JP2002126885A - Monitoring method for laser welding quality and monitoring method therefor - Google Patents

Monitoring method for laser welding quality and monitoring method therefor

Info

Publication number
JP2002126885A
JP2002126885A JP2000326617A JP2000326617A JP2002126885A JP 2002126885 A JP2002126885 A JP 2002126885A JP 2000326617 A JP2000326617 A JP 2000326617A JP 2000326617 A JP2000326617 A JP 2000326617A JP 2002126885 A JP2002126885 A JP 2002126885A
Authority
JP
Japan
Prior art keywords
welding
laser
gap
monitoring method
quality monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000326617A
Other languages
Japanese (ja)
Other versions
JP4498583B2 (en
Inventor
Takeshi Maeda
剛 前田
Yasutomo Ichiyama
靖友 一山
Takashi Tanaka
隆 田中
Masahiro Obara
昌弘 小原
Yoshitada Tanaka
祥直 田中
Koji Nomura
浩二 野村
Takefumi Shiga
武文 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2000326617A priority Critical patent/JP4498583B2/en
Publication of JP2002126885A publication Critical patent/JP2002126885A/en
Application granted granted Critical
Publication of JP4498583B2 publication Critical patent/JP4498583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laser welding quality monitoring method and device capable of conducting with excellent accuracy the quality determination of a welded part in lap welding of a surface treatment steel material provided with a covered layer of a substance with a melting point lower than that of a base material. SOLUTION: In the laser welding quality monitoring method in a laser lap welding method in which at least one lapping face becomes the covered layer of the substance with the melting point lower than that of the base material, by using the fact that the low frequency component strength peak-a peak value SL(t) in 30 Hz or below of a key hole emission signal detected by a light sensor makes the relational expression |SL(t)|>Th1 established against a threshold Th1 previously set at the time of occurrence of welding anomaly in over lap gap, the anomaly caused by the lap gap fluctuation amount is detected with excellent accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザ溶接のモニタ
リング方法および装置に関するものである。
The present invention relates to a method and an apparatus for monitoring laser welding.

【0002】[0002]

【従来の技術】自動車の車体組み付け等においては、例
えば亜鉛メッキ鋼板のように少なくとも一方の溶接面が
その母材より低融点物質の被覆層を持つ鋼材同士の重ね
溶接が行われる場合が多い。従来このような重ね溶接は
スポット溶接等が用いられていたが、近年、高速溶接・
高剛性化が可能かつ片側のみから溶接加工が可能なため
部材形状の多彩化が図れるレーザ溶接を採用する例が増
加している。しかしながら、亜鉛メッキ鋼板のレーザ重
ね溶接において板の抑え機構に何らかの異常が発生し、
亜鉛メッキ鋼板同士が過剰に密着し過ぎた場合は母材よ
りも低融点である亜鉛が急激に沸騰し、溶融金属をスパ
ッタとして飛散させて重大な溶接異常を発生させる可能
性があり、また同様に板の抑え機構異常によって重ねギ
ャップが過剰に大き過ぎた場合は蒸発反跳力、表面張力
等により板間に溶融金属が引き寄せられ、溶接部が凹型
状となるアンダーフィルあるいは引き寄せられた溶融金
属が溶接線方向に動的な変化を起こすことで溶接異常等
を発生することがある。
2. Description of the Related Art In assembling an automobile body, lap welding is often performed between steel materials, such as galvanized steel plates, in which at least one welding surface has a coating layer of a substance having a lower melting point than its base material. Conventionally, such lap welding was performed by spot welding or the like.
Since rigidity can be increased and welding processing can be performed from only one side, an example of adopting laser welding which can achieve diversification of member shapes is increasing. However, in laser lap welding of galvanized steel sheet, some abnormality occurred in the plate holding mechanism,
If the galvanized steel sheets adhere too much, zinc, which has a lower melting point than the base metal, may boil rapidly, causing the molten metal to be scattered as spatter and causing serious welding abnormalities. If the overlapping gap is excessively large due to abnormalities in the plate holding mechanism, the molten metal is drawn between the plates due to evaporation recoil, surface tension, etc., and the welded portion becomes concave-shaped underfill or drawn molten metal Causes a dynamic change in the direction of the welding line, which may cause a welding abnormality or the like.

【0003】このように重ねギャップ量が万が一異常値
となった場合、溶接異常が発生する可能性があるため、
何らかの溶接品質検査を行うことが必要である。従来の
生産ラインでは溶接終了後に検査員が目視等により品質
検査を行っていたが、生産能率向上のための検査工程短
縮や検査精度の向上を図り、オンラインで溶接品質検査
を行う事例が増加している。
[0003] If the overlapping gap amount becomes an abnormal value in this way, there is a possibility that a welding abnormality may occur.
It is necessary to do some welding quality inspection. In the conventional production line, inspectors visually inspected the quality after welding was completed.However, shortening the inspection process and improving inspection accuracy to improve production efficiency, the number of cases where online welding quality inspection is increasing is increasing. ing.

【0004】オンラインで溶接品質検査を行う事例とし
ては特開平11−114683等、プラズマ発光強度を
計測し、あらかじめ計測した正常溶接時のプラズマ発光
強度データより許容最大値および許容最小値を設定し、
実際の溶接時におけるプラズマ発光強度が前記許容値の
範囲内にあるかどうかを監視し、この範囲を逸脱した場
合を溶接異常とする方法がある。この方式ではプラズマ
発光強度と溶接正常・異常との間に相関関係があること
を前提としており、相関の無い場合は他のセンサ信号強
度との組み合わせで補うことで信頼性を上げようとして
いる。
[0004] Examples of online welding quality inspection include measuring the plasma emission intensity as disclosed in JP-A-11-114683 and setting an allowable maximum value and an allowable minimum value based on the plasma emission intensity data measured during normal welding in advance.
There is a method of monitoring whether the plasma emission intensity at the time of actual welding is within the range of the allowable value, and setting a case where the plasma emission intensity deviates from this range as a welding abnormality. This method is based on the premise that there is a correlation between the plasma emission intensity and the normal / abnormal welding, and if there is no correlation, attempts to increase reliability by supplementing with a combination with other sensor signal intensities.

【0005】[0005]

【発明が解決しようとする課題】亜鉛メッキ鋼板のよう
に少なくとも一方の溶接面がその母材より低融点物質の
被覆層を持つ鋼材同士の重ね溶接の場合、その重ねギャ
ップ量に起因する異常が発生する溶接現象は重ねギャッ
プが過大・過小によって大きく異なる。このため、キー
ホール部からの発光強度のみで一義的に溶接が正常か異
常かを決定するのは困難である。前述のように重ねギャ
ップが過小の場合は母材よりも低融点である亜鉛が急激
に沸騰し、溶接金属をスパッタとして飛散させるような
現象である。また重ねギャップが過大の場合は蒸発反跳
力、表面張力等により板間に溶融金属が引き寄せられ溶
接部が凹型状に形成されたり、あるいは引き寄せられた
溶融金属が溶接線方向に動的な変化を起こすような現象
であり、通常は発光強度が低下する場合が多いが、動的
な変化が起きたときは発光強度が大きくなり、正常時と
変わらない状況になる可能性もある。このため発光強度
以外の何らかの判別要素を見出すことで溶接異常要因と
なる溶接現象を捉え、溶接品質判定を行うことが必要で
ある。
In the case of lap welding of steel materials having at least one welding surface having a coating layer of a substance having a lower melting point than that of the base material, such as galvanized steel sheet, abnormalities caused by the lap gap amount may be caused. The welding phenomenon that occurs differs greatly depending on whether the overlap gap is too large or too small. For this reason, it is difficult to uniquely determine whether welding is normal or abnormal only based on the light emission intensity from the keyhole portion. As described above, when the overlap gap is too small, zinc, which has a lower melting point than the base metal, boils rapidly, causing the weld metal to be scattered as spatter. If the overlap gap is too large, the molten metal is drawn between the plates due to evaporation recoil, surface tension, etc., and the weld is formed in a concave shape, or the drawn molten metal changes dynamically in the direction of the weld line. Usually, the light emission intensity often decreases, but when a dynamic change occurs, the light emission intensity increases, and there is a possibility that the situation will not change from the normal state. For this reason, it is necessary to determine the welding quality by performing a welding phenomena which causes a welding abnormality by finding some discriminating factor other than the light emission intensity.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、発明者らは重ねギャップが過小の際に母材よりも低
融点である亜鉛が急激に沸騰し、溶接金属をスパッタと
して飛散させるような現象と重ねギャップが過大の際に
蒸発反跳力、表面張力等により板間に溶融金属が引き寄
せられ溶接部が凹型状に形成されたり、あるいは引き寄
せられた溶融金属が溶接線方向に動的な変化を起こすよ
うな現象ではキーホール発光強度の変化周波数に違いが
あることに着目し、これを基に本発明を完成させたもの
である。
Means for Solving the Problems To solve the above-mentioned problems, the present inventors have found that when the overlap gap is too small, zinc, which has a lower melting point than that of the base material, boils rapidly and scatters the weld metal as spatter. When the overlapping gap is too large, the molten metal is drawn between the plates due to evaporation recoil, surface tension, etc., and the weld is formed in a concave shape, or the drawn molten metal moves in the direction of the weld line. The present invention is based on the fact that there is a difference in the change frequency of the keyhole light emission intensity in a phenomenon that causes a significant change, and based on this, the present invention has been completed.

【0007】本発明の要旨は、以下の通りである。The gist of the present invention is as follows.

【0008】(1) 少なくとも一方の重ね合わせ面が
その母材より低融点物質の被覆層になるレ−ザ重ね溶接
方法におけるレーザ溶接品質モニタリング方法におい
て、光センサにより検出されたキーホール発光信号の3
0Hz以下における低周波数成分強度ピーク−ピーク値
SL(t)が重ねギャップ過大時の溶接異常発生時にあ
らかじめ設定したしきい値Th1に対して関係式|SL
(t)|>Th1が成立することを利用し、前記重ねギ
ャップ変動量に起因する異常を精度良く検知することを
特徴とするレーザ溶接品質モニタリング方法。
(1) In a laser welding quality monitoring method in a laser lap welding method in which at least one overlapping surface becomes a coating layer of a substance having a lower melting point than that of a base material, a keyhole emission signal detected by an optical sensor is detected. 3
When the low-frequency component intensity peak-to-peak value SL (t) at 0 Hz or lower is a relational expression | SL with respect to a predetermined threshold value Th1 when a welding abnormality occurs when the overlap gap is excessively large.
(T) A laser welding quality monitoring method characterized by accurately detecting an abnormality caused by the overlap gap variation amount by using the fact that |> Th1 holds.

【0009】(2) 少なくとも一方の重ね合わせ面が
その母材より低融点物質の被覆層になるレ−ザ重ね溶接
方法におけるレーザ溶接品質モニタリング方法におい
て、光センサにより検出されたキーホール発光信号の1
00Hz以上における高周波数成分強度ピーク−ピーク
値SH(t)が重ねギャップ過小時の溶接異常発生時に
あらかじめ設定したしきい値Th2に対して関係式|S
H(t)|>Th2が成立し、また重ねギャップ過大時
の溶接異常発生時にあらかじめ設定したしきい値Th3
に対して関係式|SH(t)|<Th3が成立すること
を利用し、前記重ねギャップ変動量に起因する異常を精
度良く検知することを特徴とするレーザ溶接品質モニタ
リング方法。
(2) In a laser welding quality monitoring method in a laser lap welding method in which at least one overlapping surface becomes a coating layer of a substance having a lower melting point than its base material, a keyhole emission signal detected by an optical sensor is detected. 1
The high-frequency component intensity peak-to-peak value SH (t) at 00 Hz or more is expressed by the relational expression | S with respect to a predetermined threshold value Th2 when a welding abnormality occurs when the overlap gap is too small.
H (t) |> Th2 holds, and a preset threshold value Th3 when a welding abnormality occurs when the overlap gap is excessive.
A laser welding quality monitoring method characterized by accurately detecting an abnormality caused by the lap gap variation amount by using the relational expression | SH (t) | <Th3 holds.

【0010】(3) 少なくとも一方の重ね合わせ面が
その母材より低融点物質の被覆層になるレ−ザ重ね溶接
装置におけるレーザ溶接品質モニタリング装置におい
て、溶接加工点で形成されるキーホールより放射される
輻射光、プラズマ光を検出するセンサヘッド部、該セン
サヘッド部での検出値信号をデジタルデータに変換する
A/Dボード、該デジタルデータを取り込み、周波数フ
ィルタ処理により分離した30Hz以下における低周波
数成分強度ピーク−ピーク値SL(t)が重ねギャップ
過大時の溶接異常発生時にあらかじめ設定したしきい値
Th1に対して関係式|SL(t)|>Th1が成立す
ること、および100Hz以上における高周波数成分強
度ピーク−ピーク値SH(t)が重ねギャップ過小時の
溶接異常発生時にあらかじめ設定したしきい値Th2に
対して関係式|SH(t)|>Th2が成立し、また重
ねギャップ過大時の溶接異常発生時にあらかじめ設定し
たしきい値Th3に対して関係式|SH(t)|<Th
3が成立することを利用し、前記重ねギャップ変動量に
起因する異常を精度良く検知するコンピュータを備えて
いることを特徴とするレーザ溶接品質モニタリング装
置。
(3) In a laser welding quality monitoring apparatus in a laser lap welding apparatus in which at least one of the overlapping surfaces becomes a coating layer of a substance having a lower melting point than that of a base material, radiation is emitted from a keyhole formed at a welding processing point. A / D board for converting a detection value signal from the sensor head into digital data, and a low-frequency signal of 30 Hz or less obtained by capturing the digital data and separating the digital data by frequency filtering. When the frequency component intensity peak-peak value SL (t) has a relational expression | SL (t) |> Th1 with respect to a predetermined threshold value Th1 when welding abnormality occurs when the overlap gap is excessive, and at a frequency of 100 Hz or more. High frequency component intensity peak-to-peak value SH (t) may be The relational expression | SH (t) |> Th2 holds for the threshold value Th2 set in advance, and the relational expression | SH (SH) for the threshold value Th3 set in advance when a welding abnormality occurs when the overlap gap is excessive. t) | <Th
3. A laser welding quality monitoring apparatus, comprising: a computer that accurately detects an abnormality caused by the overlap gap variation amount by using the fact that the condition 3 is satisfied.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0012】図1は亜鉛メッキ鋼板同士の重ね溶接にお
ける重ねギャップを連続的に変化させてレーザ溶接を行
った際のキーホール発光をフォトダイオードで受光して
得た信号をACカップリングして直流分を除外した信号
成分である。図2は前述の図1のレーザ溶接の際に使用
した試料5を示しており、溶接開始点近傍2および溶接
終了点近傍4において亜鉛メッキ鋼板6間の重ねギャッ
プ1が過小となっており、また中央付近3では重ねギャ
ップ1が過大となっている。図1に示す例ではフォトダ
イオードが受光したキーホールからの発光信号強度変化
1が溶接開始点近傍2および溶接終了点近傍4で大き
く、中央付近3で小さくなっている。これは重ねギャッ
プ1が過小である溶接開始点2および溶接終了点近傍4
においては溶融金属が亜鉛蒸気に押し上げられて吹き飛
ばされる直前に発光強度が高まり、吹き飛ばされた後、
溶融金属が消滅するため、信号の強度差は増大すること
が原因である。重ねギャップ1が過大である溶接中央付
近3においては蒸発反跳力、表面張力等により板間に溶
融金属が引き寄せられた結果、母材表面から落ち込んで
しまい、表面から見た溶融金属の発光面積が減少するた
め、信号の強度差も小さくなるのである。重ねギャップ
が適正である範囲においては発光信号の強度差が両者の
中間の値であることから、前記発光信号の強度差を監視
することで溶接品質のモニタリングが可能である。
FIG. 1 shows a DC signal obtained by AC-coupling a signal obtained by receiving a keyhole light emission by a photodiode when laser welding is performed while continuously changing a lap gap in lap welding between galvanized steel sheets. This is the signal component excluding the minute. FIG. 2 shows a sample 5 used at the time of the laser welding of FIG. 1 described above. In the vicinity 2 of the welding start point and the vicinity 4 of the welding end point, the lap gap 1 between the galvanized steel sheets 6 is too small. In the vicinity 3 of the center, the overlap gap 1 is excessively large. In the example shown in FIG. 1, the intensity change 1 of the light emission signal from the keyhole received by the photodiode is large near the welding start point 2 and near the welding end point 4 and small near the center 3. This is due to the welding start point 2 where the overlap gap 1 is too small and the welding end point 4 near the welding end point.
In, the emission intensity increases just before the molten metal is pushed up by the zinc vapor and blown off, and after being blown off,
This is because the difference in signal intensity increases because the molten metal disappears. In the vicinity of the welding center 3 where the overlap gap 1 is excessively large, the molten metal is drawn between the plates due to evaporation recoil, surface tension, etc., so that the molten metal falls from the surface of the base material, and the light emitting area of the molten metal as viewed from the surface Is reduced, so that the difference in signal intensity is also reduced. In the range where the overlap gap is appropriate, the difference in the intensity of the light emission signal is an intermediate value between the two. Therefore, the welding quality can be monitored by monitoring the difference in the intensity of the light emission signal.

【0013】しかしながら、図3に示す例では重ねギャ
ップが過大である溶接中央付近においても信号の強度差
が大きい箇所が存在しており、前述の信号強度差の大き
さで溶接品質をモニタリングする方法は適用できない。
これは一旦ギャップ内に引き寄せられた溶融金属が表面
張力等により引き戻されることで母材表面近くに現れ、
この瞬間発光強度も増大するのである。この現象が起こ
ると溶融金属が引き戻されることで溶着量が不足する箇
所が点在する等の異常が発生することがある。
However, in the example shown in FIG. 3, there is a portion where the signal intensity difference is large even in the vicinity of the welding center where the overlap gap is excessive, and the method of monitoring the welding quality based on the magnitude of the signal intensity difference described above. Is not applicable.
This appears near the base metal surface as the molten metal once drawn into the gap is pulled back by surface tension etc.,
This instantaneous emission intensity also increases. When this phenomenon occurs, the molten metal may be pulled back, causing anomalies such as scattered spots with insufficient welding amount.

【0014】図4、5、6、7は各々図3の信号波形の
一部を拡大して表示したもので、図4は正常ビードすな
わち適正重ねギャップ範囲における信号波形、図5は重
ねギャップ過小のため溶融金属が飛散し、ピットやポロ
シティが多数発生している箇所の信号波形、図6は重ね
ギャップ過大のため溶融金属が落ち込み、アンダーフィ
ルとなっている箇所における信号波形、図7は重ねギャ
ップ過大のため、前述のように溶融金属が表面張力によ
って引き戻されて母材表面に現れた箇所における信号波
形である。図5と図7の波形を比較すると信号変動の周
波数は大きく異なっており、図5の信号変動周波数は主
に100Hzから200Hz、図7の信号は10Hzか
ら30Hzの周波数から成る。
FIGS. 4, 5, 6 and 7 each show a part of the signal waveform of FIG. 3 in an enlarged manner. FIG. 4 shows a signal waveform in a normal bead, that is, a proper overlapping gap range, and FIG. 6 shows a signal waveform at a place where a lot of pits and porosity is generated due to scattering of molten metal, FIG. 6 shows a signal waveform at a place where molten metal falls due to an excessive gap and is underfilled, and FIG. This is a signal waveform at a location where the molten metal is pulled back by the surface tension and appears on the surface of the base material due to an excessive gap as described above. Comparing the waveforms of FIG. 5 and FIG. 7, the frequency of the signal fluctuation is significantly different. The signal fluctuation frequency of FIG. 5 is mainly composed of 100 Hz to 200 Hz, and the signal of FIG. 7 is composed of the frequency of 10 Hz to 30 Hz.

【0015】そこで発明者らは前記キーホールからの発
光信号強度信号に周波数処理を施し、100Hz以上に
おける信号強度成分および30Hz以下における信号強
度成分の2つに分けて判別処理を行うことで、重ねギャ
ップ量に起因する溶接異常を精度良く検知し、溶接品質
をオンラインでモニタリングする方法を発明した。図3
はキーホール発光をフォトダイオードで捉え、ACカッ
プリングにより直流分を除外した信号であり、図8はこ
の信号の周波数が30Hz以下の成分を抽出した信号波
形、図9は100Hz以上の成分を抽出した信号波形で
ある。図8においては溶接中央付近で信号強度ピ−ク−
ピーク値(以降P−P値とする。)が増大しているのに
対し、図9の波形においては溶接開始点および終了点近
傍における信号強度P−P値と中央付近における信号強
度P−P値との比率が図3の波形に比べ、相対的に増大
している。適正重ねギャップ時におけるキーホール発光
信号の30Hz以下成分の信号強度P−P値SL(t)
の平均値SL_AVおよび100Hz以上成分の信号強
度P−P値SH(t)の平均値SH_AVを算出し、こ
れより判定しきい値Th1、Th2、Th3が決定し、
各々Th1=SL_AV+α(αは定数)、Th2=S
H_AV+β(βは定数)、Th3=SH_AV+γ
(γは定数)とする。30Hz以下の成分から成る信号
強度P−P値の時間変動量SL(t)に対して、|SL
(t)|>Th1となる領域を重ねギャップ過大による
溶接異常と判定することが可能である。また同様に図8
においても100Hz以上の成分から成る信号強度P−
P値SH(t)に対して、|SH(t)|>Th2とな
る領域を重ねギャップ過小による溶接異常、|SH
(t)|<Th3となる領域を重ねギャップ過大による
溶接異常、Th3<|SH(t)|<Th2となる領域
を正常と判定するものである。
Therefore, the present inventors perform frequency processing on the light emission signal intensity signal from the keyhole, and perform discrimination processing by dividing the signal intensity component into a signal intensity component at 100 Hz or more and a signal intensity component at 30 Hz or less. We have invented a method to accurately detect welding abnormalities caused by the gap amount and monitor welding quality online. FIG.
Fig. 8 shows a signal obtained by capturing a keyhole light emission with a photodiode and removing a DC component by AC coupling. Fig. 8 shows a signal waveform obtained by extracting a component having a frequency of 30 Hz or less, and Fig. 9 shows a signal obtained by extracting a component having a frequency of 100 Hz or more. FIG. In FIG. 8, the signal intensity peak near the center of the weld is shown.
While the peak value (hereinafter referred to as the PP value) increases, the signal intensity PP value near the welding start point and the end point and the signal intensity PP near the center in the waveform of FIG. The ratio with the value is relatively increased as compared with the waveform of FIG. Signal intensity PP value SL (t) of a keyhole emission signal of 30 Hz or less at a proper overlap gap
And the average value SH_AV of the signal intensity PP value SH (t) of the component of 100 Hz or more, and the determination threshold values Th1, Th2, and Th3 are determined,
Th1 = SL_AV + α (α is a constant), Th2 = S
H_AV + β (β is a constant), Th3 = SH_AV + γ
(Γ is a constant). With respect to the time variation SL (t) of the signal intensity PP value composed of components of 30 Hz or less, | SL
(T) It is possible to determine that the region where |> Th1 is a welding abnormality due to an excessive overlap gap. Similarly, FIG.
, The signal intensity P-
In the area where | SH (t) |> Th2 is overlapped with the P value SH (t), welding abnormality due to an excessively small gap, | SH
The region where (t) | <Th3 is overlapped and a welding abnormality due to an excessive gap is determined, and the region where Th3 <| SH (t) | <Th2 is determined to be normal.

【0016】本発明の実施形態について図10を基に説
明する。本発明によるレーザモニタリング装置は、電動
絞り機構8、濃度可変型液晶フィルタ9、集光レンズ1
0、フォトダイオード11、フォトダイオード用増幅ア
ンプ12、A/Dボード13、D/Aボード14、電動
絞りコントローラ16、濃度可変型液晶フィルタコント
ローラ15およびコンピュータ17から成り、8〜11
から構成されるセンサヘッド部18はレーザトーチ7の
外部あるいは内部に設置される。センサヘッド部18が
レーザトーチ7の外部に設置される場合は、母材に対し
てなるべく高い角度となるようにし、また内部に設置さ
れる場合は光軸が照射レーザと同軸となるようにする。
An embodiment of the present invention will be described with reference to FIG. The laser monitoring device according to the present invention includes an electric diaphragm mechanism 8, a variable density liquid crystal filter 9, and a condenser lens 1.
0, a photodiode 11, a photodiode amplifier 12, an A / D board 13, a D / A board 14, an electric diaphragm controller 16, a variable density liquid crystal filter controller 15, and a computer 17,
Is installed outside or inside the laser torch 7. When the sensor head unit 18 is installed outside the laser torch 7, the angle is set as high as possible with respect to the base material. When the sensor head unit 18 is installed inside, the optical axis is coaxial with the irradiation laser.

【0017】加工点で形成されるキーホールより放射さ
れる輻射光、プラズマ光を電動絞り機構8、濃度可変型
液晶フィルタ9によって光量調整し、集光レンズ10に
よりフォトダイオード11の受光面に結像させる。フォ
トダイオード11の出力信号はフォトダイオード用増幅
アンプ12で増幅され、コンピュ−タ17内A/Dボー
ド13の入力ダイナミックレンジに対して適正となるよ
うな信号電圧となる。D/Aボードの出力は電動絞りコ
ントローラ16、濃度可変型液晶フィルタコントローラ
15に接続され、各々電動絞り機構8、濃度可変型液晶
フィルタ9を制御する。
Radiation light and plasma light radiated from a keyhole formed at a processing point are adjusted in light quantity by an electric diaphragm mechanism 8 and a variable density liquid crystal filter 9, and are coupled to a light receiving surface of a photodiode 11 by a condenser lens 10. Image. The output signal of the photodiode 11 is amplified by the photodiode amplifier 12 and becomes a signal voltage suitable for the input dynamic range of the A / D board 13 in the computer 17. The output of the D / A board is connected to an electric diaphragm controller 16 and a variable density liquid crystal filter controller 15, and controls the electric diaphragm mechanism 8 and the variable density liquid crystal filter 9, respectively.

【0018】前記フォトダイオード用増幅アンプ12出
力信号をA/Dコンバータ13によりデジタルデータに
変換し、コンピュータ17に取り込み、FIRフィルタ
処理によりフォトダイオード出力信号周波数が100H
z以上となる成分および30Hz以下となる成分の強度
差を抽出しつつ、時間方向に移動可能な設定範囲におい
て、ある着目点近傍におけるデータ10〜1000個の
最大値および最小値の差分値を信号強度P−P値とし、
100Hz以上となる成分の信号強度P−P値をSH
(t)および30Hz以下となる成分の信号強度P−P
値をSL(t)とする。前記高周波成分信号強度SH
(t)および低周波成分信号強度SL(t)に対して適
当なしきい値Th1〜Th3を設け、表1に示すような
判定論理に基づいて溶接品質の判定を行うものである。
本発明に従って判定すると、溶接異常が精度良く検知す
ることができた。
The output signal of the photodiode amplification amplifier 12 is converted into digital data by an A / D converter 13 and taken into a computer 17, and the photodiode output signal frequency is 100H by FIR filter processing.
The difference between the maximum value and the minimum value of 10 to 1000 pieces of data in the vicinity of a certain point of interest in a set range movable in the time direction is extracted while extracting the intensity difference between the component equal to or greater than z and the component equal to or less than 30 Hz. Intensity PP value,
The signal strength PP value of the component that is higher than 100 Hz is SH
(T) and the signal intensity PP of the component below 30 Hz
Let the value be SL (t). The high frequency component signal strength SH
Appropriate threshold values Th1 to Th3 are provided for (t) and the low-frequency component signal strength SL (t), and the welding quality is determined based on the determination logic shown in Table 1.
According to the present invention, it was possible to accurately detect a welding abnormality.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、レ
ーザ重ね溶接において重ねギャップ量に起因する溶接異
常を精度良く検知し、オンラインで溶接品質を評価する
ことが可能である。
As described above, according to the present invention, it is possible to accurately detect a welding abnormality caused by a lap gap amount in laser lap welding and evaluate welding quality online.

【図面の簡単な説明】[Brief description of the drawings]

【図1】亜鉛メッキ材同士の重ね溶接において重ねギャ
ップを部分変化させてレーザ溶接を行った際のキーホー
ル発光強度信号の典型的な波形例を示す図である。
FIG. 1 is a diagram showing a typical waveform example of a keyhole emission intensity signal when laser welding is performed by partially changing an overlap gap in overlap welding of galvanized materials.

【図2】重ねギャップを部分変化させた亜鉛メッキ材同
士の重ね溶接用試料を示す図である。
FIG. 2 is a view showing a sample for lap welding between galvanized materials in which the lap gap is partially changed.

【図3】亜鉛メッキ材同士の重ね溶接において重ねギャ
ップを部分変化させてレーザ溶接を行った際、ギャップ
過大時においてもキーホール発光強度信号が増大した波
形例を示す図である。
FIG. 3 is a diagram showing an example of a waveform in which a keyhole emission intensity signal is increased even when the gap is excessive when laser welding is performed by partially changing an overlap gap in overlap welding of galvanized materials.

【図4】重ねギャップが適正領域におけるキーホール発
光強度信号を時間方向に拡大した波形を示す図である。
FIG. 4 is a diagram showing a waveform in which a keyhole emission intensity signal in a region where an overlap gap is appropriate is expanded in a time direction.

【図5】重ねギャップが過小な領域において異常が発生
した際のキーホール発光強度信号を時間方向に拡大した
波形を示す図である。
FIG. 5 is a diagram illustrating a waveform obtained by enlarging a keyhole emission intensity signal in a time direction when an abnormality occurs in a region where an overlap gap is too small.

【図6】重ねギャップが過大な領域においてアンダーフ
ィルが発生した際のキーホール発光強度信号を時間方向
に拡大した波形を示す図である。
FIG. 6 is a diagram illustrating a waveform obtained by enlarging a keyhole emission intensity signal in a time direction when an underfill occurs in a region where an overlap gap is excessive.

【図7】重ねギャップが過大な領域において溶接異常が
発生した際のキーホール発光強度信号を時間方向に拡大
した波形を示す図である。
FIG. 7 is a diagram illustrating a waveform obtained by enlarging a keyhole emission intensity signal in a time direction when a welding abnormality occurs in a region where an overlap gap is excessive.

【図8】図3の信号周波数が100Hz以上の成分を抽
出した信号波形を示す図である。
8 is a diagram showing a signal waveform obtained by extracting a component having a signal frequency of 100 Hz or more in FIG.

【図9】図3の信号周波数が30Hz以下の成分を抽出
した信号波形を示す図である。
9 is a diagram showing a signal waveform obtained by extracting a component having a signal frequency of 30 Hz or less in FIG. 3;

【図10】本発明の実施例によるレーザ溶接モニタリン
グ装置の全体構成図を示す図である。
FIG. 10 is a diagram showing an overall configuration diagram of a laser welding monitoring device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 部分変化している重ねギャップ 2 溶接開始点近傍 3 中央付近 4 溶接終了点近傍 5 重ねギャップを部分変化させた亜鉛メッキ鋼板の試
料 6 亜鉛メッキ鋼板 7 レーザトーチ 8 電動絞り機構 9 濃度変換型液晶フィルタ 10 集光レンズ 11 フォトダイオード 12 フォトダイオード用増幅アンプ 13 A/Dボード 14 D/Aボード 15 濃度変換型液晶フィルタコントローラ 16 電動絞りコントローラ 17 コンピュータ 18 センサヘッド部
DESCRIPTION OF REFERENCE NUMERALS 1 Partially changed lap gap 2 Near welding start point 3 Near center 4 Near welding end point 5 Sample of galvanized steel sheet with partially changed lap gap 6 Galvanized steel sheet 7 Laser torch 8 Electric drawing mechanism 9 Concentration conversion type liquid crystal filter DESCRIPTION OF SYMBOLS 10 Condensing lens 11 Photodiode 12 Amplifying amplifier for photodiode 13 A / D board 14 D / A board 15 Density conversion type liquid crystal filter controller 16 Electric diaphragm controller 17 Computer 18 Sensor head part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一山 靖友 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 田中 隆 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 小原 昌弘 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 田中 祥直 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 野村 浩二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 志賀 武文 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4E068 BF00 CA17 CA18 CB02 CC01 DA14 DB14  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasutomo Ichiyama 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division (72) Inventor Takashi Tanaka 20-1 Shintomi, Futtsu City Nippon Steel Corporation (72) Inventor Masahiro Ohara 1 in Nishinoshi, Oita, Nippon Steel Corporation Oita Works (72) Inventor Yoshinao Tanaka 2-6 Otemachi, Chiyoda-ku, Tokyo 3. Inside Nippon Steel Corporation (72) Inventor Koji Nomura 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Takefumi Shiga 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation F term (reference) 4E068 BF00 CA17 CA18 CB02 CC01 DA14 DB14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の重ね合わせ面がその母
材より低融点物質の被覆層になるレ−ザ重ね溶接方法に
おけるレーザ溶接品質モニタリング方法において、光セ
ンサにより検出されたキーホール発光信号の30Hz以
下における低周波数成分強度ピーク−ピーク値SL
(t)が重ねギャップ過大時の溶接異常発生時にあらか
じめ設定したしきい値Th1に対して関係式|SL
(t)|>Th1が成立することを利用し、前記重ねギ
ャップ変動量に起因する異常を精度良く検知することを
特徴とするレーザ溶接品質モニタリング方法。
1. A laser welding quality monitoring method in a laser lap welding method in which at least one overlapping surface becomes a coating layer of a substance having a lower melting point than that of a base material, wherein a keyhole emission signal detected by an optical sensor has a frequency of 30 Hz. Low frequency component intensity peak-peak value SL in:
(T) is a relational expression | SL with respect to a predetermined threshold value Th1 when a welding abnormality occurs when the overlap gap is excessive.
(T) A laser welding quality monitoring method characterized by accurately detecting an abnormality caused by the overlap gap variation amount by using the fact that |> Th1 holds.
【請求項2】 少なくとも一方の重ね合わせ面がその母
材より低融点物質の被覆層になるレ−ザ重ね溶接方法に
おけるレーザ溶接品質モニタリング方法において、光セ
ンサにより検出されたキーホール発光信号の100Hz
以上における高周波数成分強度ピーク−ピーク値SH
(t)が重ねギャップ過小時の溶接異常発生時にあらか
じめ設定したしきい値Th2に対して関係式|SH
(t)|>Th2が成立し、また重ねギャップ過大時の
溶接異常発生時にあらかじめ設定したしきい値Th3に
対して関係式|SH(t)|<Th3が成立することを
利用し、前記重ねギャップ変動量に起因する異常を精度
良く検知することを特徴とするレーザ溶接品質モニタリ
ング方法。
2. A laser welding quality monitoring method in a laser lap welding method in which at least one superposed surface becomes a coating layer of a substance having a lower melting point than that of a base material, wherein a keyhole emission signal detected by an optical sensor is 100 Hz.
High-frequency component intensity peak-peak value SH described above
(T) is a relational expression | SH with respect to a predetermined threshold value Th2 when welding abnormality occurs when the overlap gap is too small.
(T) |> Th2 is satisfied, and the relational expression | SH (t) | <Th3 is satisfied with respect to a threshold value Th3 set in advance when a welding abnormality occurs when the overlap gap is excessive. A laser welding quality monitoring method characterized by accurately detecting an abnormality caused by a gap fluctuation amount.
【請求項3】 少なくとも一方の重ね合わせ面がその母
材より低融点物質の被覆層になるレ−ザ重ね溶接装置に
おけるレーザ溶接品質モニタリング装置において、溶接
加工点で形成されるキーホールより放射される輻射光、
プラズマ光を検出するセンサヘッド部、該センサヘッド
部での検出値信号をデジタルデータに変換するA/Dボ
ード、該デジタルデータを取り込み、周波数フィルタ処
理により分離した30Hz以下における低周波数成分強
度ピーク−ピーク値SL(t)が重ねギャップ過大時の
溶接異常発生時にあらかじめ設定したしきい値Th1に
対して関係式|SL(t)|>Th1が成立すること、
および100Hz以上における高周波数成分強度ピーク
−ピーク値SH(t)が重ねギャップ過小時の溶接異常
発生時にあらかじめ設定したしきい値Th2に対して関
係式|SH(t)|>Th2が成立し、また重ねギャッ
プ過大時の溶接異常発生時にあらかじめ設定したしきい
値Th3に対して関係式|SH(t)|<Th3が成立
することを利用し、前記重ねギャップ変動量に起因する
異常を精度良く検知するコンピュータを備えていること
を特徴とするレーザ溶接品質モニタリング装置。
3. A laser welding quality monitoring apparatus in a laser lap welding apparatus in which at least one superposed surface becomes a coating layer of a substance having a lower melting point than that of a base material, radiation is emitted from a keyhole formed at a welding processing point. Radiation
A sensor head section for detecting plasma light, an A / D board for converting a detection value signal from the sensor head section into digital data, a low-frequency component intensity peak at 30 Hz or lower, which is obtained by capturing the digital data and separating the digital data by a frequency filter process. The relational expression | SL (t) |> Th1 is established with respect to a threshold value Th1 set in advance when a welding abnormality occurs when the peak value SL (t) is too large in the overlap gap.
And the high-frequency component intensity peak-peak value SH (t) at or above 100 Hz satisfies the relational expression | SH (t) |> Th2 with respect to a threshold value Th2 set in advance when a welding abnormality occurs when the overlap gap is too small. Further, utilizing the fact that the relational expression | SH (t) | <Th3 is satisfied with respect to a threshold value Th3 set in advance when a welding abnormality occurs when the overlap gap is excessive, the abnormality caused by the overlap gap fluctuation amount is accurately detected. A laser welding quality monitoring device comprising a computer for detecting.
JP2000326617A 2000-10-26 2000-10-26 Laser welding quality monitoring method and apparatus Expired - Fee Related JP4498583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326617A JP4498583B2 (en) 2000-10-26 2000-10-26 Laser welding quality monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326617A JP4498583B2 (en) 2000-10-26 2000-10-26 Laser welding quality monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JP2002126885A true JP2002126885A (en) 2002-05-08
JP4498583B2 JP4498583B2 (en) 2010-07-07

Family

ID=18803771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326617A Expired - Fee Related JP4498583B2 (en) 2000-10-26 2000-10-26 Laser welding quality monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP4498583B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340585A (en) * 2002-05-27 2003-12-02 Matsushita Electric Works Ltd Method for monitoring laser welding
JP2008229672A (en) * 2007-03-20 2008-10-02 Tokyu Car Corp Laser welding method
JP2009148795A (en) * 2007-12-20 2009-07-09 Nissan Motor Co Ltd Welding state detecting apparatus and its method
CN102463419A (en) * 2010-11-18 2012-05-23 现代自动车株式会社 Method and apparatus for the quality inspection of laser welding
JP2012213806A (en) * 2012-06-14 2012-11-08 Nissan Motor Co Ltd Device and method for detecting welding state
JP2020140824A (en) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 Cylindrical battery manufacturing apparatus
CN113245566A (en) * 2021-05-13 2021-08-13 北京航空航天大学 Paraxial monitoring method, paraxial monitoring device and computer equipment in selective laser melting processing process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106051A (en) * 1996-06-18 1998-01-13 Nissan Motor Co Ltd Quality inspecting method in laser beam welding and its equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106051A (en) * 1996-06-18 1998-01-13 Nissan Motor Co Ltd Quality inspecting method in laser beam welding and its equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340585A (en) * 2002-05-27 2003-12-02 Matsushita Electric Works Ltd Method for monitoring laser welding
JP2008229672A (en) * 2007-03-20 2008-10-02 Tokyu Car Corp Laser welding method
JP4719173B2 (en) * 2007-03-20 2011-07-06 東急車輛製造株式会社 Laser welding method
JP2009148795A (en) * 2007-12-20 2009-07-09 Nissan Motor Co Ltd Welding state detecting apparatus and its method
CN102463419A (en) * 2010-11-18 2012-05-23 现代自动车株式会社 Method and apparatus for the quality inspection of laser welding
KR101240980B1 (en) * 2010-11-18 2013-03-11 기아자동차주식회사 Method for checking quality of laser welding and equipment thereof
US8653407B2 (en) 2010-11-18 2014-02-18 Hyundai Motor Company Method and apparatus for the quality inspection of laser welding
CN102463419B (en) * 2010-11-18 2016-06-01 现代自动车株式会社 The detection method for quality of laser weld and equipment
JP2012213806A (en) * 2012-06-14 2012-11-08 Nissan Motor Co Ltd Device and method for detecting welding state
JP2020140824A (en) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 Cylindrical battery manufacturing apparatus
JP7262074B2 (en) 2019-02-27 2023-04-21 パナソニックIpマネジメント株式会社 Cylindrical battery manufacturing equipment
CN113245566A (en) * 2021-05-13 2021-08-13 北京航空航天大学 Paraxial monitoring method, paraxial monitoring device and computer equipment in selective laser melting processing process

Also Published As

Publication number Publication date
JP4498583B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
Sun et al. Sensor systems for real-time monitoring of laser weld quality
JP5849985B2 (en) Welded part inspection device and inspection method
JP3603843B2 (en) Laser welding quality monitoring method and apparatus
JP5947740B2 (en) Welded part inspection device and inspection method
JP2009520984A (en) Steel plate welded part online detection device and method
JPH0571932A (en) Quality-inspection device of welding bead
JP3209097B2 (en) Laser welding quality inspection method and apparatus
JP2002126885A (en) Monitoring method for laser welding quality and monitoring method therefor
JP7390680B2 (en) Laser welding quality inspection method and laser welding quality inspection device
JPH08281456A (en) Method for detecting penetration of laser beam welding and device thereof
De Keuster et al. Monitoring of high-power CO 2 laser cutting by means of an acoustic microphone and photodiodes
JP3407655B2 (en) Laser welding monitoring method
JP4624089B2 (en) Laser welded part quality judging apparatus and method, and medium having recorded laser welded part quality judging program
JP4026404B2 (en) Laser welding quality monitoring method and apparatus
JP2005095942A (en) Laser welding quality inspection method and device
JP4873854B2 (en) Laser welded part quality judging apparatus and method, and medium having recorded laser welded part quality judging program
JPH08267241A (en) Judging method of back bead forming condition at welding
JP2967671B2 (en) Monitoring device for welding status
JP3603829B2 (en) Quality inspection method for laser welding
JP2004066266A (en) Laser welding quality inspection method and laser welding quality inspection device
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP2003103386A (en) Monitoring device for yag laser welding
JP2003121372A (en) Copper plate scratch-inspecting apparatus
JP2720649B2 (en) Monitoring device for welding status
JP4136551B2 (en) Laser welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees