCO2によるソリューシ
ョンロス反応(C+CO2=2CO)が生じにくく、こ
の結果コークスの劣化が抑制され、この領域のコークス
は健全な状態のまま炉下部へ供給される。そして、この
領域に存在するコークスが炉下部の大部分のコークスと
置換されることから、より健全なコークスが炉下部に供
給されることになり、炉下部の通気性及び通液性が大き
く改善されることになる。Further, in the above charging distribution mode, a packed bed mainly composed of coke and having a very small ore ratio is formed in the furnace central area in the furnace radial direction. Is formed, a reduction reaction (FeO + CO) by CO gas from the tuyere
= Fe + CO 2 ) does not occur much, so that the amount of generated CO 2 gas is reduced. Thus CO 2 solution loss reaction (C + CO 2 = 2CO) hardly occurs due to this result the deterioration of the coke is suppressed, coke in this region is supplied to the left lower part of the furnace of the healthy state. Since coke existing in this region is replaced with most of the coke in the lower part of the furnace, sounder coke is supplied to the lower part of the furnace, and the gas permeability and liquid permeability of the lower part of the furnace are greatly improved. Will be done.
【0018】ここで、上記(1)の領域(炉半径方向にお
ける炉中心部側領域)における[Lo/(Lo+Lc)]の値
は、可能な限り1.0(鉱石が存在しない状態)に近い
方が望ましい。これは、先に述べたように炉中心部側領
域に鉱石が少ないと還元反応によるCO2ガスの生成量
が少なく、このためソリューションロス反応によるコー
クスの劣化が抑制され、この領域のコークスが健全な状
態のまま炉下部へ供給される結果、炉下部の通気性及び
通液性が効果的に改善されるからである。Here, the value of [Lo / (Lo + Lc)] in the region (1) (furnace center side region in the furnace radial direction) is as close as possible to 1.0 (state in which no ore is present). Is more desirable. This is because, as described above, if there is little ore in the furnace central area, the amount of CO 2 gas generated by the reduction reaction is small, and thus the deterioration of coke due to the solution loss reaction is suppressed, and the coke in this area is sound. This is because, as a result of being supplied to the lower part of the furnace as it is, the gas permeability and liquid permeability of the lower part of the furnace are effectively improved.
【0019】また、上記(2)の領域(炉半径方向におけ
る中間部領域)における[Lo/(Lo+Lc)]の下限は、
平均値で0.2とすることが好ましい。この(2)の領域
において[Lo/(Lo+Lc)]の平均値が0.2を下回る
と、下方から供給されるガス量に対して還元されるべき
鉱石量が過剰であるため鉱石の還元遅れが顕著となり、
直接還元量の増加による炉熱の低下が発生し、安定操業
が阻害されるため好ましくない。The lower limit of [Lo / (Lo + Lc)] in the area (2) (intermediate area in the furnace radial direction) is as follows:
Preferably, the average value is 0.2. When the average value of [Lo / (Lo + Lc)] in this region (2) is less than 0.2, the amount of ore to be reduced is excessive with respect to the amount of gas supplied from below, and the reduction of ore is delayed. Becomes remarkable,
Undesirably, the furnace heat decreases due to an increase in the amount of direct reduction, and stable operation is impaired.
【0020】また、上記(3)の領域(炉半径方向におけ
る炉周辺部側領域)における[Lo/(Lo+Lc)]の上限
は、平均値で0.7とすることが好ましい。この(3)の
領域において[Lo/(Lo+Lc)]の平均値が0.7を超
えると、炉壁部近傍での通過ガス量が多くなり、炉壁へ
の熱負荷が増大することから、炉体の損傷及び燃料費の
増加といった悪影響が顕著となるため好ましくない。The upper limit of [Lo / (Lo + Lc)] in the area (3) (furnace peripheral area in the furnace radial direction) is preferably 0.7 on average. If the average value of [Lo / (Lo + Lc)] exceeds 0.7 in the region (3), the amount of gas passing near the furnace wall increases, and the heat load on the furnace wall increases. It is not preferable because adverse effects such as damage to the furnace body and an increase in fuel cost become significant.
【0021】また、炉半径方向における上記(1)〜(3)の
領域については、炉半径方向における炉中心からの距離
をr(m)、炉口部での炉内半径をRt(m)とした場合
に、概ね以下のような領域とすることが好ましい。 (a) 炉半径方向における炉中心部側領域:r/Rt≦0.
1の領域 (b) 炉半径方向における中間部領域:0.1<r/Rt≦
0.6の領域 (c) 炉半径方向における炉周辺部側領域:0.6<r/
Rtの領域Further, in the above-mentioned regions (1) to (3) in the furnace radial direction, the distance from the furnace center in the furnace radial direction is r (m), and the furnace radius at the furnace opening is Rt (m). In this case, it is preferable to set the following regions. (a) Furnace center side region in the furnace radial direction: r / Rt ≦ 0.
Region 1 (b) Middle region in the furnace radial direction: 0.1 <r / Rt ≦
Area of 0.6 (c) Area around the furnace periphery in the furnace radial direction: 0.6 <r /
Rt area
【0022】以下、上記の装入物分布形態を実現するた
めの好ましい原料装入方法について説明する。図2
(a)及び(b)は本発明法の実施に供されるベル式炉
頂装入装置(図2(a)の装置)とベルレス式炉頂装入
装置(図2(b)の装置)の概略説明図であり、図2
(a)において、4はシャフト部鉄皮、5はベル、6は
専用投入シュート、7は補助分配装置、8は原料装入物
層表面であり、図2(b)において、4はシャフト部鉄
皮、6は専用投入シュート、8は原料装入物層表面、9
は旋回シュートである。Hereinafter, a preferred raw material charging method for realizing the above charged material distribution mode will be described. FIG.
(A) and (b) are bell-type furnace top charging devices (devices in FIG. 2 (a)) and bell-less type furnace top charging devices (devices in FIG. 2 (b)) used for carrying out the method of the present invention. FIG. 2 is a schematic explanatory view of FIG.
In FIG. 2A, reference numeral 4 denotes a shaft shell, 5 denotes a bell, 6 denotes a dedicated charging chute, 7 denotes an auxiliary dispensing device, 8 denotes a raw material charge layer surface, and in FIG. Iron skin, 6 is a dedicated charging chute, 8 is the surface of the raw material charge layer, 9
Is a turning chute.
【0023】本発明法を実施するに当たっては、予め専
用投入シュート6からのコークスの落下軌跡及びコーク
スの中心部への堆積状態を調査しておき、装入原料を中
心部に精度良く落下、堆積させることができるように専
用投入シュート6の高さ、角度などの設備条件を決定す
る。同様に、装入原料が所望の原料装入物分布を形成す
るように、図2(b)のベルレス式炉頂装入装置の場合
には旋回シュート9の長さ、図2(a)のベル式炉頂装
入装置の場合には補助分配装置7の角度やアームの長さ
などの設備条件をそれぞれ決定する。In carrying out the method of the present invention, the locus of coke falling from the dedicated chute 6 and the state of accumulation at the center of the coke are investigated in advance, and the charged raw material is accurately dropped and accumulated at the center of the coke. The equipment conditions such as the height and angle of the dedicated chute 6 are determined so as to be able to perform the operation. Similarly, in the case of the bell-less furnace top charging device of FIG. 2B, the length of the swirling chute 9 and the length of the turning chute 9 in FIG. 2A are set so that the charged material forms a desired raw material charge distribution. In the case of a bell furnace top charging device, equipment conditions such as the angle of the auxiliary distribution device 7 and the length of the arm are determined.
【0024】本発明法において、下層(鉱石層)表面上
にコークスの装入を行う際には、中心部と周辺部に多く
堆積するように、図2(a)のベル式炉頂装入装置にお
いては炉壁から補助分配装置7の先端位置までの距離
を、また、図2(b)のベルレス式炉頂装入装置におい
ては旋回シュート9の傾斜角を、それぞれ調整する。こ
こで、中心部については専用投入シュート6を用いてコ
ークスの装入を行うが、図2(b)のベルレス式炉頂装
入装置においては、旋回シュート9を鉛直方向と平行に
なるように傾けてコークスの装入を行ってもよい。In the method of the present invention, when charging coke on the surface of the lower layer (ore layer), the bell-type furnace top charging shown in FIG. In the apparatus, the distance from the furnace wall to the position of the tip of the auxiliary distributor 7 is adjusted, and in the bellless type furnace top charging apparatus in FIG. Here, coke is charged using the dedicated charging chute 6 at the center, but in the bellless type furnace top charging apparatus of FIG. 2B, the turning chute 9 is set so as to be parallel to the vertical direction. The coke may be charged at an angle.
【0025】次に、上記のようにして装入されたコーク
ス層上に鉱石の装入を行うが、この鉱石を装入した状態
で、上記(1)〜(3)の条件を満足するようバッチ当りの鉱
石装入量や補助分配装置7の位置などの装入条件を調整
する。例えば図2(a)の場合には、炉半径方向におけ
る中間部領域での鉱石の割合を高くするために、補助分
配装置7の位置を炉壁よりも炉中心側寄りに設定し、ト
ータルの鉱石装入量の70mass %以上が炉半径方向に
おける中間部領域に装入されるようにする。これにより
鉱石装入後の炉上部での鉱石堆積形態(層断面形状)
は、炉半径方向において炉壁から1.5〜2m程度炉中
心側寄りの位置にピークをもつM字形状となり、炉に装
入されるコークスが炉壁部側(炉周辺部側領域)に歩留
りやすくなる。その結果、炉周辺部側領域での[Lo/
(Lo+Lc)]の値を0.5以上に維持することが容易に
なる。Next, the ore is charged on the coke layer charged as described above, and the condition (1) to (3) is satisfied with the ore charged. The charging conditions such as the amount of ore charged per batch and the position of the auxiliary distribution device 7 are adjusted. For example, in the case of FIG. 2A, the position of the auxiliary distribution device 7 is set closer to the center of the furnace than the furnace wall in order to increase the ratio of ore in the intermediate region in the furnace radial direction. At least 70 mass% of the ore charge is charged to the intermediate region in the furnace radial direction. As a result, the ore accumulation form (layer cross section) at the furnace upper part after ore charging
Has an M-shape with a peak at a position closer to the center of the furnace about 1.5 to 2 m from the furnace wall in the radial direction of the furnace, and the coke charged into the furnace is located on the furnace wall side (furnace peripheral side region). Yield becomes easier. As a result, the [Lo /
(Lo + Lc)] can be easily maintained at 0.5 or more.
【0026】図3は、先に述べた先行技術の方法で原料
装入を行った場合と、本発明法により原料装入を行った
場合について、装入原料層の高さ方向での単位長さ当た
りの圧力損失を比較して示したものである。この結果
は、実機高炉の1/10スケールの試験装置による装入
物分布試験から得られたものである。この試験装置は実
機高炉の上部(炉体部分と炉頂装入機器の部分)を1/
10に縮尺した装置であって、下部からの送風も可能で
あり、実機高炉の炉上部での装入物分布形状を忠実に再
現することができる。また、この試験では、原料鉱石及
びコークスとして実機高炉で使用する原料鉱石及びコー
クスの1/10の大きさのものを使用し、また、下方か
らの送風量も実機高炉の流動化条件と一致するように決
定した。FIG. 3 shows the unit length in the height direction of the charged raw material layer when the raw material is charged by the above-described prior art method and when the raw material is charged by the method of the present invention. It shows the pressure loss per unit in comparison. This result was obtained from a charge distribution test using a 1/10 scale test device of an actual blast furnace. This test equipment uses the upper part of the actual blast furnace (furnace part and furnace top charging equipment part) as 1 /
The apparatus is scaled down to 10, and it is possible to blow air from the lower part, and it is possible to faithfully reproduce the charge distribution shape at the upper part of the actual blast furnace. In this test, raw ore and coke having a size of 1/10 of the raw ore and coke used in the actual blast furnace were used as the raw ore and coke. Decided.
【0027】表1に原料装入条件を示す。従来技術の方
法の場合には、鉱石装入時の補助分配装置(図2(a)
の補助分配装置7)の位置を炉壁側に設定して炉周辺部
側領域の[Lo/(Lo+Lc)]の値が0.5以下となるよ
うに調整した。同様に、CFC投入量を低下させて炉中
心部側領域の[Lo/(Lo+Lc)]の値が0.9以下とな
るように調整した。Table 1 shows the raw material charging conditions. In the case of the method of the prior art, an auxiliary dispensing device for charging ore (FIG. 2 (a)
The position of the auxiliary distribution device 7) was set on the furnace wall side, and the value of [Lo / (Lo + Lc)] in the region on the furnace peripheral side side was adjusted to be 0.5 or less. Similarly, the amount of CFC input was reduced so that the value of [Lo / (Lo + Lc)] in the central region of the furnace was adjusted to 0.9 or less.
【0028】[0028]
【表1】 [Table 1]
【0029】図3によれば、本発明法により原料装入を
行った場合には、炉半径方向における中間部領域のガス
流速が低下し、表面積の大きい炉周辺部側領域のガス流
速が増加するため、先行技術に較べてトータルとしての
装入物層の圧力損失が低減されていることが判る。以上
述べた本発明による高炉の操業方法は、特に、微粉炭を
溶銑トン当り230kg以上吹き込む高微粉炭吹込み操
業に有効である。According to FIG. 3, when the raw material is charged by the method of the present invention, the gas flow rate in the middle area in the furnace radial direction decreases, and the gas flow rate in the furnace peripheral area having a large surface area increases. Therefore, it can be seen that the pressure loss of the charge layer as a whole is reduced as compared with the prior art. The blast furnace operating method according to the present invention described above is particularly effective for a high pulverized coal injection operation in which pulverized coal is blown in at least 230 kg per ton of hot metal.
【0030】[0030]
【実施例】本発明法により、ベル式炉頂装入装置を備え
た高炉において微粉炭比180kg/溶銑ton以上の
高微粉炭吹込み操業を実施した。表2に、本発明法によ
る操業時と本発明法の実施前の操業時の原料装入量、補
助分配装置(MA)の位置及び中心部コークス投入量
(CFC投入量)を示す。この高炉操業では、コークス
を2バッチ、鉱石を3バッチに分けて交互に装入する方
法を採用し、本発明法の実施では鉱石バッチのうちの1
つのバッチのMA位置と装入量を調整することで、炉半
径方向における[Lc/(Lc+Lo)]の値を調整した。EXAMPLE In accordance with the method of the present invention, a high-pulverized coal injection operation with a pulverized coal ratio of 180 kg / hot metal ton or more was carried out in a blast furnace equipped with a bell-type furnace top charging device. Table 2 shows the raw material charge, the position of the auxiliary distribution device (MA), and the central coke input (CFC input) during operation according to the present invention and before operation of the present method. In this blast furnace operation, a method of alternately charging two batches of coke and three batches of ore was adopted. In the practice of the present invention, one of the ore batches was used.
The value of [Lc / (Lc + Lo)] in the furnace radial direction was adjusted by adjusting the MA position and the charging amounts of the three batches.
【0031】[0031]
【表2】 [Table 2]
【0032】図4は、本発明法による操業時と本発明法
の実施前の操業時における装入物分布形状と[Lc/(Lc
+Lo)]の分布を比較して示したものである。この装入
物分布形状及び[Lo/(Lo+Lc)]分布は、炉頂部に設
置してあるμ波距離計測装置により1バッチが装入され
る毎に炉内半径方向の表面形状を計測し、装入物の体積
と一致するように各表面形状レベルを調整することで得
られたものである。同図によれば、本発明法の操業では
炉上部における[Lc/(Lc+Lo)]が、炉半径方向で上記
(1)〜(3)の条件で設定されている。FIG. 4 is a graph showing the distribution of the charge and [Lc / (Lc) during the operation according to the method of the present invention and before the operation of the present invention.
+ Lo)]. The distribution shape of the charge and the [Lo / (Lo + Lc)] distribution are measured by measuring the surface shape in the furnace radial direction every time one batch is charged by the microwave distance measuring device installed on the furnace top. It was obtained by adjusting each surface shape level to match the volume of the charge. According to the figure, in the operation of the method of the present invention, [Lc / (Lc + Lo)] at the upper part of the furnace
It is set under the conditions of (1) to (3).
【0033】図5は、本発明法を実施する前後約3ヶ月
間での操業諸元の推移を示している。これによれば、図
4で示したような本発明法による装入物分布形態を適用
した結果、微粉炭吹込み比を溶銑トン当り180kgか
ら250kgへ増加させても、炉内通気抵抗の上昇は殆
ど見られず、安定した高微粉炭吹込み操業を継続するこ
とができている。FIG. 5 shows the change of the operation data for about three months before and after the method of the present invention is carried out. According to this, even if the pulverized coal injection ratio is increased from 180 kg to 250 kg per ton of hot metal as a result of applying the charge distribution form according to the present invention as shown in FIG. Almost no water was found, and stable high pulverized coal injection operation was continued.
【0034】図6は本発明法を実施する前後での微粉炭
吹込み比と炉上部の通気抵抗指数Kuとの関係を示した
のもので、同図によれば本発明法を実施することにより
装入物層の通気性が顕著に改善されており、この結果、
図5に示すような炉全体の通気抵抗の改善につながった
ものと考えられる。FIG. 6 shows the relationship between the pulverized coal injection ratio and the ventilation resistance index Ku at the upper part of the furnace before and after performing the method of the present invention. The permeability of the container layer has been significantly improved,
It is considered that this led to an improvement in the ventilation resistance of the entire furnace as shown in FIG.
【0035】[0035]
【発明の効果】以上述べたように本発明法によれば、微
粉炭を溶銑トン当り180kg以上吹き込んで行う高炉
操業において、炉上部の装入物層での圧力損失を低減さ
せることにより炉内通気性を顕著に改善することができ
る。このため安定した高微粉炭吹込み操業を行うことが
できる。As described above, according to the method of the present invention, in a blast furnace operation in which pulverized coal is blown in at least 180 kg per ton of hot metal, pressure loss in the charge layer at the upper part of the furnace is reduced to reduce the pressure inside the furnace. The air permeability can be significantly improved. For this reason, stable high pulverized coal injection operation can be performed.
【図1】本発明法を実施した場合の炉上部における炉半
径方向での装入物堆積形態と[Lc/(Lc+Lo)]分布を
示す説明図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a charge deposition form and [Lc / (Lc + Lo)] distribution in a furnace radial direction in a furnace upper part when a method of the present invention is carried out.
【図2】本発明法の実施に供されるベル式炉頂装入装置
(図2(a))とベルレス式炉頂装入装置(図2
(b))の概略を示す説明図FIG. 2 shows a bell-type furnace top charging device (FIG. 2 (a)) and a bell-less type furnace top charging device (FIG. 2) used for carrying out the method of the present invention.
Explanatory drawing showing the outline of (b))
【図3】先行技術の方法で原料装入を行った場合と、本
発明法により原料装入を行った場合について、装入原料
層の高さ方向での単位長さ当りの圧力損失を示すグラフFIG. 3 shows the pressure loss per unit length in the height direction of the charged raw material layer when the raw material is charged by the method of the prior art and when the raw material is charged by the method of the present invention. Graph
【図4】本発明法による操業時と本発明法の実施前の操
業時における装入物分布形状と[Lc/(Lc+Lo)]分布
を比較して示したグラフFIG. 4 is a graph showing a comparison between a charge distribution shape and a distribution of [Lc / (Lc + Lo)] during operation according to the present invention and before operation according to the present invention.
【図5】本発明法を実施する前後での操業諸元の推移を
示すグラフFIG. 5 is a graph showing changes in operating parameters before and after the method of the present invention is performed.
【図6】本発明法を実施する前後での微粉炭吹込み比と
炉上部通気抵抗指数Kuとの関係を示すグラフFIG. 6 is a graph showing the relationship between the pulverized coal injection ratio and the upper furnace airflow resistance index Ku before and after the method of the present invention is performed.
【図7】先行技術1の装入物分布制御を実施する前後で
の炉半径方向における鉱石層厚Lo/コークス層厚Lcの比
の分布を示すグラフFIG. 7 is a graph showing the distribution of the ratio of the ore layer thickness Lo / coke layer thickness Lc in the furnace radial direction before and after the charge distribution control of Prior Art 1 is performed.
【図8】先行技術2の装入物分布制御を実施したときの
炉半径方向でのガス利用率分布の変化を示すグラフFIG. 8 is a graph showing a change in gas utilization distribution in the furnace radial direction when the charge distribution control of Prior Art 2 is performed.
1…鉱石層、2…コークス層、3…下層、4…シャフト
部鉄皮、5…ベル、6…専用投入シュート、7…補助分
配装置、8…原料装入物層表面、9…旋回シュートDESCRIPTION OF SYMBOLS 1 ... Ore layer, 2 ... Coke layer, 3 ... Lower layer, 4 ... Steel shell, 5 ... Bell, 6 ... Dedicated charging chute, 7 ... Auxiliary distribution device, 8 ... Raw material charge layer surface, 9 ... Swirl chute
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松原 真二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 早坂 祥和 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 佐藤 道貴 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村井 亮太 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K012 BC03 BC04 BC06 BC07 BE01 BE06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shinji Matsubara 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Shokazu Hayasaka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (72) Michitaka Sato, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside Nippon Kokan Co., Ltd. (72) Ryota Murai, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun F-term in Honko Co., Ltd. (Reference) 4K012 BC03 BC04 BC06 BC07 BE01 BE06
Claims (2)
し、コークス層と鉱石層とを交互に積層させる原料装入
を行い、且つ炉内に微粉炭を溶銑トン当り180kg以
上吹き込んで行う高炉操業において、 炉内装入層の最上部におけるコークス層厚Lcとコークス
層厚Lc及び鉱石層厚Loを合わせた装入層厚(Lc+Lo)と
の比[Lc/(Lc+Lo)]が、炉半径方向における各領域で
下記(1)〜(3)の条件を満足するよう、炉頂部からコーク
ス及び鉱石を装入することを特徴とする高炉の操業方
法。 (1) 炉半径方向における炉中心部側領域:平均値で[Lc
/(Lc+Lo)]≧0.9 (2) 炉半径方向における中間部領域:平均値で[Lc/(L
c+Lo)]≦0.4 (3) 炉半径方向における炉周辺部側領域:平均値で[Lc
/(Lc+Lo)]≧0.5Clay and ore are charged alternately from the furnace top, and raw materials for alternately laminating a coke layer and an ore layer are charged, and pulverized coal is blown into the furnace at a rate of 180 kg or more per ton of hot metal. In the blast furnace operation, the ratio [Lc / (Lc + Lo)] of the charged layer thickness (Lc + Lo), which is the sum of the coke layer thickness Lc and the coke layer thickness Lc and the ore layer thickness Lo, at the top of the furnace interior layer is determined by the furnace radius. A method for operating a blast furnace, comprising charging coke and ore from a furnace top so as to satisfy the following conditions (1) to (3) in each region in a direction. (1) Furnace center side area in the furnace radial direction: [Lc
/(Lc+Lo)]≧0.9 (2) Middle area in the furnace radial direction: [Lc / (L
c + Lo)] ≤ 0.4 (3) Furnace peripheral side area in the furnace radial direction: [Lc
/(Lc+Lo)]≧0.5
間部領域及び炉周辺部側領域を、それぞれ下記の領域に
設定して炉頂部からコークス及び鉱石を装入することを
特徴とする請求項1に記載の高炉の操業方法。 (a) 炉半径方向における炉中心部側領域:r/Rt≦0.
1の領域 (b) 炉半径方向における中間部領域:0.1<r/Rt≦
0.6の領域 (c) 炉半径方向における炉周辺部側領域:0.6<r/
Rtの領域 但し r:炉半径方向における炉中心からの距離(m) Rt:炉口部での炉内半径(m)2. The furnace central part area, the intermediate part area and the furnace peripheral part area in the furnace radial direction are respectively set to the following areas, and coke and ore are charged from the furnace top. Item 2. A method for operating a blast furnace according to Item 1. (a) Furnace center side region in the furnace radial direction: r / Rt ≦ 0.
Region 1 (b) Middle region in the furnace radial direction: 0.1 <r / Rt ≦
Area of 0.6 (c) Area around the furnace periphery in the furnace radial direction: 0.6 <r /
Rt region where r: distance from furnace center in furnace radius direction (m) Rt: furnace radius at furnace port (m)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000331711A JP3603776B2 (en) | 2000-10-31 | 2000-10-31 | Blast furnace operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000331711A JP3603776B2 (en) | 2000-10-31 | 2000-10-31 | Blast furnace operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002129211A true JP2002129211A (en) | 2002-05-09 |
JP3603776B2 JP3603776B2 (en) | 2004-12-22 |
Family
ID=18808013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000331711A Expired - Fee Related JP3603776B2 (en) | 2000-10-31 | 2000-10-31 | Blast furnace operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3603776B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009097048A (en) * | 2007-10-18 | 2009-05-07 | Kobe Steel Ltd | Method for estimating distribution of layer thickness of charged material in blast furnace and instrument using the method |
JP2021113341A (en) * | 2020-01-17 | 2021-08-05 | 日本製鉄株式会社 | Operation method of blast furnace |
JP2021113340A (en) * | 2020-01-17 | 2021-08-05 | 日本製鉄株式会社 | Operation method of blast furnace |
JP2022047208A (en) * | 2020-09-11 | 2022-03-24 | 株式会社神戸製鋼所 | Method for charging raw material to blast furnace |
WO2023199551A1 (en) | 2022-04-11 | 2023-10-19 | Jfeスチール株式会社 | Blast furnace operation method |
-
2000
- 2000-10-31 JP JP2000331711A patent/JP3603776B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009097048A (en) * | 2007-10-18 | 2009-05-07 | Kobe Steel Ltd | Method for estimating distribution of layer thickness of charged material in blast furnace and instrument using the method |
JP2021113341A (en) * | 2020-01-17 | 2021-08-05 | 日本製鉄株式会社 | Operation method of blast furnace |
JP2021113340A (en) * | 2020-01-17 | 2021-08-05 | 日本製鉄株式会社 | Operation method of blast furnace |
JP7393636B2 (en) | 2020-01-17 | 2023-12-07 | 日本製鉄株式会社 | How to operate a blast furnace |
JP7393637B2 (en) | 2020-01-17 | 2023-12-07 | 日本製鉄株式会社 | How to operate a blast furnace |
JP2022047208A (en) * | 2020-09-11 | 2022-03-24 | 株式会社神戸製鋼所 | Method for charging raw material to blast furnace |
JP7383587B2 (en) | 2020-09-11 | 2023-11-20 | 株式会社神戸製鋼所 | Blast furnace raw material charging method |
WO2023199551A1 (en) | 2022-04-11 | 2023-10-19 | Jfeスチール株式会社 | Blast furnace operation method |
Also Published As
Publication number | Publication date |
---|---|
JP3603776B2 (en) | 2004-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5696814B2 (en) | Raw material charging method for bell-less blast furnace | |
JPH03211210A (en) | Method for charging raw material in bell-less blast furnace | |
JP3603776B2 (en) | Blast furnace operation method | |
US1945341A (en) | Reduction and smelting of ores | |
JP2002003910A (en) | Method for operating blast furnace | |
US5759232A (en) | Method of charging materials into cupola | |
JP4765723B2 (en) | Method of charging ore into blast furnace | |
JP2792382B2 (en) | Blast furnace operation method | |
JP2725595B2 (en) | Blast furnace charging method | |
JP3171066B2 (en) | Blast furnace operation method | |
JP2921392B2 (en) | Blast furnace operation method | |
EP4317462A1 (en) | Pig iron production method | |
JP2970460B2 (en) | Blast furnace operation method | |
EP4339300A1 (en) | Pig iron production method and ore raw material | |
JP2904599B2 (en) | Blast furnace charging method | |
JPH08269508A (en) | Operation method of blast furnace | |
JPH06271908A (en) | Method for charging raw material in multi-batches into bell-less blast furnace | |
KR20000043781A (en) | Method of controlling distribution of proper charged material for high pulverized coal ratio | |
JP2933468B2 (en) | Method of charging molded coke into blast furnace | |
JP4307696B2 (en) | Reactor core heating method in pulverized coal injection operation. | |
JP3536509B2 (en) | Blast furnace operation method for producing low Si pig | |
JP2921374B2 (en) | Blast furnace operation method | |
JP2006131979A (en) | Method for charging coke into bell-less blast furnace | |
JP3465295B2 (en) | Operation method and specification setting method of coke packed bed type smelting reduction furnace | |
JPH05339612A (en) | Raw material charging device and raw material charging method for blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121008 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121008 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |