JP2002126536A - Oxidation resistant and corrosion resistant metal substrate, catalyst for nitrogen oxide removal, and waste gas cleaning method - Google Patents

Oxidation resistant and corrosion resistant metal substrate, catalyst for nitrogen oxide removal, and waste gas cleaning method

Info

Publication number
JP2002126536A
JP2002126536A JP2000322547A JP2000322547A JP2002126536A JP 2002126536 A JP2002126536 A JP 2002126536A JP 2000322547 A JP2000322547 A JP 2000322547A JP 2000322547 A JP2000322547 A JP 2000322547A JP 2002126536 A JP2002126536 A JP 2002126536A
Authority
JP
Japan
Prior art keywords
catalyst
metal substrate
waste gas
denitration
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000322547A
Other languages
Japanese (ja)
Other versions
JP4190716B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Koichi Yokoyama
公一 横山
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000322547A priority Critical patent/JP4190716B2/en
Publication of JP2002126536A publication Critical patent/JP2002126536A/en
Application granted granted Critical
Publication of JP4190716B2 publication Critical patent/JP4190716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxidation resistant and corrosion resistant metal substrate capable of preventing diffusion of iron ion from itself into a catalyst component in a high temperature range to prevent the decrease of nitrogen oxide removal efficiency and suppressing the increase of oxidation ratio of SO2 contained in a waste gas to prevent corrosion of appliances on the downstream side, to produce a catalyst using the substrate for nitrogen oxide removal by ammonia contact reduction, and to provide a waste gas cleaning method. SOLUTION: The oxidation resistant and corrosion resistant metal substrate (1) is a substrate produced by forming a dense titania layer (5) on the surface of a metal substrate by applying a titanium peroxide solution or its sol. The catalyst for nitrogen oxide removal is a catalyst produced by forming a catalyst layer (2) on the surface of the oxidation resistant and corrosion resistant metal substrate (1). The waste gas cleaning method (3) is a method for removing nitrogen oxides from a waste gas by bringing the waste gas at 350-600 deg.C into contact with the catalyst for nitrogen oxide removal in ammonia atmosphere. The waste gas cleaning method is also a method (4) for removing nitrogen oxides from a sulfur oxide- containing waste gas by bringing the waste gas into contact with the catalyst for nitrogen oxide removal in ammonia atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐酸化性耐腐食性金
属基板、脱硝用触媒および排ガスの浄化方法に係り、さ
らに詳しくはガスタービンから排出される500〜65
0℃という高温の排ガスの処理またはSO2 等を含む排
ガスの処理に使用した場合でも、酸化皮膜の形成または
酸腐食を防止することができる耐酸化性耐腐食性金属基
板、この金属基板を用いた高温域でも高い脱硝性能を有
する脱硝用触媒およびこの脱硝用触媒を用いた排ガスの
浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation-resistant and corrosion-resistant metal substrate, a catalyst for denitration, and a method of purifying exhaust gas, and more particularly, to 500 to 65 exhausted from a gas turbine.
Oxidation-resistant and corrosion-resistant metal substrate capable of preventing formation of an oxide film or acid corrosion even when used for processing exhaust gas at a high temperature of 0 ° C. or exhaust gas containing SO 2 or the like. The present invention relates to a denitration catalyst having high denitration performance even in a high temperature range and a method of purifying exhaust gas using the denitration catalyst.

【0002】[0002]

【従来の技術】近年、発電の分散化が進み、従来の大型
火力発電にかわって各種排ガスを駆動源とするガスター
ビンが多数建設されている。これらのガスタービンは市
街地または都市近郊に建設される場合が多いため、排ガ
スに含まれる窒素酸化物(NOx)も低レベルに抑える
必要がある。この場合の排ガス中のNOxの除去には、
ガスタービンの後流に廃熱回収ボイラ(HRSG)が設
置される場合には、排ガス温度が350℃近辺になり、
従来のボイラなどの排煙脱硝に広く用いられているNH
3 接触還元脱硝法の適用が可能であるが、HRSGが設
置されていない場合には排ガス温度が500〜650℃
という高温となり、従来のNH3 接触還元脱硝法に使用
されている脱硝触媒を使用できないという問題があっ
た。
2. Description of the Related Art In recent years, power generation has been decentralized, and many gas turbines using various exhaust gases as driving sources have been constructed in place of conventional large-scale thermal power generation. Since these gas turbines are often constructed in an urban area or a suburban area, it is necessary to suppress nitrogen oxides (NOx) contained in exhaust gas to a low level. To remove NOx in the exhaust gas in this case,
If a waste heat recovery boiler (HRSG) is installed downstream of the gas turbine, the exhaust gas temperature will be around 350 ° C,
NH widely used for flue gas denitration of conventional boilers
3 Catalytic reduction denitration method can be applied, but when HRSG is not installed, the exhaust gas temperature is 500 ~ 650 ℃
, And there is a problem that the denitration catalyst used in the conventional NH 3 catalytic reduction denitration method cannot be used.

【0003】特に、触媒用基材として不銹鋼(SUS)
などの金属基板を用いた場合には、金属基板から鉄イオ
ン(Feイオン)が脱硝触媒成分に移動して還元剤のN
3を分解し、NOxを発生させるため、高い脱硝率が
得られなかった。例えば、従来の金属基板表面に直接脱
硝触媒成分を担持(または塗布)した触媒体を350℃
以上の高温で使用すると、図2に示すように、金属基板
1と触媒成分層2の間に酸化皮膜3が形成され、該酸化
皮膜3を経てFeイオンが徐々に触媒成分層2中に拡散
する。触媒成分中のFeイオンの含有量が高くなると、
還元剤として添加されたNH3 が分解され、下記式
(1)、(2)に示すように、N2 またはNOを発生さ
せるため、高い脱硝性能を得ることができなかった。 2NH3 +3/2O2 →N2 +3H2 O NH3 +5/2O2 →NO+3/2H2 O (2)
[0003] Particularly, stainless steel (SUS) is used as a base material for a catalyst.
When a metal substrate is used, iron ions (Fe ions) move from the metal substrate to the denitration catalyst component and the N
Since H 3 is decomposed to generate NOx, a high denitration rate cannot be obtained. For example, a catalyst body in which a denitration catalyst component is directly supported (or coated) on the surface of a conventional metal substrate is heated to 350 ° C.
When used at the above high temperature, as shown in FIG. 2, an oxide film 3 is formed between the metal substrate 1 and the catalyst component layer 2, and Fe ions gradually diffuse into the catalyst component layer 2 via the oxide film 3. I do. When the content of Fe ions in the catalyst component increases,
Since NH 3 added as a reducing agent is decomposed to generate N 2 or NO as shown in the following formulas (1) and (2), high denitration performance could not be obtained. 2NH 3 + 3 / 2O 2 → N 2 + 3H 2 O NH 3 + 5 / 2O 2 → NO + 3 / 2H 2 O (2)

【0004】このため、金属基板にアルミニウム溶射を
施したり(特開昭52−14658号公報)、金属基板
にシリカと不活性チタニアの中間皮膜層を形成してFe
イオンの触媒成分への移動を阻止することにより(特開
平6−246176号公報)、高温域での脱硝率の低下
を防止する方法が提案されている。しかし、上記アルミ
溶射や無機粒子からなる中間皮膜層の形成により、金属
基板からのFeイオン移動に伴う脱硝率の低下を軽減す
ることはできるが、中間皮膜層が緻密ではないため、長
期間高温に晒されると図3に示すように、金属基板1と
触媒成分層2の間に形成された中間層4の亀裂に酸化皮
膜3が形成され、該酸化皮膜3や中間層4の粒子表面か
らFeイオンが徐々に触媒成分中に移動、拡散し、脱硝
率の低下を完全に阻止することはできなかった。また、
金属基板1と中間層4との間の結合が必ずしも充分では
ないため、中間層4が金属基板1から剥離し易いという
問題があった。
[0004] For this reason, aluminum spraying is performed on a metal substrate (Japanese Patent Application Laid-Open No. Sho 52-14658), or an intermediate coating layer of silica and inert titania is formed on the metal substrate to form Fe.
There has been proposed a method for preventing a decrease in the denitration rate in a high temperature range by preventing the transfer of ions to the catalyst component (Japanese Patent Laid-Open No. 6-246176). However, although the above-mentioned aluminum spraying and the formation of the intermediate coating layer made of inorganic particles can reduce the decrease in the denitration rate due to the transfer of Fe ions from the metal substrate, the intermediate coating layer is not dense, As shown in FIG. 3, the oxide film 3 is formed in the cracks of the intermediate layer 4 formed between the metal substrate 1 and the catalyst component layer 2 when exposed to Fe ions gradually migrated and diffused into the catalyst component, and it was not possible to completely prevent a decrease in the denitration rate. Also,
Since the connection between the metal substrate 1 and the intermediate layer 4 is not always sufficient, there is a problem that the intermediate layer 4 is easily peeled off from the metal substrate 1.

【0005】さらに排ガス中に硫黄酸化物(SOx)が
含まれる酸性雰囲気下で使用した場合や触媒製造時の熱
処理過程において、400℃以下の温度域では金属基板
の酸腐食が発生し、上記と同様にFeイオンが触媒成分
中に移動しやすくなり、このFeイオンの存在により排
ガス中のSO2 がSO3 に酸化され、該SO3 により後
流機器が腐食されやすくなるという問題があった。
[0005] Further, when used in an acidic atmosphere containing sulfur oxides (SOx) in the exhaust gas or during the heat treatment process during the production of the catalyst, acid corrosion of the metal substrate occurs in a temperature range of 400 ° C or less, and Similarly, Fe ions easily move into the catalyst component, and SO 2 in the exhaust gas is oxidized to SO 3 due to the presence of the Fe ions, and the SO 3 tends to corrode downstream equipment.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の問題点を解決し、脱硝触媒に用いる金属基板
の酸化皮膜の形成および酸腐食を防止することにより、
高温域での基板からの鉄イオンの触媒成分への拡散を防
止して脱硝率の低下を防止するとともに、排ガスに含ま
れるSO2 の酸化率の上昇を抑制して後流機器の腐食を
防止することができる耐酸化性耐腐食性金属基板、これ
を用いたアンモニア接触還元脱硝用触媒および排ガスの
浄化方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to prevent the formation of an oxide film on a metal substrate used for a denitration catalyst and the prevention of acid corrosion.
Thereby preventing a decrease in the denitrification rate by preventing the diffusion of the catalyst component of iron ions from the substrate in a high temperature range, preventing the corrosion of downstream equipment by suppressing the increase in the oxidation rate of SO 2 contained in the exhaust gas An object of the present invention is to provide an oxidation-resistant and corrosion-resistant metal substrate that can be used, a catalyst for ammonia catalytic reduction denitration using the same, and a method for purifying exhaust gas.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本願で特許請求される発明は以下の通りである。 (1)金属基板表面に過酸化チタン溶液またはそのゾル
状物をコーティングして緻密なチタニア層を形成したこ
とを特徴とする耐酸化性耐腐食性金属基板。 (2)前記過酸化チタン溶液またはそのゾル状物が不活
性無機微粒子を含むことを特徴とする(1)に記載の耐
酸化性耐腐食性金属基板。 (3)(1)または(2)に記載の耐酸化性耐腐食性金
属基板の表面に触媒層を形成したことを特徴とする脱硝
用触媒。 (4)前記触媒層が、触媒成分としてチタンとタングス
テンの酸化物を含むことを特徴とする(3)に記載の脱
硝用触媒。 (5)前記触媒層が、触媒成分としてチタンとモリブデ
ンおよびナバジウムの酸化物を含むことを特徴とする
(3)に記載の脱硝用触媒。
The invention claimed in the present application to solve the above-mentioned problems is as follows. (1) An oxidation-resistant and corrosion-resistant metal substrate comprising a metal substrate surface coated with a titanium peroxide solution or a sol thereof to form a dense titania layer. (2) The oxidation-resistant and corrosion-resistant metal substrate according to (1), wherein the titanium peroxide solution or the sol thereof contains inert inorganic fine particles. (3) A denitration catalyst comprising a catalyst layer formed on the surface of the oxidation-resistant and corrosion-resistant metal substrate according to (1) or (2). (4) The denitration catalyst according to (3), wherein the catalyst layer contains an oxide of titanium and tungsten as a catalyst component. (5) The denitration catalyst according to (3), wherein the catalyst layer contains an oxide of titanium, molybdenum, and navadium as a catalyst component.

【0008】(6)(3)〜(5)のいずれかに記載の
脱硝用触媒に、350〜600℃の排ガスをアンモニア
雰囲気下に接触させて該排ガス中の窒素酸化物を除去す
ることを特徴とする排ガスの浄化方法。 (7)(3)〜(5)のいずれかに記載の脱硝用触媒
に、硫黄酸化物を含む排ガスをアンモニア雰囲気下に接
触させて該排ガス中の窒素酸化物を除去することを特徴
とする排ガスの浄化方法。
(6) An exhaust gas at 350 to 600 ° C. is brought into contact with the denitration catalyst according to any one of (3) to (5) in an ammonia atmosphere to remove nitrogen oxides from the exhaust gas. Characteristic method of purifying exhaust gas. (7) An exhaust gas containing sulfur oxides is brought into contact with the denitration catalyst according to any one of (3) to (5) in an ammonia atmosphere to remove nitrogen oxides in the exhaust gas. Exhaust gas purification method.

【0009】[0009]

【発明の実施の形態】本発明における耐酸化性耐腐食性
金属基板は、金属基板表面に緻密なチタニア層を有す
る。この緻密なチタニア層は、金属基板表面に過酸化チ
タン(式量:H 4 TiO5 )溶液、または過酸化チタン
溶液の一部もしくは全部が凝集してゾル状になったもの
(以下、これらを単に過酸化チタンということがある)
をコーティングした後、乾燥し、必要に応じて250〜
500℃の温度で焼成することにより形成することがで
きる。
DETAILED DESCRIPTION OF THE INVENTION Oxidation resistance and corrosion resistance in the present invention
Metal substrate has a dense titania layer on the metal substrate surface
You. This dense titania layer provides a layer of titanium dioxide on the surface of the metal substrate.
Tan (formula weight: H FourTiOFive) Solution or titanium peroxide
Some or all of the solution aggregated into a sol
(Hereinafter, these may be simply referred to as titanium peroxide.)
After coating, dry, if necessary
It can be formed by firing at a temperature of 500 ° C.
Wear.

【0010】本発明に用いられる過酸化チタンは、硫酸
チタン、チタンアルコキシドなどを加水分解して得られ
るメタチタン酸やオルトチタン酸に過酸化水素を作用さ
せることにより黄色の溶液として得られる。この過酸化
チタンは過チタン酸またはペルオキソチタン酸とも呼ば
れ、TiO3 ・2H2 OまたはH4 TiO5 で示される
化合物である。過酸化チタン溶液はそのまま金属表面の
被覆に用いることができるが、過酸化チタン溶液を長時
間放置したり、加熱すると、一部が縮合したり、加水分
解されて糊状を呈するゾル状物となる。このゾル状物は
金属とのなじみがよく、金属表面への被覆には特に有利
である。
The titanium peroxide used in the present invention is obtained as a yellow solution by reacting hydrogen peroxide on metatitanic acid or orthotitanic acid obtained by hydrolyzing titanium sulfate, titanium alkoxide or the like. This titanium peroxide is also called pertitanic acid or peroxotitanic acid, and is a compound represented by TiO 3 .2H 2 O or H 4 TiO 5 . The titanium peroxide solution can be used as it is for coating the metal surface, but when the titanium peroxide solution is left for a long time or heated, a part of the solution is condensed or hydrolyzed to form a sol-like material that exhibits a paste-like state. Become. The sol is well compatible with metals and is particularly advantageous for coating metal surfaces.

【0011】過酸化チタンの金属基板表面への担持量
は、本発明の効果の点から、酸化チタンとして0〜50
g/m2 が好ましく、より好ましくは0.1〜20g/
2 である。なお、酸化チタンとして0g/m2 とは0
に近い有効量を意味する。また過酸化チタン溶液には、
被覆層を厚くしてFeイオンの移動防止を確実にするた
め、不活性無機微粒子を混合させることが好ましい。不
活性無機微粒子としては、例えば、塩素法など高温で処
理された低比表面積で、かつ表面が不活性な酸化チタン
粉末が挙げられる。過酸化チタン溶液のコーティング法
には特に制限はなく、例えば、過酸化チタンまたはその
ゾルを含む液体に金属基板を浸漬する方法、スプレする
方法など公知のコーティング手段を用いることができ
る。本発明に用いられる金属基板には特に制限はなく、
不銹鋼(SUS)をメタルラス加工して得られる網状物
や金網のほか、SUS、軟鋼、アルミニウムなどの平板
であってもよい。
From the viewpoint of the effect of the present invention, the amount of titanium peroxide supported on the surface of the metal substrate is 0 to 50 as titanium oxide.
g / m 2 , more preferably 0.1 to 20 g / m 2.
m 2 . In addition, 0 g / m 2 as titanium oxide is 0 g / m 2.
Means an effective amount close to Also, in the titanium peroxide solution,
In order to increase the thickness of the coating layer and to prevent the movement of Fe ions, it is preferable to mix inert inorganic fine particles. As the inert inorganic fine particles, for example, a titanium oxide powder having a low specific surface area and an inert surface, which has been treated at a high temperature such as a chlorine method. The method of coating the titanium peroxide solution is not particularly limited, and for example, a known coating method such as a method of dipping a metal substrate in a liquid containing titanium peroxide or a sol thereof, and a method of spraying can be used. There is no particular limitation on the metal substrate used in the present invention,
In addition to nets and wire nets obtained by metal lath processing of stainless steel (SUS), flat plates such as SUS, mild steel, and aluminum may be used.

【0012】本発明における脱硝用触媒は、上記緻密な
チタニア層を有する耐酸化性耐腐食性金属基板の表面に
触媒層を形成することにより得られる。触媒層に用いる
触媒成分としては、通常の脱硝触媒に用いられるチタン
(Ti)、モリブデン(Mo)、タングステン(W)、
バナジウム(V)などの酸化物からなる公知の触媒成分
が用いられる。特にガスタービン出口の高温域にある排
ガスの脱硝には、高温で劣化の少ないTiとWの酸化物
を含む触媒や、TiとMoおよび/またはVの酸化物を
含む触媒を用いることが好ましい。これらの触媒の金属
基板への担持は、触媒成分をペースト状にして金属基板
に塗布する方法や、触媒成分をスラリ状に分散させた液
体中に金属基板を浸漬するウオッシュコーティングなど
の公知の触媒調製手段を用いて行うことができる。また
触媒成分中にはシリカゾルやチタニアゾルなどの結合剤
を添加したり、無機繊維などの強度部材を添加すること
ができる。
The denitration catalyst of the present invention is obtained by forming a catalyst layer on the surface of an oxidation-resistant and corrosion-resistant metal substrate having the above-mentioned dense titania layer. The catalyst components used in the catalyst layer include titanium (Ti), molybdenum (Mo), tungsten (W),
A known catalyst component composed of an oxide such as vanadium (V) is used. In particular, for the denitration of exhaust gas in the high temperature region at the gas turbine outlet, it is preferable to use a catalyst containing Ti and W oxides and a catalyst containing Ti and Mo and / or V oxides that are less deteriorated at high temperatures. These catalysts are supported on a metal substrate by a known method such as a method in which the catalyst component is applied in a paste form to the metal substrate or a wash coating in which the metal component is immersed in a liquid in which the catalyst component is dispersed in a slurry form. It can be performed using a preparation means. Further, a binder such as silica sol or titania sol or a strength member such as inorganic fiber can be added to the catalyst component.

【0013】図1は、本発明の一実施例を示す脱硝用触
媒の断面説明図である。この脱硝用触媒は、金属基板1
と、この金属基板1の表面に、過酸化チタンまたは過酸
化チタンゾルをコーティングして形成させた透明かつ緻
密なチタニア層5と、該チタニア層5の表面に形成され
た触媒成分層2とを有する。金属基板1の表面に形成さ
れたチタニア層5の薄膜は、過酸化チタン皮膜および過
酸化チタンから形成した酸化チタン層からなり、きわめ
て緻密であるため、例えば350〜600℃の高温に金
属基板1が長時間晒されても該基板の表面に酸化皮膜が
形成されることはない。そのため、酸化皮膜を経てFe
イオンが触媒成分層2に移動して脱硝率を低下させる現
象を大幅に抑制することができる。また緻密なチタニア
層5は、SOxなどの酸性ガス雰囲気下での400℃以
下の温度域における金属基板の酸腐食をも軽減すること
ができる。酸により金属基板が腐食すると高温で触媒を
使用した場合と同様にFeイオンが触媒成分中に移動
し、排ガス中のSO2 をSO3 に酸化する活性が高くな
り、後流機器に悪影響を与えるようになる。本発明にお
いて、金属基板表面に形成された緻密なチタニア層5
は、金属基板の酸腐食を抑制できるため、排ガスに含ま
れるSO2 の酸化率の経時的な上昇をも抑制することが
できる。
FIG. 1 is an explanatory sectional view of a denitration catalyst according to an embodiment of the present invention. The denitration catalyst is made of a metal substrate 1
And a transparent and dense titania layer 5 formed by coating titanium oxide or titanium peroxide sol on the surface of the metal substrate 1, and a catalyst component layer 2 formed on the surface of the titania layer 5. . The thin film of the titania layer 5 formed on the surface of the metal substrate 1 is composed of a titanium oxide film and a titanium oxide layer formed of titanium peroxide, and is extremely dense. No oxide film is formed on the surface of the substrate even if is exposed for a long time. Therefore, after passing through the oxide film,
The phenomenon that ions move to the catalyst component layer 2 and lower the denitration rate can be greatly suppressed. The dense titania layer 5 can also reduce the acid corrosion of the metal substrate in a temperature range of 400 ° C. or less in an atmosphere of an acidic gas such as SOx. When the metal substrate is corroded by the acid, Fe ions move into the catalyst component in the same manner as when a catalyst is used at a high temperature, and the activity of oxidizing SO 2 in the exhaust gas to SO 3 increases, which adversely affects downstream equipment. Become like In the present invention, the dense titania layer 5 formed on the surface of the metal substrate
Since acid corrosion of the metal substrate can be suppressed, it is also possible to suppress a temporal increase in the oxidation rate of SO 2 contained in the exhaust gas.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。 実施例1 チタニウムテトラブトキシド(Ti(C4 9 O)4
50gとエタノール50gとの混合溶液を、アンモニア
でアルカリ性にした水300g中に注いで加水分解さ
せ、オルトチタン酸(Ti(OH)4 )の沈澱を生成さ
せた。生成沈澱を遠心分離器で分離し、水洗3回、最後
にエタノール洗浄後、風乾してオルトチタン酸粉末を得
た。得られたオルトチタン酸粉末を500ccのビーカに
とり、30%過酸化水素水を少量ずつ添加し、オルトチ
タン酸粒子を完全に溶解させ、黄色透明の過酸化チタン
溶液を生成した。得られた過酸化チタン溶液をSUS4
30板(厚さ0.2mm、幅20mm、長さ100mm)の表
面に刷毛で塗布後、風乾し、さらに500℃で焼成して
本発明の耐酸化性耐腐食性金属基板を得た。この基板の
過酸化チタン担持量はTiO2 として2.6g/m2
あった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Titanium tetrabutoxide (Ti (C 4 H 9 O) 4 )
A mixed solution of 50 g and 50 g of ethanol was poured into 300 g of water made alkaline with ammonia and hydrolyzed to form a precipitate of orthotitanic acid (Ti (OH) 4 ). The precipitate formed was separated by a centrifugal separator, washed three times with water, finally washed with ethanol, and air-dried to obtain orthotitanic acid powder. The obtained orthotitanic acid powder was placed in a 500 cc beaker, and 30% aqueous hydrogen peroxide was added little by little to completely dissolve the orthotitanic acid particles to produce a yellow transparent titanium peroxide solution. The obtained titanium peroxide solution was SUS4
The surface of 30 plates (0.2 mm thick, 20 mm wide, 100 mm long) was applied with a brush, air-dried, and fired at 500 ° C. to obtain the oxidation-resistant and corrosion-resistant metal substrate of the present invention. The amount of titanium peroxide supported on this substrate was 2.6 g / m 2 as TiO 2 .

【0015】比較例1 実施例1で用いたSUS430板を、過酸化チタン溶液
を塗布せずに、500℃で焼成して比較用金属基板とし
た。
Comparative Example 1 The SUS430 plate used in Example 1 was fired at 500 ° C. without applying a titanium peroxide solution to obtain a comparative metal substrate.

【0016】<金属基板の耐酸化性試験>実施例1と比
較例1で得られた金属基板を550℃の大気中に300
時間保持して酸化皮膜の形成状態を観察した。その結
果、実施例1で得られた過酸化チタン皮膜が形成された
金属基板では550℃という高温に長時間晒されたにも
かかわらず、金属光沢を維持しており、酸化皮膜の形成
は認められなかった。これに対し、過酸化チタン皮膜が
形成されていない比較用の金属基板では表面が褐紫色と
なり、酸化皮膜で覆われていた。以上の結果から、本発
明の金属基板に形成された過酸化チタン皮膜が緻密なチ
タニア層を形成して金属表面の酸化を防止し、酸化皮膜
形成を抑制することが確認された。
<Oxidation Resistance Test of Metal Substrate> The metal substrates obtained in Example 1 and Comparative Example 1 were placed in the air at 550 ° C. for 300 minutes.
After holding for a time, the state of formation of the oxide film was observed. As a result, despite the fact that the metal substrate obtained in Example 1 on which the titanium peroxide film was formed was exposed to the high temperature of 550 ° C. for a long time, the metal luster was maintained, and the formation of the oxide film was recognized. I couldn't. On the other hand, the surface of the comparative metal substrate on which the titanium peroxide film was not formed had a brown-violet color and was covered with the oxide film. From the above results, it was confirmed that the titanium peroxide film formed on the metal substrate of the present invention forms a dense titania layer to prevent oxidation of the metal surface and suppress the formation of an oxide film.

【0017】実施例2 実施例1で得られた過酸化チタン溶液を撹拌しながら砂
浴上で加熱し、糊状の過酸化チタンゾルを得た。このゾ
ル状物を実施例1と同様のSUS430板の上に塗布
後、風乾し、さらに500℃で2時間焼成して過酸化チ
タン皮膜で覆われた耐酸化性耐腐食性金属基板を得た。
この基板の過酸化チタンの担持量はTiO 2 として20
g/m2 であった。これとは別に、硫酸法で得られた酸
化チタン(比表面積250m2 /g、SO 4 含有量1.
8重量%)にメタタングステン酸アンモニウム水溶液
(WO3 含有量50重量%)を、TiとWの原子比(T
i/W)が95/5となるように添加し、その後、水を
加えて混練してペースト状の触媒前駆体とした。このペ
ースト状の触媒前駆体を厚さ約3mmのシート状に圧延
し、さらに20mm角に切断した後、上記の耐酸化性耐腐
食性金属基板に張り付けて風乾し、550℃で焼成して
本発明の脱硝用触媒を得た。
Example 2 While stirring the titanium peroxide solution obtained in Example 1,
The mixture was heated on a bath to obtain a paste-like titanium peroxide sol. This zo
SUS430 plate as in Example 1
After that, air-dry and further bake at 500 ° C for 2 hours to
An oxidation-resistant and corrosion-resistant metal substrate covered with a tin film was obtained.
The amount of titanium peroxide supported on this substrate was TiO 2 TwoAs 20
g / mTwoMet. Separately, the acid obtained by the sulfuric acid method
Titanium (specific surface area 250mTwo/ G, SO FourContent 1.
8% by weight) aqueous solution of ammonium metatungstate
(WOThreeContent of 50% by weight) and the atomic ratio of Ti to W (T
i / W) is 95/5, and then water is added.
In addition, the mixture was kneaded to obtain a paste-like catalyst precursor. This page
Rolled catalyst catalyst precursor into sheet with thickness of about 3mm
And then cut into 20 mm squares.
Paste on the edible metal substrate, air-dry and bake at 550 ° C
The catalyst for denitration of the present invention was obtained.

【0018】比較例2 実施例2において、金属基板に過酸化チタン皮膜を形成
しなかった以外は実施例2と同様の方法で脱硝用触媒を
製造した。
Comparative Example 2 A denitration catalyst was produced in the same manner as in Example 2 except that the titanium peroxide film was not formed on the metal substrate.

【0019】<触媒層へのFeイオンの移動試験>実施
例2および比較例2で得た脱硝用触媒を600℃の大気
中に1000時間保持して加熱した後、金属基板に張り
付けた触媒シートを剥がし、金属基板と接していた触媒
シート面のそれぞれのFe含有量と未使用触媒の触媒シ
ート面のFe含有量を蛍光X線分析法により測定した。
その結果を表1に示したが、実施例2で得られた脱硝用
触媒では、触媒成分中のFe含有量が未使用触媒のもの
と比べても僅かな増加しか見られず、Feイオンの移動
が極めて少ないことが確認された。これに対して比較例
2で得られた触媒では、触媒成分中のFe含有量が大幅
に増大していることがわかった。以上の結果から、本発
明の、過酸化チタン皮膜が形成された金属基板を用いた
脱硝用触媒によれば、触媒成分中へのFeイオンの熱拡
散を効果的に防止できることが確認された。
<Test for Transferring Fe Ions to Catalyst Layer> The catalyst sheet for denitration obtained in Example 2 and Comparative Example 2 was heated in the atmosphere at 600 ° C. for 1000 hours and then adhered to a metal substrate. Was removed, and the Fe content of each catalyst sheet surface in contact with the metal substrate and the Fe content of the unused catalyst sheet surface were measured by X-ray fluorescence analysis.
The results are shown in Table 1. In the denitration catalyst obtained in Example 2, the Fe content in the catalyst component showed only a slight increase as compared with that of the unused catalyst. It was confirmed that the movement was extremely small. On the other hand, in the catalyst obtained in Comparative Example 2, it was found that the Fe content in the catalyst component was significantly increased. From the above results, it was confirmed that according to the denitration catalyst using the metal substrate on which the titanium peroxide film was formed, the thermal diffusion of Fe ions into the catalyst component could be effectively prevented.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例3 厚さ0.2mmのSUS430鋼板をメタルラス加工して
得た網状物を、実施例2と同様に調製した過酸化チタン
ゾル溶液に浸漬した後、余剰のゾルをエアーブローして
除き、引き続き風乾してメタルラス表面を過酸化チタン
皮膜で覆った。この過酸化チタンの担持量はTiO2
して約10g/m2 であった。一方、硫酸法で得られた
酸化チタン(比表面積250m2 /g、SO4 含有量
1.8重量%)に、メタタングステン酸アンモニウム水
溶液(WO3 含有量50重量%)を、TiとWの原子比
(Ti/W)で95/5となるように添加した後、水を
加えてニーダで混練してペースト状態にした。このペー
ストに無機繊維(東芝モノフラックス製、ファイバーフ
ラックス)を酸化チタンの総量に対して20重量%添加
し、均一に混ぜて塗布用ペーストを得た。得られた塗布
用ペーストを上記過酸化チタン皮膜が形成されたメタル
ラス表面に置き、これを圧延ローラに通してメタルラス
の網目および表面に触媒を塗布し、風乾後、550℃で
2時間焼成して脱硝用触媒を得た。
Example 3 A net obtained by subjecting a SUS430 steel plate having a thickness of 0.2 mm to metal lath processing was immersed in a titanium peroxide sol solution prepared in the same manner as in Example 2, and excess sol was air blown. Then, the metal lath surface was air-dried and covered with a titanium peroxide film. The supported amount of this titanium peroxide was about 10 g / m 2 as TiO 2 . On the other hand, an aqueous solution of ammonium metatungstate (WO 3 content 50% by weight) was added to titanium oxide (specific surface area 250 m 2 / g, SO 4 content 1.8% by weight) obtained by the sulfuric acid method, After adding so that the atomic ratio (Ti / W) becomes 95/5, water was added and kneaded with a kneader to form a paste. An inorganic fiber (fiber flux, manufactured by Toshiba Monoflux) was added to this paste in an amount of 20% by weight based on the total amount of titanium oxide, and mixed uniformly to obtain a coating paste. The obtained paste for application is placed on the surface of the metal lath on which the titanium peroxide film is formed, and the resultant is passed through a rolling roller to apply a catalyst to the mesh and the surface of the metal lath, air-dried, and then fired at 550 ° C. for 2 hours. A catalyst for denitration was obtained.

【0022】実施例4 実施例3において、過酸化チタンゾルに、不活性微粒子
として塩素法で合成された顔料用チタニア(石原産業
製、CR50)を、ゾル中のTiO2 とCR50の重量
比(TiO2 /CR50)が1/4になるように添加し
た過酸化チタンゾル溶液を用いた以外は実施例3と同様
の方法で脱硝用触媒を製造した。
Example 4 In Example 3, the titanium oxide sol was mixed with titania for pigment (CR50, manufactured by Ishihara Sangyo Co., Ltd.) synthesized by the chlorine method as inert fine particles, and the weight ratio of TiO 2 to CR50 (TiO 2 ) in the sol was changed. A catalyst for denitration was produced in the same manner as in Example 3 except that a titanium peroxide sol solution added so that ( 2 / CR50) became 1/4 was used.

【0023】比較例3 実施例3において、メタルラス表面に過酸化チタン皮膜
を形成しなかった以外は実施例3と同様の方法で脱硝用
触媒を製造した。
Comparative Example 3 A denitration catalyst was produced in the same manner as in Example 3 except that no titanium peroxide film was formed on the metal lath surface.

【0024】<脱硝率試験>実施例3、4および比較例
3で得られた脱硝用触媒を、実施例2と同様に600℃
で1000時間保持して耐熱試験した。耐熱試験後の触
媒と耐熱試験を行わない未使用触媒について、表2に示
す条件で550℃における脱硝性能を調べた。その結果
を表3にまとめて示したが、実施例3および4の脱硝用
触媒では、未使用触媒の初期脱硝率および耐熱試験後
(経時後)の脱硝率ともに高い値が得られたが、比較例
3の触媒では初期脱硝率が低く、また耐熱試験後の脱硝
率も著しく低下した。以上の結果から、本発明の脱硝用
触媒では、高温でのFeイオン移動に伴う脱硝性能の低
下を効果的に防止できることが確認できた。また実施例
3と4の触媒が耐熱試験後も同等の脱硝性能を有してい
ることから、過酸化チタンに不活性な微粒子を混合して
も同様な効果が得られることが分かった。
<Denitration rate test> The denitration catalysts obtained in Examples 3 and 4 and Comparative Example 3 were treated at 600 ° C. in the same manner as in Example 2.
For 1000 hours to perform a heat resistance test. The denitration performance at 550 ° C. of the catalyst after the heat resistance test and the unused catalyst not subjected to the heat resistance test was examined under the conditions shown in Table 2. The results are summarized in Table 3. In the denitration catalysts of Examples 3 and 4, high values were obtained for both the initial denitration rate of the unused catalyst and the denitration rate after the heat test (after aging). In the catalyst of Comparative Example 3, the initial denitration rate was low, and the denitration rate after the heat test was also significantly reduced. From the above results, it was confirmed that the denitration catalyst of the present invention can effectively prevent a decrease in denitration performance due to Fe ion transfer at a high temperature. Further, since the catalysts of Examples 3 and 4 had the same denitration performance even after the heat resistance test, it was found that the same effect could be obtained by mixing inactive fine particles with titanium peroxide.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】実施例5 実施例3において、メタタングステン酸アンモニウム水
溶液に代えて、モリブデン酸アンモニウムとメタバナジ
ン酸アンモニウム粉末をTiとMoとVの原子比(Ti
/Mo/V)が96/3/1になるように添加した以外
は実施例3と同様の方法で触媒ペーストを調整し、この
ペーストを過酸化チタン皮膜を形成したメタルラスに塗
布後、乾燥し、500℃で2時間焼成して脱硝用触媒を
得た。
Example 5 In Example 3, ammonium molybdate and ammonium metavanadate powder were replaced by an aqueous solution of ammonium metatungstate in the atomic ratio of Ti: Mo: V (Ti
/ Mo / V) was adjusted to 96/3/1 to prepare a catalyst paste in the same manner as in Example 3. The paste was applied to a metal lath on which a titanium peroxide film was formed, and then dried. At 500 ° C. for 2 hours to obtain a denitration catalyst.

【0028】比較例4 実施例5において、メタルラス加工網状物に過酸化チタ
ン皮膜の形成処理を行わなかった以外は実施例5と同様
の方法で脱硝用触媒を製造した。
Comparative Example 4 A denitration catalyst was produced in the same manner as in Example 5 except that the titanium oxide film was not formed on the metal lath processing mesh.

【0029】<耐腐食試験>油焚きボイラ排ガスの脱硝
時に生じる低温腐食を模擬するため、実施例5および比
較例4で製造した脱硝用触媒に希硫酸をSO4 として3
重量%含浸させ、湿度90%の湿潤条件下に3日間保持
した。腐食試験後の触媒と未使用の触媒を用いて、表4
に示す条件で排ガスを流通させ、排ガス中のSO2 の酸
化率を測定した。得られた結果を表5に示したが、実施
例5で得られた脱硝用触媒では、未使用の触媒および腐
食試験後の触媒ともにSO2 の酸化率が少なく、脱硝触
媒基材として用いた金属の酸腐食によるSO2 の酸化率
の上昇が抑制できることわかった。
<Corrosion Resistance Test> In order to simulate low-temperature corrosion that occurs during the denitration of the exhaust gas from an oil-fired boiler, the denitration catalysts manufactured in Example 5 and Comparative Example 4 were diluted with sulfuric acid to SO 4.
%, And kept for 3 days under a humid condition of 90% humidity. Using the catalyst after the corrosion test and the unused catalyst, Table 4
The exhaust gas was circulated under the following conditions, and the oxidation rate of SO 2 in the exhaust gas was measured. The results obtained are shown in Table 5, but the denitration catalyst obtained in Example 5, less oxidation rate of SO 2 in the catalyst in both the post-catalyst and corrosion test unused, was used as a denitration catalyst base It was found that the increase in the oxidation rate of SO 2 due to acid corrosion of the metal can be suppressed.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【発明の効果】本発明における耐酸化性耐腐食性金属基
板によれば、その表面に過酸化チタン溶液またはそのゾ
ル状物により形成された緻密なチタニア層を有するた
め、この基板を高温域で使用してもその表面に酸化皮膜
が形成されるのを防止でき、また酸性ガスを含む排ガス
の処理に使用しても金属表面が腐食されるのを防止する
ことができる。従って、この耐酸化性耐腐食性金属基板
を用いた脱硝用触媒を350〜600℃の高温域でNH
3 接触還元脱硝法の触媒としてに使用しても、金属から
触媒成分へのFeイオンの移動を阻止でき、ひいては脱
硝率の低下を防止できるため、ガスタービン出口などの
高温脱硝を経済的に行うことが可能になる。また酸性ガ
スを含む排ガスの処理に使用しても金属基板の酸腐食が
防止できるため、排ガスに含まれるSO2 の酸化を防止
でき、その結果、脱硝装置後流機器のSO3 による腐食
を軽減することができる。
According to the oxidation-resistant and corrosion-resistant metal substrate of the present invention, the substrate has a dense titania layer formed of a titanium peroxide solution or a sol thereof on its surface, so that it can be used in a high temperature range. Even when used, an oxide film can be prevented from being formed on the surface thereof, and even when used for treating exhaust gas containing an acidic gas, corrosion of the metal surface can be prevented. Therefore, the denitration catalyst using the oxidation-resistant and corrosion-resistant metal substrate is treated with NH3 at a high temperature range of 350 to 600 ° C.
(3) Even when used as a catalyst in the catalytic reduction denitration method, it is possible to prevent the transfer of Fe ions from the metal to the catalyst component, and to prevent a reduction in the denitration rate. It becomes possible. Also, even when used for treating exhaust gas containing acidic gas, acid corrosion of the metal substrate can be prevented, so that oxidation of SO 2 contained in the exhaust gas can be prevented, and as a result, corrosion due to SO 3 in equipment downstream of the denitration apparatus can be reduced. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す脱硝用触媒の断面説明
図。
FIG. 1 is an explanatory sectional view of a denitration catalyst according to an embodiment of the present invention.

【図2】従来技術による脱硝用触媒の断面説明図。FIG. 2 is an explanatory sectional view of a conventional denitration catalyst.

【図3】従来技術による他の脱硝用触媒の断面説明図。FIG. 3 is an explanatory cross-sectional view of another conventional denitration catalyst.

【符号の説明】[Explanation of symbols]

1…金属基板、2…触媒成分層、3…酸化皮膜、4…中
間層、5…緻密なチタニア層
DESCRIPTION OF SYMBOLS 1 ... Metal substrate, 2 ... Catalyst component layer, 3 ... Oxide film, 4 ... Intermediate layer, 5 ... Dense titania layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/36 102D (72)発明者 今田 尚美 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 4D048 AA06 AB02 AB03 BA07X BA23X BA26X BA27X BA41X BB03 BC01 BC10 4G069 AA03 AA08 AA11 BA04A BA04B BA18 BA37 BB04A BB04B BB20C BC50A BC50B BC54A BC54B BC59A BC59B BC60A BC60B CA02 CA08 CA10 CA13 DA06 EA08 EA11 EC03Y FA04 FA06 FB23──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 53/36 102D (72) Inventor Naomi Imada 3-36 Takara-cho, Kure-shi, Hiroshima Babcock-Hitachi Kure Kenkyu In-house F-term (reference) 4D048 AA06 AB02 AB03 BA07X BA23X BA26X BA27X BA41X BB03 BC01 BC10 4G069 AA03 AA08 AA11 BA04A BA04B BA18 BA37 BB04A BB04B BB20C BC50A BC50B BC54A BC54B BC59 CA03 CA06 EC06 BC08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属基板表面に過酸化チタン溶液または
そのゾル状物をコーティングして緻密なチタニア層を形
成したことを特徴とする耐酸化性耐腐食性金属基板。
1. An oxidation-resistant and corrosion-resistant metal substrate comprising a metal substrate surface coated with a titanium peroxide solution or a sol thereof to form a dense titania layer.
【請求項2】 前記過酸化チタン溶液またはそのゾル状
物が不活性無機微粒子を含むことを特徴とする請求項1
に記載の耐酸化性耐腐食性金属基板。
2. The method according to claim 1, wherein the titanium peroxide solution or the sol thereof contains inert inorganic fine particles.
2. The oxidation-resistant and corrosion-resistant metal substrate according to 1.
【請求項3】 請求項1または2に記載の耐酸化性耐腐
食性金属基板の表面に触媒層を形成したことを特徴とす
る脱硝用触媒。
3. A denitration catalyst comprising a catalyst layer formed on the surface of the oxidation-resistant and corrosion-resistant metal substrate according to claim 1.
【請求項4】 前記触媒層が、触媒成分としてチタンと
タングステンの酸化物を含むことを特徴とする請求項3
に記載の脱硝用触媒。
4. The catalyst layer according to claim 3, wherein the catalyst layer contains titanium and tungsten oxides as a catalyst component.
The catalyst for denitration described in 1.
【請求項5】 前記触媒層が、触媒成分としてチタンと
モリブデンおよびバナジウムの酸化物を含むことを特徴
とする請求項3に記載の脱硝用触媒。
5. The denitration catalyst according to claim 3, wherein the catalyst layer contains an oxide of titanium, molybdenum and vanadium as a catalyst component.
【請求項6】 請求項3〜5のいずれかに記載の脱硝用
触媒に、350〜600℃の排ガスをアンモニア雰囲気
下に接触させて該排ガス中の窒素酸化物を除去すること
を特徴とする排ガスの浄化方法。
6. A denitration catalyst according to claim 3, wherein an exhaust gas at 350 to 600 ° C. is brought into contact with an ammonia atmosphere to remove nitrogen oxides from the exhaust gas. Exhaust gas purification method.
【請求項7】 請求項3〜5のいずれかに記載の脱硝用
触媒に、硫黄酸化物を含む排ガスをアンモニア雰囲気下
に接触させて該排ガス中の窒素酸化物を除去することを
特徴とする排ガスの浄化方法。
7. A denitration catalyst according to claim 3, wherein an exhaust gas containing sulfur oxides is brought into contact with an ammonia atmosphere to remove nitrogen oxides in the exhaust gas. Exhaust gas purification method.
JP2000322547A 2000-10-23 2000-10-23 Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method Expired - Fee Related JP4190716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000322547A JP4190716B2 (en) 2000-10-23 2000-10-23 Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000322547A JP4190716B2 (en) 2000-10-23 2000-10-23 Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2002126536A true JP2002126536A (en) 2002-05-08
JP4190716B2 JP4190716B2 (en) 2008-12-03

Family

ID=18800409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000322547A Expired - Fee Related JP4190716B2 (en) 2000-10-23 2000-10-23 Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4190716B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175341A (en) * 2004-12-22 2006-07-06 Babcock Hitachi Kk Method of manufacturing denitrification catalyst
JP2006192344A (en) * 2005-01-12 2006-07-27 Babcock Hitachi Kk Method for regenerating denitrification catalyst and regenerated denitrification catalyst
JP2007009315A (en) * 2005-06-01 2007-01-18 Central Res Inst Of Electric Power Ind Sulfidation corrosion resistant high temperature member, method for producing the same, and method for preventing sulfidation corrosion in high temperature member
KR101181241B1 (en) 2010-07-30 2012-09-10 한국기계연구원 A multi-layer metal having a titanium and manufacturing method for the same
CN113249678A (en) * 2021-04-07 2021-08-13 福建福平铁路有限责任公司 Preparation method and application of zinc-nickel seeping layer of steel member of railway contact network

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175341A (en) * 2004-12-22 2006-07-06 Babcock Hitachi Kk Method of manufacturing denitrification catalyst
JP4511920B2 (en) * 2004-12-22 2010-07-28 バブコック日立株式会社 Method for producing denitration catalyst
JP2006192344A (en) * 2005-01-12 2006-07-27 Babcock Hitachi Kk Method for regenerating denitrification catalyst and regenerated denitrification catalyst
JP2007009315A (en) * 2005-06-01 2007-01-18 Central Res Inst Of Electric Power Ind Sulfidation corrosion resistant high temperature member, method for producing the same, and method for preventing sulfidation corrosion in high temperature member
KR101181241B1 (en) 2010-07-30 2012-09-10 한국기계연구원 A multi-layer metal having a titanium and manufacturing method for the same
CN113249678A (en) * 2021-04-07 2021-08-13 福建福平铁路有限责任公司 Preparation method and application of zinc-nickel seeping layer of steel member of railway contact network

Also Published As

Publication number Publication date
JP4190716B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
WO2018047381A1 (en) Regeneration method for denitration catalyst
WO2013035743A1 (en) Method for reducing the so2 oxidation ratio increase of denitration catalyst
JP2006136869A (en) Exhaust gas treating catalyst, exhaust gas treating method and exhaust gas treating apparatus
JP3389005B2 (en) Nitrogen oxide removal catalyst
JP2732614B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
CN107376896A (en) A kind of cerium tungsten titanium composite oxide SCR denitration and preparation method thereof
TW200403104A (en) Method for regenerating NOx removal catalyst
KR20120104398A (en) Method for removing calcium material from substrates
CN106238070B (en) The regeneration method of regenerated liquid of denitrating catalyst and preparation method thereof and denitrating catalyst
JPWO2011040559A1 (en) Mercury oxidation catalyst and method for producing the same
JP4190716B2 (en) Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method
JP2014065031A (en) Exhaust gas treatment catalyst and method of regenerating the same
TW201016303A (en) Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JPS58183946A (en) Denitration catalyst and preparation thereof
JP4440579B2 (en) Denitration catalyst regeneration method
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP5615058B2 (en) Method for producing metal substrate for exhaust gas denitration catalyst
TW200948462A (en) Exhaust gas purification catalyst on which influence of iron compound has been suppressed
JP3224708B2 (en) DeNOx catalyst
JP6640357B2 (en) Exhaust gas denitration catalyst, exhaust gas treatment system, and exhaust gas treatment method
JP3432540B2 (en) Method for producing plate-shaped catalyst and treatment liquid for forming acid-resistant and anti-corrosion film used therein
JP3131630B2 (en) Method for oxidizing and removing carbon fine particles in diesel engine exhaust gas and catalyst used therefor
JP2004074106A (en) Method for regeneration of catalyst
JP2003117352A (en) Method and device for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees