JP4440579B2 - Denitration catalyst regeneration method - Google Patents

Denitration catalyst regeneration method Download PDF

Info

Publication number
JP4440579B2
JP4440579B2 JP2003312205A JP2003312205A JP4440579B2 JP 4440579 B2 JP4440579 B2 JP 4440579B2 JP 2003312205 A JP2003312205 A JP 2003312205A JP 2003312205 A JP2003312205 A JP 2003312205A JP 4440579 B2 JP4440579 B2 JP 4440579B2
Authority
JP
Japan
Prior art keywords
catalyst
denitration catalyst
denitration
sulfate radicals
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003312205A
Other languages
Japanese (ja)
Other versions
JP2005074408A (en
Inventor
公一 横山
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003312205A priority Critical patent/JP4440579B2/en
Publication of JP2005074408A publication Critical patent/JP2005074408A/en
Application granted granted Critical
Publication of JP4440579B2 publication Critical patent/JP4440579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は脱硝触媒の再生方法に係り、さらに詳しくは使用済排煙脱硝触媒の再生方法に関するものである。   The present invention relates to a method for regenerating a denitration catalyst, and more particularly to a method for regenerating a spent flue gas denitration catalyst.

近年、廃棄物の発生量を低減するため、使用済触媒を再利用する必要が生じている。特に石炭や重油を燃料としたボイラ排ガスの排ガス脱硝触媒では、長時間の使用によりアルカリ金属、アルカリ土類金属、砒素化合物等による経時的な性能低下が生じる。しかし、これら毒物質は概ね洗浄により該脱硝触媒から除去することができる。該溶液としては水、硫酸、蓚酸、アンモニア、硫酸塩などが用いられ、これらの洗浄液を単独でまたはその組み合わせにより毒物質を除去して触媒の脱硝性能を回復させることが知られている(特許文献1、2等)。   In recent years, it has become necessary to reuse used catalysts in order to reduce the amount of waste generated. In particular, in an exhaust gas denitration catalyst for boiler exhaust gas using coal or heavy oil as fuel, performance deterioration with time due to alkali metal, alkaline earth metal, arsenic compound, etc. occurs due to long-term use. However, these toxic substances can be removed from the denitration catalyst by washing. As the solution, water, sulfuric acid, oxalic acid, ammonia, sulfate, etc. are used, and it is known that these cleaning liquids alone or in combination remove toxic substances to recover the denitration performance of the catalyst (patent) Literature 1, 2 etc.).

特開2000−37634号公報JP 2000-37634 A 特開2000−37635号公報JP 2000-37635 A

一方、金属網状物と脱硝触媒成分とからなる板状触媒の場合、水、硫酸または硫酸塩の溶液で洗浄すると、脱硝活性とともに、SO2 のSO3 への酸化率(以下、SO2 酸化率という)も高くなるという問題点があった。これは、金属網状物と排ガス成分が反応して形成された鉄化合物が洗浄液に溶解し、乾燥時に触媒表面に析出し、該鉄化合物が酸化触媒として働くためと考えられる。
本発明の課題は、上記の問題を解決し、金属網状物と脱硝触媒成分とからなる使用済排煙脱硝触媒を再生する際に、再生触媒のSO2 酸化率の上昇を防ぎ、少なくとも洗浄前と同等か、それ以下のSO2 酸化率にすることができる脱硝触媒の再生方法を提供することにある。
On the other hand, in the case of a plate catalyst composed of a metal network and a denitration catalyst component, when washed with water, sulfuric acid or a sulfate solution, the denitration activity and the oxidation rate of SO 2 to SO 3 (hereinafter referred to as the SO 2 oxidation rate). There was a problem that it was also expensive. This is presumably because the iron compound formed by the reaction of the metal network and the exhaust gas component dissolves in the cleaning liquid and precipitates on the catalyst surface during drying, and the iron compound acts as an oxidation catalyst.
The object of the present invention is to solve the above-mentioned problems and prevent an increase in the SO 2 oxidation rate of the regenerated catalyst when regenerating a spent flue gas denitration catalyst comprising a metal network and a denitration catalyst component, at least before washing. It is an object to provide a method for regenerating a denitration catalyst that can achieve an SO 2 oxidation rate that is equal to or lower than that.

本発明者らは、使用済脱硝触媒を、該触媒に含まれる全硫酸根モル数の2倍以上のアンモニアまたはアンモニウム塩を含む溶液に浸漬すると、使用済脱硝触媒に含まれる硫酸鉄はほとんど溶出せず、触媒表層の付着物や、NaやKのようなアルカリ金属や、CaやMgのようなアルカリ土類金属の硫酸塩のみが洗浄、除去され、さらにこの洗浄された触媒に脱硝触媒粉末を含むスラリーをコートすることにより、SO2 酸化率の上昇を抑制しながら、高活性な触媒に再生できることを見出し、本発明に到達した。
上記課題を解決するため、本願で特許請求される発明は下記の通りである。
When the present inventors immerse the used denitration catalyst in a solution containing ammonia or ammonium salt that is twice or more the total number of moles of sulfate radicals contained in the catalyst, most of the iron sulfate contained in the used denitration catalyst is eluted. Without cleaning, only the deposits on the surface of the catalyst, alkali metals such as Na and K, and alkaline earth metal sulfates such as Ca and Mg are washed and removed. It was found that by coating a slurry containing, the catalyst can be regenerated into a highly active catalyst while suppressing an increase in the SO 2 oxidation rate, and the present invention has been achieved.
In order to solve the above problems, the invention claimed in the present application is as follows.

(1)酸化チタンを含む脱硝触媒成分をステンレス製網状物に担持した、硫酸根を含む使用済排煙脱硝触媒を、該触媒に含有する全硫酸根のモル数の2倍以上のアンモニアまたはアンモニウム塩を含む溶液に浸漬した後、液切りして乾燥し、次いで酸化チタンを含む脱硝触媒粉末と無機酸化物のコロイド状物とを含有するスラリを担持させて乾燥することを特徴とする脱硝触媒の再生方法。
(2)酸化チタンを含む脱硝触媒成分をステンレス製網状物に担持した、硫酸根を含む使用済排煙脱硝触媒を、該触媒に含有する全硫酸根のモル数の2倍以上のアンモニアまたはアンモニウム塩を含む溶液と、無機酸化物のコロイド状物と、酸化チタンを含む脱硝触媒粉末とを含有するスラリに担持した後、乾燥することを特徴とする脱硝触媒の再生方法。
(3)前記無機酸化物のコロイド状物が、チタニア、シリカ、アルミナおよびジルコニアの少なくとも1種を含むことを特徴とする(1)または(2)に記載の脱硝触媒の再生方法。
(1) A used NOx removal denitration catalyst containing sulfate radicals, in which a denitration catalyst component containing titanium oxide is supported on a stainless steel net, is ammonia or ammonium at least twice the number of moles of all sulfate radicals contained in the catalyst. A denitration catalyst characterized in that it is dipped in a solution containing salt, drained and dried, and then dried by supporting a slurry containing a denitration catalyst powder containing titanium oxide and a colloidal inorganic oxide. How to play.
(2) A used exhaust flue gas denitration catalyst containing sulfate radicals, in which a denitration catalyst component containing titanium oxide is supported on a stainless steel net, is ammonia or ammonium at least twice the number of moles of all sulfate radicals contained in the catalyst. A method for regenerating a denitration catalyst, comprising supporting a slurry containing a salt-containing solution, a colloidal inorganic oxide, and a denitration catalyst powder containing titanium oxide, followed by drying.
(3) The method for regenerating a denitration catalyst according to (1) or (2), wherein the inorganic oxide colloidal material contains at least one of titania, silica, alumina, and zirconia.

本発明によれば、使用済の触媒体を廃棄することなく、SO3 の発生を極力少なくして再利用できるため、機器の腐食等を生じさせることなく、産業廃棄物の削減を図ることができる。 According to the present invention, since it is possible to reuse by reducing the generation of SO 3 as much as possible without discarding the used catalyst body, it is possible to reduce industrial waste without causing corrosion or the like of equipment. it can.

本発明において用いる溶液中のアンモニアまたはアンモニウム塩の量は、該使用済脱硝触媒に含まれる全硫酸根のモル数の2倍以上とする必要がある。溶液に含まれるアンモニアまたはアンモニウム塩のモル数が、使用済脱硝触媒に含まれる全硫酸根のモル数の2倍以上であれば、アンモニウムイオンが触媒から溶出する硫酸根と反応しても、液中のアンモニウムイオンは硫酸鉄を含む硫酸塩よりも過剰の状態となるため、硫酸鉄が液中に溶出するのを防ぐことができる。これにより、乾燥時に鉄化合物が触媒表面に担持されるのを防ぐことできるため、再生された触媒のSO2 の酸化率の上昇を抑えることができる。 The amount of ammonia or ammonium salt in the solution used in the present invention must be at least twice the number of moles of total sulfate radicals contained in the used denitration catalyst. If the number of moles of ammonia or ammonium salt contained in the solution is at least twice the number of moles of total sulfate radicals contained in the used denitration catalyst, the solution can be used even if ammonium ions react with the sulfate radicals eluted from the catalyst. The ammonium ions therein are in an excess state compared to the sulfate containing iron sulfate, so that iron sulfate can be prevented from being eluted into the liquid. Thus, the iron compound because it can avoid being carried on the catalyst surface, it is possible to suppress an increase in oxidation rate of SO 2 in the regenerated catalyst on drying.

使用済脱硝触媒表面の付着物は、アンモニアまたはアンモニウム塩溶液への浸漬による物理的な洗浄効果で除去されるため、エアバブリング、超音波振動や攪拌等の操作により、溶液が滞留しない状態とすることにより、より短時間に該付着物の除去が可能となる。
また上記溶液に浸漬した使用済脱硝触媒は、液切りした後、できるだけ素早く乾燥させるのが好ましい。これにより、金属網状物や付着した灰中に含まれる鉄化合物の触媒表面への拡散を抑制できるため、再生触媒のSO2 酸化率をより低減することができる。
Since the deposits on the surface of the used denitration catalyst are removed by a physical cleaning effect by immersion in ammonia or ammonium salt solution, the solution does not stay by air bubbling, ultrasonic vibration, stirring, etc. Thus, the deposits can be removed in a shorter time.
The used denitration catalyst immersed in the above solution is preferably dried as quickly as possible after draining. Thereby, since the diffusion to the catalyst surface of the iron compound contained in the metal network or the attached ash can be suppressed, the SO 2 oxidation rate of the regenerated catalyst can be further reduced.

さらに、使用済脱硝触媒の上記アンモニウムまたはアンモニウム塩の溶液への浸漬によりSO2 酸化率の上昇を防ぎながら触媒表面の石炭灰や付着物を洗い流した後、無機酸化物のコロイド状物と脱硝触媒粉末とを含むスラリをコートすることにより、再生触媒の脱硝率を一層高めることができる。また、使用済脱硝触媒に、アンモニアまたはアンモニウム塩の溶液、無機酸化物のコロイド状物および触媒粉末を含むスラリをコートしても同様の効果が得られる。
前記無機酸化物のコロイド状物としては、チタニア、シリカ、アルミナおよびジルコニアの少なくとも1種が好ましく用いられる。
Further, after the used denitration catalyst is immersed in the ammonium or ammonium salt solution to prevent the SO 2 oxidation rate from increasing, the coal ash and deposits on the catalyst surface are washed away, and then the colloidal inorganic oxide and the denitration catalyst are washed away. By coating a slurry containing powder, the denitration rate of the regenerated catalyst can be further increased. The same effect can be obtained by coating the used denitration catalyst with a slurry containing ammonia or ammonium salt solution, colloidal inorganic oxide and catalyst powder.
As the inorganic oxide colloid, at least one of titania, silica, alumina and zirconia is preferably used.

以下、本発明を実施例により、具体的に説明する。
本実施例では、石炭焚ボイラで使用し、脱硝性能が劣化した使用済脱硝触媒(SUS304製のラス板を基材とし、硫酸アルミニウムを含浸した板状触媒)を用いた。この触媒のTi/Mo/Vモル比は90/10/2であり、該触媒中にSO3 に換算して10重量%の硫酸分を含んでいた。
また触媒活性粉末としてはチタン、モリブデンおよびバナジウムのモル比が89:5:6となるように調整された酸化物触媒粉末を含むスラリを用いた。
Hereinafter, the present invention will be specifically described by way of examples.
In this example, a used denitration catalyst (a plate catalyst made of a SUS304 lath plate and impregnated with aluminum sulfate) used in a coal fired boiler and having deteriorated denitration performance was used. The catalyst had a Ti / Mo / V molar ratio of 90/10/2 and contained 10% by weight of sulfuric acid in terms of SO 3 in the catalyst.
As the catalyst active powder, a slurry containing oxide catalyst powder adjusted so that the molar ratio of titanium, molybdenum and vanadium was 89: 5: 6 was used.

使用済脱硝触媒50kgを、該触媒中のSO3 モル数の2倍のアンモニウムイオンを含む1Nアンモニア水125リットルに浸漬した後、液切りし、150℃エアで通風乾燥後、触媒粉末20重量%、固形分濃度20重量%のコロイダルシリカ20重量%および水からなる触媒スラリに再び浸漬した後、液切りし、再び150℃エアで通風乾燥した。 After immersing 50 kg of the used denitration catalyst in 125 liters of 1N ammonia water containing ammonium ions twice the number of moles of SO 3 in the catalyst, drained, dried by ventilation with 150 ° C. air, and 20% by weight of catalyst powder. Then, after being immersed again in a catalyst slurry comprising 20% by weight of colloidal silica having a solid content concentration of 20% by weight and water, the liquid was drained and air-dried again at 150 ° C. air.

使用済脱硝触媒50kgを、該触媒中のSO3 モル数の2倍のアンモニウムイオンを含む1M炭酸水素アンモニウム水125リットルに浸漬した後、液切りし、150℃エアで通風乾燥し、さらに触媒粉末20重量%、固形分濃度20重量%のコロイダルシリカ20重量%および水からなる触媒スラリに再び浸漬した後、液切りし、再び150℃エアで通風乾燥した。 After immersing 50 kg of the used denitration catalyst in 125 liters of 1M ammonium hydrogen carbonate water containing ammonium ions twice the number of moles of SO 3 in the catalyst, the solution is drained and dried by ventilation with air at 150 ° C. After dipping again in a catalyst slurry comprising 20% by weight, 20% by weight of colloidal silica having a solid content concentration of 20% by weight and water, the liquid was drained and again dried by ventilation at 150 ° C. air.

使用済脱硝触媒50kgを、該触媒中のSO3 モル数の2倍のアンモニウムイオンを含む1M炭酸水素アンモニウム水125リットルと、触媒粉末および固形分濃度20重量%のコロイダルシリカ各42kgとからなる触媒スラリに浸漬した後、液切りし、150℃エアで通風乾燥した。 A catalyst comprising 50 kg of a used denitration catalyst, 125 liters of 1M aqueous ammonium hydrogen carbonate containing ammonium ions twice the number of moles of SO 3 in the catalyst, and 42 kg of colloidal silica having a catalyst powder and a solid concentration of 20% by weight. After being immersed in the slurry, the liquid was drained and dried by ventilation with 150 ° C. air.

実施例2において、使用済脱硝触媒を1M炭酸水素アンモニウム水125リットルに浸漬した際にエアレーションにより液を攪拌した以外は実施例2と同じ条件で処理した。
[比較例1]
In Example 2, the treatment was performed under the same conditions as in Example 2 except that when the used denitration catalyst was immersed in 125 liters of 1M ammonium hydrogen carbonate water, the liquid was stirred by aeration.
[Comparative Example 1]

実施例1において、アンモニア水の代わりに水に浸漬した以外は実施例1と同じ条件で処理した。
[比較例2]
In Example 1, it processed on the same conditions as Example 1 except having immersed in water instead of ammonia water.
[Comparative Example 2]

実施例1と同じ条件で使用済脱硝触媒を1Nアンモニア水に浸漬後、液切りし、150℃エアで通風乾燥した。   The used denitration catalyst was immersed in 1N ammonia water under the same conditions as in Example 1, drained, and dried by ventilation with 150 ° C. air.

[試験例]
実施例1〜4および比較例1、2で得られた再生触媒の脱硝率およびSO2 酸化率を測定し、その結果を表1に示した。
なお、触媒活性の測定に使用したガス組成は、NO:200ppm、NH3 :240ppm、SO2 :500ppm、SO3 :50ppm、CO2 :12%、H2 O:12%、O2 :3%、N2 :バランスであり、反応温度は350℃であった。また脱硝率およびSO2 酸化率の測定結果は、無処理の使用済脱硝触媒の値を100とした相対値で示した。
[Test example]
The denitration rate and SO 2 oxidation rate of the regenerated catalysts obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured, and the results are shown in Table 1.
The gas composition used for measuring the catalyst activity was NO: 200 ppm, NH 3 : 240 ppm, SO 2 : 500 ppm, SO 3 : 50 ppm, CO 2 : 12%, H 2 O: 12%, O 2 : 3%. , N 2 : Balance, reaction temperature was 350 ° C. The measurement results of the denitration rate and SO 2 oxidation rate are shown as relative values with the value of the untreated used denitration catalyst as 100.

Figure 0004440579
Figure 0004440579

表1から、実施例1〜4および比較例1、2で得られたいずれの再生触媒も無処理の脱硝触媒に比べて脱硝率が高くなっているが、実施例1〜4の再生触媒では、SO2 酸化率は無処理のものに比べ低下しているのに対し、比較例1の再生触媒では、水のみで洗浄しているため、SO2 酸化率が大きく増加し、また比較例2の再生触媒では、洗浄した触媒に脱硝触媒成分をコートしていないため、実施例の再生触媒に比べて脱硝率が低くなっている。
以上から、本発明の再生方法によれば、石炭焚きボイラなどから排出される排ガスの処理に使用され、脱硝率の低下した使用済脱硝触媒を、SO2 酸化率の上昇を抑制しつつ、脱硝率を回復させることができることがわかった。
From Table 1, any of the regenerated catalysts obtained in Examples 1 to 4 and Comparative Examples 1 and 2 has a higher denitration rate than the untreated denitration catalyst, but in the regenerated catalysts of Examples 1 to 4, On the other hand, the SO 2 oxidation rate is lower than that of the untreated one, whereas the regenerated catalyst of Comparative Example 1 is washed only with water, so that the SO 2 oxidation rate is greatly increased. In this regenerated catalyst, since the washed catalyst is not coated with a denitration catalyst component, the denitration rate is lower than that of the regenerated catalyst of the example.
As described above, according to the regeneration method of the present invention, the spent denitration catalyst that is used for the treatment of exhaust gas discharged from a coal-fired boiler and the like and has a reduced denitration rate can be denitrated while suppressing an increase in the SO 2 oxidation rate. It was found that the rate could be recovered.

本発明は、石炭や重油を燃料としたボイラ排ガスの脱硝に使用されて脱硝性能が低下した使用済排煙脱硝触媒をSO2 の酸化率の上昇を抑えながら脱硝性能を回復させることができるため、使用済触媒体の再利用により、産業廃棄物を削減することができる。
Since the present invention can recover the NOx removal performance while suppressing the increase in SO 2 oxidation rate, the spent flue gas denitration catalyst used for the denitration of boiler exhaust gas fueled with coal or heavy oil has been reduced. Industrial waste can be reduced by reusing used catalyst bodies.

Claims (3)

酸化チタンを含む脱硝触媒成分をステンレス製網状物に担持した、硫酸根を含む使用済排煙脱硝触媒を、該触媒に含有する全硫酸根のモル数の2倍以上のアンモニアまたはアンモニウム塩を含む溶液に浸漬した後、液切りして乾燥し、次いで酸化チタンを含む脱硝触媒粉末と無機酸化物のコロイド状物とを含有するスラリを担持させて乾燥することを特徴とする脱硝触媒の再生方法。 A spent flue gas denitration catalyst containing sulfate radicals, in which a denitration catalyst component containing titanium oxide is supported on a stainless steel net , contains ammonia or an ammonium salt at least twice the number of moles of all sulfate radicals contained in the catalyst. A method for regenerating a denitration catalyst comprising dipping in a solution, draining and drying, and then drying a slurry containing a denitration catalyst powder containing titanium oxide and a colloidal material of an inorganic oxide. . 酸化チタンを含む脱硝触媒成分をステンレス製網状物に担持した、硫酸根を含む使用済排煙脱硝触媒を、該触媒に含有する全硫酸根のモル数の2倍以上のアンモニアまたはアンモニウム塩を含む溶液と、無機酸化物のコロイド状物と、酸化チタンを含む脱硝触媒粉末とを含有するスラリに担持した後、乾燥することを特徴とする脱硝触媒の再生方法。 A spent flue gas denitration catalyst containing sulfate radicals, in which a denitration catalyst component containing titanium oxide is supported on a stainless steel network , contains ammonia or an ammonium salt at least twice the number of moles of all sulfate radicals contained in the catalyst. A method for regenerating a denitration catalyst, which is supported on a slurry containing a solution, a colloidal inorganic oxide, and a denitration catalyst powder containing titanium oxide, and then dried. 前記無機酸化物のコロイド状物が、チタニア、シリカ、アルミナおよびジルコニアの少なくとも1種を含むことを特徴とする請求項1または2に記載の脱硝触媒の再生方法。 The method for regenerating a denitration catalyst according to claim 1 or 2, wherein the inorganic oxide colloidal material contains at least one of titania, silica, alumina, and zirconia.
JP2003312205A 2003-09-04 2003-09-04 Denitration catalyst regeneration method Expired - Lifetime JP4440579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312205A JP4440579B2 (en) 2003-09-04 2003-09-04 Denitration catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312205A JP4440579B2 (en) 2003-09-04 2003-09-04 Denitration catalyst regeneration method

Publications (2)

Publication Number Publication Date
JP2005074408A JP2005074408A (en) 2005-03-24
JP4440579B2 true JP4440579B2 (en) 2010-03-24

Family

ID=34413525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312205A Expired - Lifetime JP4440579B2 (en) 2003-09-04 2003-09-04 Denitration catalyst regeneration method

Country Status (1)

Country Link
JP (1) JP4440579B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905985B2 (en) * 2007-10-24 2012-03-28 バブコック日立株式会社 Recycling of used denitration catalyst
JP4905988B2 (en) * 2007-12-13 2012-03-28 バブコック日立株式会社 Regeneration method of used denitration catalyst
JP5526369B2 (en) * 2009-04-20 2014-06-18 バブコック日立株式会社 Denitration catalyst regeneration method
US8389431B2 (en) * 2011-02-03 2013-03-05 Steag Energy Services Gmbh Method for treating SCR catalysts having accumulated iron compounds
JP5615228B2 (en) * 2011-05-30 2014-10-29 バブコック日立株式会社 Regeneration method of used denitration catalyst
JP5701185B2 (en) * 2011-09-09 2015-04-15 三菱重工業株式会社 Method for reducing SO2 oxidation rate increase of denitration catalyst
JP2020015029A (en) * 2018-07-27 2020-01-30 三菱日立パワーシステムズ株式会社 Regeneration method of used denitration catalyst
US10814277B2 (en) * 2018-08-22 2020-10-27 Shell Oil Company Selective catalytic reduction process and off-line regeneration of deactivated catalyst of the process

Also Published As

Publication number Publication date
JP2005074408A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP3377715B2 (en) Regeneration method of denitration catalyst
JP5701185B2 (en) Method for reducing SO2 oxidation rate increase of denitration catalyst
KR101271105B1 (en) Methods of recycling a catalyst
JP2013056319A5 (en)
JP4440579B2 (en) Denitration catalyst regeneration method
JP2005537929A (en) Method for regenerating phosphorus loaded deNOx catalyst
JP5643905B2 (en) Method for treating an SCR catalyst with accumulated iron compounds
JP3059136B2 (en) Regeneration method of denitration catalyst
JP2012024669A (en) Method for regenerating denitration catalyst
JP4264643B2 (en) Regeneration method of deteriorated catalyst
JP3059137B2 (en) Reprocessing method for denitration catalyst
JP4276865B2 (en) Denitration catalyst regeneration method
JP4905985B2 (en) Recycling of used denitration catalyst
JP5615228B2 (en) Regeneration method of used denitration catalyst
WO2013073032A1 (en) Exhaust gas treatment catalyst, method for producing exhaust gas treatment catalyst, and method for regenerating exhaust gas treatment catalyst
JP4905988B2 (en) Regeneration method of used denitration catalyst
JP4190716B2 (en) Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method
JP2004267968A (en) Method for regenerating denitration catalyst
JPS60209252A (en) Regeneration method of denitration catalyst
JP2005279452A (en) Regeneration method of denitration catalyst
JP6446186B2 (en) Regeneration method of used denitration catalyst
JP2004066101A (en) Method of regenerating denitration catalyst
JP2010240615A (en) Method for regenerating used denitration catalyst
JP2006167526A (en) Chemical for regenerating denitration catalyst and regeneration method using the same
JP3796214B2 (en) Method for regenerating degraded catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term