JP2002129154A - Luminescent material and light source apparatus using the same - Google Patents

Luminescent material and light source apparatus using the same

Info

Publication number
JP2002129154A
JP2002129154A JP2000331796A JP2000331796A JP2002129154A JP 2002129154 A JP2002129154 A JP 2002129154A JP 2000331796 A JP2000331796 A JP 2000331796A JP 2000331796 A JP2000331796 A JP 2000331796A JP 2002129154 A JP2002129154 A JP 2002129154A
Authority
JP
Japan
Prior art keywords
material according
light
light source
emitting material
luminescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000331796A
Other languages
Japanese (ja)
Other versions
JP3768398B2 (en
Inventor
Yutaka Kawabe
豊 川辺
Akio Yamanaka
明生 山中
Eiichi Hanamura
榮一 花村
Hiroshi Horiuchi
大嗣 堀内
Nobuhiko Sarukura
信彦 猿倉
Hideyuki Otake
秀幸 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000331796A priority Critical patent/JP3768398B2/en
Publication of JP2002129154A publication Critical patent/JP2002129154A/en
Application granted granted Critical
Publication of JP3768398B2 publication Critical patent/JP3768398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminescent material having a consistent and stronger light emission intensity in the range from near ultraviolet to infrared at a room temperature, and provide a light source apparatus using the material. SOLUTION: A luminescent material with a stronger light emission intensity can stably be manufactured by replacing a part of the element at A or B location of an ABO3 compound with another element A' or B'. The light emission spectrum, light emission intensity and light emission life can be controlled by the kind and/or density of A' or B'. The light source makes it possible for the material to acquire an optical gain by strongly exciting a part of the compound thus obtained with a pulse UV light source. The substitution rate of the elements is preferably <=10%, more preferably 0.0001-2%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光材料及びそれ
を用いた光源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting material and a light source device using the same.

【0002】[0002]

【従来の技術】これまで発光材料として用いられたペロ
ブスカイト構造を有する酸化物は、全て発光中心として
外来の希土類元素などを用いていたため、その発光波長
や材料の選択性に制限があった。一例としてNdをドー
プしたYAlO3 は、レーザー材料として知られている
が、その発光波長はNdイオンで決まる狭い波長領域に
限定される。また、電子遷移が禁制であるため振動子強
度が小さく、レーザー材料としてコンパクトな装置を実
現することが困難であった。
2. Description of the Related Art All of the oxides having a perovskite structure which have been used as a light emitting material have been limited to the emission wavelength and the selectivity of the material since all of them use a foreign rare earth element as a light emission center. As an example, Nd-doped YAlO 3 is known as a laser material, but its emission wavelength is limited to a narrow wavelength range determined by Nd ions. Further, since electron transition is forbidden, the oscillator strength is small, and it has been difficult to realize a compact device as a laser material.

【0003】一方、ペロブスカイト以外の結晶性発光材
料としては、各種の蛍光体やレーザー結晶が知られてい
るが、いずれも同様の欠点を有している。
[0003] On the other hand, as a crystalline luminescent material other than perovskite, various phosphors and laser crystals are known, but all have similar disadvantages.

【0004】母結晶自体を発光させる試みとしては発明
者らによって還元雰囲気下で作製したLaAlO3 を用
いた発光材料が得られている。この材料は広い発光スペ
クトルを有し、発光材料として有用な特徴を備えている
が、発光強度が十分でなく、かつ安定な結晶成長が困難
であるなどの問題点があった〔Y.Kawabe,A.
Yamanaka,E.Hanamura,T.Kim
ura,Y.Takiguchi,H.Kan,and
Y.Tokura“Photoluminescen
ce of perovskite lanthanu
m aluminate single crysta
ls”J.Appl.Phys.87,7594(20
00)〕。
In an attempt to cause the mother crystal itself to emit light, a luminescent material using LaAlO 3 prepared under a reducing atmosphere has been obtained by the present inventors. This material has a broad emission spectrum and has useful characteristics as a light emitting material, but has problems such as insufficient light emission intensity and difficulty in stable crystal growth [Y. Kawabe, A .;
Yamanaka, E .; Hanamura, T .; Kim
ura, Y .; Takeguchi, H .; Kan, and
Y. Tokura "Photoluminescen
ce of perovskite lanthanu
m aluminate single crysta
ls "J. Appl. Phys. 87, 7594 (20
00)].

【0005】[0005]

【発明が解決しようとする課題】上記したように、固体
レーザーに代表される固体光源は、使用する光学活性材
料によりピーク波長、パワー、CWかパルスかの動作モ
ード、効率などが決まってしまうため、幅広い光学活性
材料が求められている。酸化物は耐環境性に優れ、N
d:YAlO3 などの多くの光学活性材料が見出されて
いる。超伝導材料として注目のペロブスカイト型酸化物
も発光材料として開発が試みられているが、Ti:La
AlO3 のように発光中心となる元素(Ti)を添加し
たものであり、母体からの発光は川辺らの報告〔上記技
術文献〕があるが、発光強度が弱く、光学活性材料とし
て十分に使えるものではなかった。
As described above, a solid-state light source represented by a solid-state laser has a peak wavelength, a power, an operation mode of CW or pulse, an efficiency, and the like determined by an optically active material to be used. There is a need for a wide range of optically active materials. Oxide is excellent in environmental resistance, N
Many optically active materials such as d: YAlO 3 have been found. Perovskite-type oxides, which have attracted attention as superconducting materials, have also been developed as light-emitting materials, but Ti: La
It is a substance to which an element (Ti) serving as a luminescence center is added, such as AlO 3 , and the light emission from the matrix is reported by Kawabe et al. [The above-mentioned technical literature], but the light emission intensity is weak and can be sufficiently used as an optically active material It was not something.

【0006】本発明は、上記状況に鑑みて、近紫外から
赤外の範囲で室温で安定なより強い発光強度を有する発
光材料及びそれを用いた光源装置を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a luminescent material having a stronger luminescence intensity which is stable at room temperature in a range from near ultraviolet to infrared and a light source device using the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕酸素分圧が大気より低い雰囲気下で作製したAB
3 組成のペロブスカイト型化合物を主たる構成要素と
する発光材料であって、AもしくはBの一部、もしくは
両方の一部が、他の元素A′,B′に所定の添加量だけ
置換されることを特徴とする発光材料。ただし、A,
A′はIa族、IIa族または希土類を含むIIIb族元素
であり、B,B′はVIbからIIbまでの遷移金属または
IIIa族元素である。
In order to achieve the above object, the present invention provides: [1] an AB fabricated under an atmosphere having an oxygen partial pressure lower than the atmosphere;
A light-emitting material mainly composed of a perovskite-type compound having an O 3 composition, wherein a part of A or B or both of them are replaced with other elements A ′ and B ′ by a predetermined amount. A light emitting material characterized by the above. However, A,
A 'is a group Ia, IIa or group IIIb element containing a rare earth element, and B and B' are transition metals from VIb to IIb or
It is a group IIIa element.

【0008】〔2〕上記〔1〕記載の発光材料におい
て、前記Aが IIIb族元素であり、前記Bが IIIa族元
素であることを特徴とする。
[2] The luminescent material according to [1], wherein A is a group IIIb element and B is a group IIIa element.

【0009】〔3〕上記〔2〕記載の発光材料におい
て、前記A′がIIa族であることを特徴とする。
[3] The luminescent material according to [2], wherein A 'is a group IIa.

【0010】〔4〕上記〔3〕記載の発光材料におい
て、前記Bがアルミニウムであることを特徴とする。
[4] The luminescent material according to [3], wherein B is aluminum.

【0011】〔5〕上記〔3〕記載の発光材料におい
て、前記Aがイットリウム、またはランタン及びそれら
の混合物であることを特徴とする。
[5] The luminescent material according to [3], wherein A is yttrium, lanthanum, or a mixture thereof.

【0012】〔6〕上記〔1〕、〔2〕、〔3〕、
〔4〕又は〔5〕記載の発光材料であって、前記所定の
添加量は10%以下であることを特徴とする。
[6] The above [1], [2], [3],
The luminescent material according to [4] or [5], wherein the predetermined amount is 10% or less.

【0013】〔7〕上記〔1〕、〔2〕、〔3〕、
〔4〕、〔5〕又は〔6〕記載の発光材料を用いた光源
装置。
[7] The above [1], [2], [3],
A light source device using the light emitting material according to [4], [5] or [6].

【0014】〔8〕上記〔7〕記載の発光材料を用いた
光源装置であって、駆動源として放電装置、または電流
注入装置、または紫外光励起源を具備する。
[8] A light source device using the light emitting material according to the above [7], comprising a discharge device, a current injection device, or an ultraviolet light excitation source as a driving source.

【0015】[0015]

〔9〕上記〔1〕記載の発光材料を用いた
光源装置であって、材料の有する光学利得による増幅効
果を利用した光源装置。
[9] A light source device using the light emitting material according to [1], wherein the light source device uses an amplification effect by an optical gain of the material.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0017】まず、本発明の発光材料の製造方法につい
て説明する。
First, a method for producing a luminescent material of the present invention will be described.

【0018】本発明のABO3 化合物のA位置の元素と
しては IIIb族のLa,Yなどがその代表的なものであ
るが、これに限定されるものではなく、その他希土類や
IIa族、さらにはその混合組成であってもよい。また、
B位置の化合物はAl等 IIIa族元素またはIVb−IIb
の遷移金属が好ましいが、同様にそれに限定されるもの
ではない。A′,B′についてもA,Bと同様の選択が
可能である。
The element at the A position of the ABO 3 compound of the present invention is, for example, La, Y of the IIIb group, but is not limited thereto.
Group IIa or a mixture thereof may be used. Also,
The compound at the B position is a group IIIa element such as Al or group IVb-IIb
Are preferred, but are not limited thereto. A 'and B' can be selected in the same manner as A and B.

【0019】(1)第1実施例(結晶成長Ca:YAl
3 ) Y2 3 5.162gとAl2 3 11.320gとC
aO0.057gを混合し、直径6mmのゴム風船につ
め、ニチデン機械(株)製SPT119−10Tにて3
00Mpaの静水圧力を印加し原料棒を作製した。その
原料棒を大気中1000℃で4時間焼成し、ニチデン機
械(株)製SC−M50XSにて水素濃度4%のアルゴ
ン・水素混合ガス雰囲気中で成長させた。キセノン電球
電流は、58Aに設定し、成長速度は20.05mm/
時間に設定した。その結果、直径3.7mm、長さ25
mmの単結晶体が得られた。
(1) First Embodiment (Crystal Growth Ca: YAl
O 3 ) 5.162 g of Y 2 O 3, 11.320 g of Al 2 O 3 and C
0.057 g of aO were mixed, packed in a rubber balloon having a diameter of 6 mm, and mixed with Nichiden Machine Co., Ltd. SPT119-10T.
A raw material rod was produced by applying a hydrostatic pressure of 00 Mpa. The raw material rod was fired in the air at 1000 ° C. for 4 hours, and was grown in an argon / hydrogen mixed gas atmosphere having a hydrogen concentration of 4% by SC-M50XS manufactured by Nichiden Machine Co., Ltd. The xenon bulb current was set at 58 A and the growth rate was 20.05 mm /
Set to time. As a result, the diameter was 3.7 mm and the length was 25.
mm was obtained.

【0020】(2)第2実施例(結晶成長Ca:LaA
lO3 ) La2 3 8.065gとAl2 3 2.549gとC
aO0.029gを混合し、直径6mmのゴム風船につ
め、ニチデン機械(株)製SPT119−10Tにて3
00Mpaの静水圧力を印加し原料棒を作製した。その
原料棒を大気中1000℃で256時間焼成し、ニチデ
ン機械(株)製SC−M50XSにて水素濃度4%のア
ルゴン・水素混合ガス雰囲気中で成長させた。キセノン
電球電流は75Aに設定し、成長速度は20.00mm
/時間に設定した。その結果、直径3.8mm、長さ1
3mmの単結晶体が得られた。
(2) Second Embodiment (Crystal Growth Ca: LaA)
(IO 3 ) 8.065 g of La 2 O 3, 2.549 g of Al 2 O 3 and C
0.029 g of aO were mixed, packed in a rubber balloon having a diameter of 6 mm, and mixed with Nichiden Machine Co., Ltd. SPT119-10T.
A raw material rod was produced by applying a hydrostatic pressure of 00 Mpa. The raw material rod was fired in the atmosphere at 1000 ° C. for 256 hours, and was grown in an argon / hydrogen mixed gas atmosphere having a hydrogen concentration of 4% by SC-M50XS manufactured by Nichiden Kikai Co., Ltd. Xenon bulb current is set to 75A, growth rate is 20.00mm
/ Hour. As a result, the diameter was 3.8 mm and the length was 1
A 3 mm single crystal was obtained.

【0021】(3)第3実施例(結晶成長Ba:LaA
lO3 ) La2 3 8.537gとAl2 3 2.671gとB
aO0.086gを混合し、直径6mmのゴム風船につ
め、ニチデン機械(株)製SPT119−10Tにて3
00Mpaの静水圧力を印加し原料棒を作製した。その
原料棒を大気中1000℃で215時間焼成し、ニチデ
ン機械(株)製SC−M50XSにて水素濃度4%のア
ルゴン・水素混合ガス雰囲気中で成長させた。キセノン
電球電流は73Aに設定し、成長速度は20.06mm
/時間に設定した。その結果、直径3.5mm、長さ1
5mmの単結晶体が得られた。
(3) Third Embodiment (Crystal Growth Ba: LaA)
lO 3) La 2 O 3 8.537g and Al 2 O 3 2.671g and B
0.086 g of aO was mixed, packed in a rubber balloon having a diameter of 6 mm, and mixed with Nichiden Machine Co., Ltd. SPT119-10T.
A raw material rod was produced by applying a hydrostatic pressure of 00 Mpa. The raw material rod was fired in the atmosphere at 1000 ° C. for 215 hours, and was grown by SC-M50XS manufactured by Nichiden Kikai Co., Ltd. in an argon / hydrogen mixed gas atmosphere having a hydrogen concentration of 4%. The xenon bulb current was set to 73A and the growth rate was 20.06mm
/ Hour. As a result, the diameter was 3.5 mm and the length was 1
A single crystal of 5 mm was obtained.

【0022】(4)第4実施例(Sr:LaAlO3 ) SrCO3 を1250℃で12時間熱処理することによ
って作製したSrO0.036gとLa2 3 5.69
9gとAl2 3 1.784gとを混合し、直径6mm
のゴム風船につめ、ニチデン機械(株)製SPT119
−10Tにて300Mpaの静水圧力を印可し原料棒を
作製した。その原料棒を大気中1000℃で16時間焼
成し、ニチデン機械(株)製SC−M50XSにて水素
濃度4%のアルゴン・水素混合ガス雰囲気中で成長させ
た。キセノン電球電流は76Aに設定し、成長速度は2
0.01mm/時間に設定した。その結果、直径3.6
mm、長さ42mmの単結晶体が得られた。
(4) Fourth Embodiment (Sr: LaAlO 3 ) 0.036 g of SrO produced by heat-treating SrCO 3 at 1250 ° C. for 12 hours and 5.69 of La 2 O 3
9 g and 1.784 g of Al 2 O 3 were mixed, and the diameter was 6 mm.
Packed with rubber balloons, SPT119 manufactured by Nichiden Machine Co., Ltd.
A raw material rod was produced by applying a hydrostatic pressure of 300 Mpa at -10T. The raw material rod was fired in the air at 1000 ° C. for 16 hours, and grown in SC-M50XS manufactured by Nichiden Machine Co., Ltd. in an argon / hydrogen mixed gas atmosphere having a hydrogen concentration of 4%. The xenon bulb current was set at 76 A and the growth rate was 2
It was set to 0.01 mm / hour. As a result, a diameter of 3.6
A single crystal having a length of 42 mm and a length of 42 mm was obtained.

【0023】(5)第5実施例(Ca:GdAlO3 ) Gd2 3 8.974gとAl2 3 2.498gとC
aO0.028gを混合し、直径6mmのゴム風船につ
め、ニチデン機械(株)製SPT119−10Tにて3
00Mpaの静水圧力を印加し原料棒を作製した。その
原料棒を大気中600℃で160時間焼成し、ニチデン
機械(株)製SC−M50XSにて水素濃度4%のアル
ゴン・水素混合ガス雰囲気中で成長させた。キセノン電
球電流は63Aに設定し、成長速度は20.05mm/
時間に設定した。その結果、直径3.1mm、長さ37
mmの単結晶体が得られた。
(5) Fifth Embodiment (Ca: GdAlO 3 ) 8.974 g of Gd 2 O 3, 2.498 g of Al 2 O 3 and C
0.028 g of aO were mixed, packed in a rubber balloon having a diameter of 6 mm, and mixed with Nichiden Machine Co., Ltd. SPT119-10T.
A raw material rod was produced by applying a hydrostatic pressure of 00 Mpa. The raw material rod was fired in the air at 600 ° C. for 160 hours, and was grown by SC-M50XS manufactured by Nichiden Machine Co., Ltd. in an argon / hydrogen mixed gas atmosphere having a hydrogen concentration of 4%. The xenon bulb current was set at 63 A and the growth rate was 20.05 mm /
Set to time. As a result, the diameter was 3.1 mm and the length was 37.
mm was obtained.

【0024】次に、上記した発光材料の測定について説
明する。
Next, the measurement of the luminescent material will be described.

【0025】(1)第1及び第2実施例で得られたC
a:YAlO3 ,Ca:LaAlO3結晶の発光スペク
トルを、355nmのレーザーで照射したところ、C
a:YAlO3 については緑色、Ca:LaAlO3
ついては赤色のそれぞれ強い発光が得られた。発光スペ
クトルをアクトン社製の分光器・320iとプリンスト
ンインスツルメント社製のCCD・IMAX512を用
いて、図1に示す実験装置で測定した結果を図2に示
す。
(1) C obtained in the first and second embodiments
When the emission spectrum of a: YAlO 3 , Ca: LaAlO 3 crystal was irradiated with a 355 nm laser,
Green light was obtained for a: YAlO 3 and red light was obtained for Ca: LaAlO 3 . FIG. 2 shows the results of measuring the emission spectrum using the spectroscope 320i manufactured by Acton and the CCD IMAX512 manufactured by Princeton Instruments, using the experimental apparatus shown in FIG.

【0026】図1は本発明の発光材料の実験装置(その
1)の構成図、図2は実験装置で測定した結果を示す図
である。
FIG. 1 is a configuration diagram of a light emitting material experimental device (No. 1) of the present invention, and FIG. 2 is a diagram showing a result measured by the experimental device.

【0027】図1において、1はレーザー、2は波長変
換結晶、3はダイクロイックミラー、4はフィルター、
5,6は反射ミラー、7はレンズ、8は試料、9はステ
ージ、10は試料8からの発光、11は分光器、12は
光検出器、13はパーソナルコンピュータ(PC)であ
る。
In FIG. 1, 1 is a laser, 2 is a wavelength conversion crystal, 3 is a dichroic mirror, 4 is a filter,
5, 6 are reflection mirrors, 7 is a lens, 8 is a sample, 9 is a stage, 10 is light emission from the sample 8, 11 is a spectroscope, 12 is a photodetector, and 13 is a personal computer (PC).

【0028】そこで、レーザー1より出射された1.0
64μmの光を複数の波長変換結晶2に入射し、発生し
た355nmの紫外光をダイクロイックミラー3及びフ
ィルター4によって取り出し、ミラー5,6を用いるこ
とにより所定の伝搬方向に調整し、さらに、レンズ7を
用いて試料8に照射する。試料8の位置はステージ9に
よって微調整される。
Therefore, the 1.0 light emitted from the laser 1
Light of 64 μm is incident on the plurality of wavelength conversion crystals 2, and the generated 355 nm ultraviolet light is extracted by the dichroic mirror 3 and the filter 4, adjusted in a predetermined propagation direction by using mirrors 5 and 6, and Irradiate the sample 8 using. The position of the sample 8 is finely adjusted by the stage 9.

【0029】上記の紫外光を照射することによって試料
8より発生した発光10はレンズによって分光器11に
導かれ、装着された光検出器12によって検出される。
この時、光検出器12とレーザー1が同期するようにP
C13によって制御されると同時に発光強度がPC13
に転送される。
The light emission 10 generated from the sample 8 by irradiating the ultraviolet light is guided to the spectroscope 11 by the lens, and is detected by the mounted photodetector 12.
At this time, P is set so that the photodetector 12 and the laser 1 are synchronized.
The emission intensity is controlled by PC13 and at the same time PC13
Is forwarded to

【0030】図2において、横軸は波長であり、縦軸は
PL強度(相対強度)を示している。上段は第2実施例
の試料に基づく結果であり、下段は第1実施例の試料に
基づく結果を表している。
In FIG. 2, the horizontal axis represents wavelength, and the vertical axis represents PL intensity (relative intensity). The upper part shows the result based on the sample of the second embodiment, and the lower part shows the result based on the sample of the first embodiment.

【0031】(2)第1実施例で得られたCa:YAl
3 の緑色発光の発光寿命をプリンストンインスツルメ
ント社製のCCD・IMAX512を用いて測定した結
果は16nsであった。結果を図3に示す。
(2) Ca: YAl obtained in the first embodiment
The result of measuring the emission lifetime of the green light emission of O 3 using a CCD IMAX512 manufactured by Princeton Instruments Inc. was 16 ns. The results are shown in FIG.

【0032】図3は本発明の発光材料の実験装置(その
2)による結果を示す図であり、横軸に時間(ns)、
縦軸に発光強度を示している。
FIG. 3 is a diagram showing the results of a light emitting material of the present invention using an experimental device (No. 2), where the horizontal axis represents time (ns),
The vertical axis shows the light emission intensity.

【0033】(3)Ca:YAlO3 を355nmのパ
ルスレーザー光で励起し、図4に示す実験装置を用い
て、同時に透過光強度を波長可変レーザーを用いて測定
したところ480nmから550nmの範囲で透過光が
増幅されていることが確認された。
(3) Ca: YAlO 3 was excited by a pulse laser beam of 355 nm, and the transmitted light intensity was simultaneously measured using a wavelength variable laser using the experimental apparatus shown in FIG. It was confirmed that the transmitted light was amplified.

【0034】図4は本発明の発光材料の実験装置(その
2)の構成図である。
FIG. 4 is a block diagram of a light emitting material experimental apparatus (part 2) of the present invention.

【0035】この図において、21はレーザー、22,
24,25はミラー、23は波長可変レーザー、26は
試料、27は光検出器、28はオシロスコープである。
In this figure, 21 is a laser, 22,
24 and 25 are mirrors, 23 is a tunable laser, 26 is a sample, 27 is a photodetector, and 28 is an oscilloscope.

【0036】そこで、355nmの波長を有するレーザ
ー21をミラー22を用いて試料26に照射すると同時
に波長可変レーザー23からの出射光を24,25のミ
ラーによって方向を調整し、試料26に入射し、その透
過光を光検出器27及びオシロスコープ28を用いてモ
ニターすることにより、透過の増減を観測するようにし
ている。
Then, the laser 21 having a wavelength of 355 nm is irradiated on the sample 26 by using the mirror 22 and at the same time, the direction of the light emitted from the wavelength tunable laser 23 is adjusted by the mirrors 24 and 25 to be incident on the sample 26. By monitoring the transmitted light using a photodetector 27 and an oscilloscope 28, an increase or decrease in transmission is observed.

【0037】以下に2つの比較例について説明する。Hereinafter, two comparative examples will be described.

【0038】(1)第1の比較例(LaAlO3 の発光
スペクトル) 第2実施例と同じ方法で作製したCaを含まない結晶の
発光スペクトルを266nmのレーザーで照射したとこ
ろ緑色の発光が得られた。発光強度は、第1実施例に比
べて1/20であった。発光スペクトルをアクトン社製
の分光器・320iとプリンストンインスツルメント社
製のCCD・IMAX512を用いて測定した結果を図
5に示す。355nmで励起した場合はさらに弱い発光
しか観測されなかった。
(1) First Comparative Example (Emission Spectrum of LaAlO 3 ) When the emission spectrum of a Ca-free crystal produced by the same method as in the second example was irradiated with a 266 nm laser, green emission was obtained. Was. The emission intensity was 1/20 as compared with the first example. FIG. 5 shows the results of measurement of the emission spectrum using a spectrometer 320i manufactured by Acton and a CCD IMAX512 manufactured by Princeton Instruments. When excited at 355 nm, only weaker emission was observed.

【0039】図5は第1の比較例の測定結果を示す図で
あり、横軸に波長(nm)、縦軸に発光スペクトル強度
(相対単位)を示している。
FIG. 5 is a diagram showing the measurement results of the first comparative example, in which the horizontal axis represents wavelength (nm) and the vertical axis represents emission spectrum intensity (relative unit).

【0040】(2)第2の比較例(LaAlO3 の利得
の測定) LaAlO3 を355nmおよび266nmのパルスレ
ーザー光で励起し、上記(3)に例示したものと同じ実
験装置を用いて、同時に透過光強度を白色光を測定した
ところ、光の増幅は観測されず、吸収の増大が観測され
た。
[0040] (2) (Measurement of gain LaAlO 3) a second comparative example LaAlO 3 was excited by a pulse laser beam of 355nm and 266 nm, using the same experimental apparatus as illustrated above (3), at the same time When the transmitted light intensity was measured for white light, no amplification of light was observed, and an increase in absorption was observed.

【0041】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0042】[0042]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、ABO3 化合物のAまたはBの位置の元素の一
部を別種の元素A′,B′で置換することにより、より
強い発光強度を有する結晶が安定に作製可能であること
を見出した。また、その発光スペクトルや強度、及び発
光寿命がA′,B′の種類や濃度によって制御可能であ
ることを明らかにした。また、これらの手法によって作
製された化合物の一部をパルス紫外光源で強く励起する
ことにより光学的利得を有することが示された。ここで
置換する元素の率は、10%以下、より望ましくは2%
〜0.0001%である。
As described above in detail, according to the present invention, by substituting a part of the element at the position of A or B of the ABO 3 compound with another element A 'or B', It has been found that a crystal having a strong luminescence intensity can be stably produced. Further, it has been clarified that the emission spectrum, intensity, and emission lifetime can be controlled by the types and concentrations of A 'and B'. In addition, it was shown that some of the compounds prepared by these techniques had an optical gain by being strongly excited by a pulsed ultraviolet light source. Here, the ratio of the element to be replaced is 10% or less, more preferably 2%.
~ 0.0001%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発光材料の実験装置(その1)の構成
図である。
FIG. 1 is a configuration diagram of a light emitting material experimental device (part 1) of the present invention.

【図2】実験装置で測定した結果を示す図である。FIG. 2 is a diagram showing a result measured by an experimental device.

【図3】本発明の発光材料の実験装置(その2)による
結果を示す図である。
FIG. 3 is a view showing a result of a light emitting material of the present invention using an experimental device (No. 2).

【図4】本発明の発光材料の実験装置(その2)の構成
図である。
FIG. 4 is a configuration diagram of a light emitting material experimental device (part 2) of the present invention.

【図5】第1の比較例の測定結果を示す図である。FIG. 5 is a diagram showing measurement results of a first comparative example.

【符号の説明】[Explanation of symbols]

1,21 レーザー 2 波長変換結晶 3 ダイクロイックミラー 4 フィルター 5,6 反射ミラー 7 レンズ 8,26 試料 9 ステージ 10 試料からの発光 11 分光器 12,27 光検出器 13 パーソナルコンピュータ 22,24,25 ミラー 23 波長可変レーザー 28 オシロスコープ 1, 21 laser 2 wavelength conversion crystal 3 dichroic mirror 4 filter 5, 6 reflection mirror 7 lens 8, 26 sample 9 stage 10 light emission from sample 11 spectroscope 12, 27 photodetector 13 personal computer 22, 24, 25 mirror 23 Tunable laser 28 oscilloscope

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀内 大嗣 北海道札幌市西区発寒3条2−7−20 (72)発明者 猿倉 信彦 愛知県岡崎市竜美南2−3−1明大寺住宅 6−403 (72)発明者 大竹 秀幸 愛知県岡崎市六名本町13−9−302 Fターム(参考) 4H001 CA04 XA08 XA13 XA39 XA57 XA64 YA20 YA38 YA56 5F072 AC10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Daiji Horiuchi 3-7-20-20, Satsuro, Nishi-ku, Sapporo, Hokkaido (72) Inventor Nobuhiko Sarukura 2-3-1 Ryuminami, Okazaki-shi, Aichi Pref. 403 (72) Inventor Hideyuki Otake 13-9-302, Rokunamachi, Okazaki-shi, Aichi F-term (reference) 4H001 CA04 XA08 XA13 XA39 XA57 XA64 YA20 YA38 YA56 5F072 AC10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 酸素分圧が大気より低い雰囲気下で作製
したABO3 組成のペロブスカイト型化合物を主たる構
成要素とする発光材料であって、AもしくはBの一部、
もしくは両方の一部が、他の元素A′,B′に所定の添
加量だけ置換されることを特徴とする発光材料。ただ
し、A,A′はIa族、IIa族または希土類を含む III
b族元素であり、B,B′はVIbからIIbまでの遷移金
属またはIIIa族元素である。
1. A light-emitting material mainly composed of a perovskite-type compound having an ABO 3 composition prepared in an atmosphere having an oxygen partial pressure lower than that of the atmosphere, and a part of A or B;
Alternatively, a light emitting material characterized in that a part of both are replaced with other elements A 'and B' by a predetermined addition amount. However, A and A 'include group Ia, group IIa or rare earths.
B and B 'are transition metals from VIb to IIb or Group IIIa elements.
【請求項2】 請求項1記載の発光材料において、前記
Aが IIIb族元素であり、前記Bが IIIa族元素である
ことを特徴とする発光材料。
2. The luminescent material according to claim 1, wherein said A is a group IIIb element and said B is a group IIIa element.
【請求項3】 請求項2記載の発光材料において、前記
A′がIIa族であることを特徴とする発光材料。
3. The luminescent material according to claim 2, wherein said A ′ is a group IIa.
【請求項4】 請求項3記載の発光材料において、前記
Bがアルミニウムであることを特徴とする発光材料。
4. The luminescent material according to claim 3, wherein said B is aluminum.
【請求項5】 請求項3記載の発光材料において、前記
Aがイットリウム、またはランタン及びそれらの混合物
であることを特徴とする発光材料。
5. The light emitting material according to claim 3, wherein said A is yttrium, lanthanum, and a mixture thereof.
【請求項6】 請求項1、2、3、4又は5記載の発光
材料であって、前記所定の添加量は10%以下であるこ
とを特徴とする発光材料。
6. The luminescent material according to claim 1, wherein the predetermined amount is 10% or less.
【請求項7】 請求項1、2、3、4、5又は6記載の
発光材料を用いた光源装置。
7. A light source device using the light emitting material according to claim 1, 2, 3, 4, 5, or 6.
【請求項8】 請求項7記載の発光材料を用いた光源装
置であって、駆動源として放電装置、または電流注入装
置、または紫外光励起源を具備する光源装置。
8. A light source device using the light emitting material according to claim 7, comprising a discharge device, a current injection device, or an ultraviolet light excitation source as a driving source.
【請求項9】 請求項1記載の発光材料を用いた光源装
置であって、材料の有する光学利得による増幅効果を利
用した光源装置。
9. A light source device using the light emitting material according to claim 1, wherein the light source device utilizes an amplification effect by an optical gain of the material.
JP2000331796A 2000-10-31 2000-10-31 Luminescent material and light source device using the same Expired - Fee Related JP3768398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331796A JP3768398B2 (en) 2000-10-31 2000-10-31 Luminescent material and light source device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331796A JP3768398B2 (en) 2000-10-31 2000-10-31 Luminescent material and light source device using the same

Publications (2)

Publication Number Publication Date
JP2002129154A true JP2002129154A (en) 2002-05-09
JP3768398B2 JP3768398B2 (en) 2006-04-19

Family

ID=18808091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331796A Expired - Fee Related JP3768398B2 (en) 2000-10-31 2000-10-31 Luminescent material and light source device using the same

Country Status (1)

Country Link
JP (1) JP3768398B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042669A1 (en) * 2003-10-30 2005-05-12 Japan Science And Technology Agency Electroluminescent material and electroluminescent element using the same
JP2006278102A (en) * 2005-03-29 2006-10-12 Japan Science & Technology Agency Electroluminescent element
JP2008147084A (en) * 2006-12-12 2008-06-26 Japan Science & Technology Agency Oxide electroluminescent element
JP2016050249A (en) * 2014-08-29 2016-04-11 株式会社トクヤマ Deep ultraviolet emission material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042669A1 (en) * 2003-10-30 2005-05-12 Japan Science And Technology Agency Electroluminescent material and electroluminescent element using the same
JPWO2005042669A1 (en) * 2003-10-30 2007-11-29 独立行政法人科学技術振興機構 Electroluminescent material and electroluminescent device using the same
EP1702971A4 (en) * 2003-10-30 2008-09-10 Japan Science & Tech Agency Electroluminescent material and electroluminescent element using the same
US7674399B2 (en) * 2003-10-30 2010-03-09 Japan Science And Technology Agency Electroluminescent material and electroluminescent element using the same
JP4751973B2 (en) * 2003-10-30 2011-08-17 独立行政法人科学技術振興機構 Electroluminescent material and electroluminescent device using the same
JP2006278102A (en) * 2005-03-29 2006-10-12 Japan Science & Technology Agency Electroluminescent element
JP2008147084A (en) * 2006-12-12 2008-06-26 Japan Science & Technology Agency Oxide electroluminescent element
JP2016050249A (en) * 2014-08-29 2016-04-11 株式会社トクヤマ Deep ultraviolet emission material

Also Published As

Publication number Publication date
JP3768398B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
Wickersheim et al. Luminescent behavior of the rare earths in yttrium oxide and related hosts
JPH04219316A (en) Single-phase strontium and lanthanide mixture oxide and laser using this monocrystal mixture oxide
JP2004529252A5 (en)
Vink et al. Photon cascade emission in SrAlF5: Pr3+
CN101600778A (en) Fluorescent substance and production method thereof and luminescent device
EP3795654B1 (en) Red and near-infrared light-emitting material, preparation method therefor and light-emitting device
Yu et al. Pr: Ca1-xRxF2+ x (R= Y or Gd) crystals: Modulated blue, orange and red emission spectra with the proportion of R3+ ions
Poort et al. The Luminescence of Mn2+‐Activated ZnGa2 O 4
CN102560658A (en) Novel medium wave infrared laser crystal of chromium-praseodymium-codoped erbium-activated calcium gadolinium aluminate
JP2002129154A (en) Luminescent material and light source apparatus using the same
JP2011500956A (en) Luminescent compounds
Wenger et al. Site-selective yellow to violet and near-infrared to green upconversion in BaLu 2 F 8: N d 3+
Solarz et al. Spectroscopic properties of Sm3+ impurity in YAl3 (BO3) 4 single crystal
JP2526407B2 (en) Single crystal for tunable laser
US5746942A (en) Erbium-doped low phonon hosts as sources of fluorescent emission
Fu Orange‐and Violet‐Emitting Long‐Lasting Phosphors
CN102560657A (en) Chromium and praseodymium co-doped erbium-activated calcium lanthanum aluminate novel medium-wave infrared laser crystal
CN102560661A (en) Chromium and praseodymium co-doped erbium-activated calcium yttrium aluminate novel medium-wave infrared laser crystal
CN114774125A (en) Long-afterglow luminescent material and preparation method thereof
Spoonhower et al. Time-resolved spectroscopy of BaFBr: Eu2+
US10389082B1 (en) Rare-earth-doped ternary sulfides for mid-wave and long-wave IR lasers
Pearson et al. Nonradiative energy exchange from Gd3+ to Tb3+ in borate glass
JP2006036618A (en) Calcium fluoride crystal and its producing method as well as its using method
JPWO2004101711A1 (en) Transition metal doped spinel type MgAl2O4 phosphor, laser device using the same, and method for producing the phosphor
Iida et al. Lasing possibility in rare-earth element doped thiogallate compounds

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees