JP2002126525A - Oxidation catalyst coat structure - Google Patents

Oxidation catalyst coat structure

Info

Publication number
JP2002126525A
JP2002126525A JP2000320138A JP2000320138A JP2002126525A JP 2002126525 A JP2002126525 A JP 2002126525A JP 2000320138 A JP2000320138 A JP 2000320138A JP 2000320138 A JP2000320138 A JP 2000320138A JP 2002126525 A JP2002126525 A JP 2002126525A
Authority
JP
Japan
Prior art keywords
catalyst
heat exchanger
oxidation
reaction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000320138A
Other languages
Japanese (ja)
Inventor
Satonobu Yasutake
聡信 安武
Shigeru Nojima
野島  繁
Masanao Yonemura
将直 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000320138A priority Critical patent/JP2002126525A/en
Publication of JP2002126525A publication Critical patent/JP2002126525A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxidation catalyst coat structure having the function of making the amount of reaction uniform along the direction of the gas stream in the oxidation combustion of hydrogen in an integrated catalyst/heat exchanger so as to heighten the efficiency of the heat exchanger. SOLUTION: By coating the heating surface with an oxidation catalyst comprising a catalyst component and a catalyst support component, wherein the amount of the catalyst component has a distribution in the direction of the flow of a feedstock gas to establish the uniformity of the amount of reaction along the flow of the gas and uniform heat supply, the thermal efficiency of the heat exchanger can be increased, and the apparatus is freed from troubles such as damage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池に用いる熱交換器の伝熱面等の表面に塗布するのに
好適な酸化燃焼触媒のコート構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating structure of an oxidation-combustion catalyst suitable for applying to a surface such as a heat transfer surface of a heat exchanger used in a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】固体燃料電池装置(以下PEFCともい
う)は、水素と酸素から水を得る電池反応によって起電
力を得ている。この装置において、触媒一体型熱交換器
では、電池反応後に残留した水素ガスを燃焼して除去す
ると共に、その燃焼熱を用いて電池反応の原料となるメ
タノールと水を気化する。
2. Description of the Related Art A solid fuel cell device (hereinafter also referred to as PEFC) obtains an electromotive force by a cell reaction of obtaining water from hydrogen and oxygen. In this device, the catalyst-integrated heat exchanger burns and removes hydrogen gas remaining after the battery reaction, and also uses the combustion heat to vaporize methanol and water as raw materials for the battery reaction.

【0003】以下に図面を参照して、従来型の触媒一体
型熱交換器について説明する。図9に従来型の触媒一体
型熱交換器5を示す。従来型の触媒一体型熱交換器5に
は、熱交換器8の伝熱面7に酸化触媒6が均一に塗布さ
れている。原料ガス入口10から流入してくる原料ガス
9に含まれる水素は、酸化触媒6表面で酸化燃焼されて
水になる。この反応は発熱反応であり、生じた反応熱は
伝熱面7から吸収され、熱交換器8でメタノールおよび
水の気化に利用される。
[0003] A conventional catalyst-integrated heat exchanger will be described below with reference to the drawings. FIG. 9 shows a conventional catalyst-integrated heat exchanger 5. In the conventional catalyst-integrated heat exchanger 5, the oxidation catalyst 6 is uniformly applied to the heat transfer surface 7 of the heat exchanger 8. Hydrogen contained in the source gas 9 flowing from the source gas inlet 10 is oxidized and combusted on the surface of the oxidation catalyst 6 to become water. This reaction is an exothermic reaction, and the generated reaction heat is absorbed from the heat transfer surface 7 and is used in the heat exchanger 8 for vaporizing methanol and water.

【0004】このように、従来、H2を酸化燃焼するこ
とにより生じた反応熱を熱交換器8により取り出すシス
テムにおいて、熱交換器8の伝熱面7に酸化触媒6を塗
布し、反応と熱交換を同時に行う方法が用いられてき
た。
As described above, conventionally, in a system in which the heat of reaction generated by oxidizing and burning H 2 is taken out by the heat exchanger 8, the oxidation catalyst 6 is applied to the heat transfer surface 7 of the heat exchanger 8, and the reaction is carried out. A method of performing heat exchange simultaneously has been used.

【0005】ところが、上記の水素の酸化燃焼反応は非
常に反応速度が速い。従って、上記の触媒一体型熱交換
器5では通常、触媒6を伝熱面7に対して均一に塗布す
るため、反応物である水素の酸化燃焼反応は原料ガス入
口10付近で終結してしまう。つまり、原料ガス入口1
0付近、例えば触媒塗布面である伝熱面7の前流部約1
0%で大部分の反応が起きる。従って、生成した燃焼熱
は伝熱面7の前流部約10%から吸収されることとな
る。このように、反応物である水素は原料ガス出口11
付近まで残存することなく伝熱面7の前流部での反応に
消費されるため、原料ガス出口11付近ではほとんど反
応が起こらず、熱交換器8に供給される熱量も少ない。
[0005] However, the above-mentioned oxidative combustion reaction of hydrogen has a very high reaction rate. Therefore, in the above-described catalyst-integrated heat exchanger 5, since the catalyst 6 is usually uniformly applied to the heat transfer surface 7, the oxidation combustion reaction of hydrogen as a reactant is terminated near the raw material gas inlet 10. . That is, source gas inlet 1
0, for example, about 1 in front of the heat transfer surface 7 which is the catalyst application surface.
Most reactions occur at 0%. Therefore, the generated combustion heat is absorbed from about 10% of the upstream of the heat transfer surface 7. As described above, the reactant hydrogen is supplied to the source gas outlet 11.
Since it is consumed in the reaction at the upstream of the heat transfer surface 7 without remaining to the vicinity, almost no reaction occurs near the raw material gas outlet 11 and the amount of heat supplied to the heat exchanger 8 is small.

【0006】図10に、従来型の触媒コート構造におい
て生成した水素の燃焼熱を伝熱面の温度で模式的に表し
たグラフを示す。このグラフにおいて、原料ガス入口1
0付近と原料ガス出口11付近では、大きな温度差が生
じていることがわかる。
FIG. 10 is a graph schematically showing the heat of combustion of hydrogen generated in the conventional catalyst coat structure by the temperature of the heat transfer surface. In this graph, source gas inlet 1
It can be seen that a large temperature difference occurs near 0 and near the source gas outlet 11.

【0007】このように、発生する熱量が均一でないた
め、伝熱面7から一体となった熱交換器8に熱が均一に
供給されることがなく、熱交換器の効率低下あるいは温
度差による応力に起因する破損などが問題となってい
た。
As described above, since the amount of generated heat is not uniform, the heat is not uniformly supplied from the heat transfer surface 7 to the integrated heat exchanger 8, and the efficiency of the heat exchanger is lowered or the temperature difference is caused. Breakage due to stress has been a problem.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであり、上記熱交換器一体型の蒸
発器において、ガス流れ方向に沿って反応量が均一とな
る触媒のコート構造を提供する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. In the above-mentioned evaporator integrated with a heat exchanger, a catalyst having a uniform reaction amount along a gas flow direction is provided. Provide a coat structure.

【0009】本発明者らは、上記水素の酸化反応の反応
速度が非常に速いため、原料ガス入口付近に位置する触
媒のみが酸化反応に関与し、局所的に大量の熱を発生し
ていることに着目した。そこで、伝熱面における実質的
に有効な触媒成分の塗布量をガスの流れ方向に対して分
布をもたせることで、原料ガス入口付近の触媒のみが反
応に関与することがないように触媒活性部位を分散化
し、上記問題を解決するに至った。
The present inventors have found that the reaction rate of the hydrogen oxidation reaction is extremely high, so that only the catalyst located near the raw material gas inlet participates in the oxidation reaction and locally generates a large amount of heat. We paid attention to that. Therefore, by distributing the substantially effective coating amount of the catalyst component on the heat transfer surface with respect to the flow direction of the gas, the catalyst active site is controlled so that only the catalyst near the raw material gas inlet does not participate in the reaction. To solve the above problem.

【0010】本発明は、以下のように構成する。本発明
は、原料ガス流れ方向に対して触媒成分量に分布を持た
せて、該触媒成分および触媒担体成分からなる酸化触媒
を伝熱面に塗布することを特徴とする酸化触媒のコート
構造を提供する。上記酸化触媒のコート構造は、原料ガ
ス入口から出口までの間に、触媒コート部と触媒非コー
ト部とを交互に設けることが好ましい。または、上記酸
化触媒のコート構造は、原料ガス流れ方向に対して前流
部は触媒塗布量を少なくし、後流部になるに従い触媒塗
布量を多くすることが好ましい。また、上記酸化触媒の
触媒成分が第8族の元素、あるいはMn、Co、Laを含む元
素の酸化物であることが好ましく、上記酸化触媒の触媒
担体成分がAl2O3、ZrO2、TiO2、若しくはSiO2、または
それらの混合物であることが好ましい。上記第8族の元
素としては、PtやPdが好ましく用いられる。本発明は、
さらに、上記酸化触媒のコート構造を表面に有すること
を特徴とする触媒一体型熱交換器を提供する。本発明に
係る触媒のコート構造を用いることで、伝熱面での反応
の均一化と、熱交換器の高効率化が達成される。
The present invention is configured as follows. The present invention provides a coating structure for an oxidation catalyst, characterized in that the catalyst component amount is distributed with respect to the flow direction of the raw material gas, and the oxidation catalyst comprising the catalyst component and the catalyst carrier component is applied to the heat transfer surface. provide. In the coating structure of the oxidation catalyst, it is preferable that a catalyst-coated portion and a non-catalyst-coated portion are alternately provided between a raw material gas inlet and an outlet. Alternatively, in the coating structure of the oxidation catalyst, it is preferable that the application amount of the catalyst is reduced in the upstream part with respect to the flow direction of the raw material gas, and the application amount of the catalyst is increased in the downstream part. Further, the catalyst component of the oxidation catalyst is preferably an oxide of an element of Group VIII or an element containing Mn, Co, and La, and the catalyst support component of the oxidation catalyst is Al 2 O 3 , ZrO 2 , 2 or SiO 2 , or a mixture thereof. Pt or Pd is preferably used as the Group 8 element. The present invention
Further, the present invention provides a catalyst-integrated heat exchanger, which has a coating structure of the oxidation catalyst on the surface. By using the catalyst coat structure according to the present invention, uniformity of the reaction on the heat transfer surface and high efficiency of the heat exchanger can be achieved.

【0011】[0011]

【発明の実施の形態】以下に図面に基づいて本発明に係
る触媒のコート構造について詳細に説明する。なお、以
下の説明は本発明を例示するものであって、限定するも
のではない。同じ部材には同じ符号を付して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The coating structure of a catalyst according to the present invention will be described below in detail with reference to the drawings. The following description is intended to illustrate the present invention, but not to limit it. The same members will be described with the same reference numerals.

【0012】本発明に係る触媒のコート構造の好ましい
形態の断面図を図1に、平面図を図2に示す。図1に示
すコート構造は、原料ガス入口10から触媒コート部1
2と触媒非コート部13を交互に設けることを特徴とす
る。原料ガス入口10から流入した原料ガス9中に含ま
れる水素は次式に従って反応する。 H2 + 1/2O2 → H2O (1) ここで、上記反応は従来の均一に塗布した触媒を用いた
反応であれば、水素の酸化燃焼反応は、原料ガス入口1
0付近の触媒の作用によって完結し、原料ガス出口11
付近にまで反応物である水素が到達することがなかっ
た。図1および図2に示す構造には、原料ガス入口10
付近には触媒非コート部13が設けられているため、最
初の触媒コート部12で反応しきれなかった水素が次の
触媒コート部に達して反応が進行する。
FIG. 1 is a cross-sectional view and FIG. 2 is a plan view of a preferred embodiment of the catalyst coating structure according to the present invention. The coat structure shown in FIG.
2 and the catalyst non-coated portion 13 are provided alternately. Hydrogen contained in the source gas 9 flowing from the source gas inlet 10 reacts according to the following equation. H 2 + 1 / 2O 2 → H 2 O (1) Here, if the above reaction is a reaction using a conventional uniformly coated catalyst, the oxidative combustion reaction of hydrogen is carried out at the raw material gas inlet 1
It is completed by the action of the catalyst near zero, and the raw material gas outlet 11
The reactant hydrogen did not reach the vicinity. The structure shown in FIG. 1 and FIG.
Since the catalyst non-coating portion 13 is provided in the vicinity, hydrogen that has not been completely reacted in the first catalyst coating portion 12 reaches the next catalyst coating portion and the reaction proceeds.

【0013】図3に上記の図1および図2に示した触媒
コート構造を伝熱面に設けた熱交換器に伝わる熱量を、
伝熱面の温度で模式的に表したグラフを示す。このよう
に触媒コート部12と触媒非コート部13を交互に設け
ることによって、酸化反応が生じる部位を分散化し、局
所的な発熱を抑制することができる。
FIG. 3 shows the amount of heat transmitted to the heat exchanger provided with the catalyst coat structure shown in FIG. 1 and FIG.
4 shows a graph schematically representing the temperature of the heat transfer surface. By alternately providing the catalyst coating portions 12 and the non-catalyst coating portions 13 in this manner, sites where an oxidation reaction occurs can be dispersed, and local heat generation can be suppressed.

【0014】本発明の好ましい実施の形態において、酸
化触媒の触媒成分としては、Pd、Pt等の第8族の元素、
あるいは第8族の元素の酸化物、Mn、Co、Laを含む元素
の酸化物、例えばPd、Pt、Ru、Ir、Rhの金属または酸化
物や、MnO2、CoO、La2O3等を用いることが好ましいが、
上記以外にはCrO2、CeO2等の酸化燃焼触媒を適宜用いる
ことができる。また、担体成分としてはAl2O3、ZrO2、T
iO2、若しくはSiO2、またはそれらの混合物あるいは複
合酸化物を用いることができるが、その他にも、WO3
を利用することができる。
In a preferred embodiment of the present invention, the catalyst component of the oxidation catalyst includes Group VIII elements such as Pd and Pt;
Alternatively, an oxide of an element of Group VIII, an oxide of an element containing Mn, Co, or La, such as a metal or oxide of Pd, Pt, Ru, Ir, or Rh, or MnO 2 , CoO, or La 2 O 3 It is preferred to use
In addition to the above, an oxidation combustion catalyst such as CrO 2 or CeO 2 can be used as appropriate. Further, as the carrier component, Al 2 O 3 , ZrO 2 , T
iO 2 or SiO 2 , or a mixture or composite oxide thereof can be used, but WO 3 or the like can also be used.

【0015】これらの酸化触媒は、スラリー状として、
ムライト、コージェライト、アルミニウムチタネート、
ジルコニアなどの耐熱性セラミックスまたは耐熱性金属
基材にウオッシュコートすることによって適用される。
図1に示すコート構造においては、触媒を塗布しない触
媒非コート部13を設ける。このとき、触媒非コート部
はマスキング処理しておく。適用の仕方としては、ウォ
ッシュコートの他、スラリー溶液への触媒コート部の浸
漬、触媒成分の溶射或いはメッキといった方法を用いる
こともできるが、これらに限定されない。
These oxidation catalysts are in the form of a slurry,
Mullite, cordierite, aluminum titanate,
It is applied by wash-coating a heat-resistant ceramic such as zirconia or a heat-resistant metal substrate.
In the coat structure shown in FIG. 1, a catalyst non-coat portion 13 where no catalyst is applied is provided. At this time, the uncoated portion of the catalyst is masked. As a method of application, besides wash coating, a method such as immersion of the catalyst coat portion in a slurry solution, thermal spraying of a catalyst component, or plating may be used, but is not limited thereto.

【0016】触媒コート部と触媒非コート部は、触媒塗
布面全長に対し約0.1〜1割の長さで交互に設けるこ
とが好ましい。但し、触媒の塗布量や触媒塗布面の全
長、原料ガスの流速にもよっても異なるのでこれに限定
されることなく、適当なピッチで触媒コート部と触媒非
コート部を設けた構造を設計することができる。例え
ば、原料ガス入口付近ではピッチを小さく、出口に近づ
くに従ってピッチを大きくするように塗布することもで
きる。
It is preferable that the catalyst-coated portion and the non-catalyst-coated portion are alternately provided at a length of about 0.1 to 10% of the entire length of the catalyst-coated surface. However, since it differs depending on the amount of the applied catalyst, the total length of the coated surface of the catalyst, and the flow rate of the raw material gas, the present invention is not limited to this, and a structure in which the catalyst coated portion and the catalyst non-coated portion are provided at an appropriate pitch is designed. be able to. For example, the coating may be performed so that the pitch is small near the source gas inlet and the pitch is increased as approaching the outlet.

【0017】本発明の別の形態においては、原料ガス入
口10から原料ガス出口11にかけて実質的に有効な触
媒成分量が増加するような勾配をもって塗布される。実
質的に有効な触媒成分量とは、反応が実質的に生じる
点、つまり触媒活性点の数によって決まる。従って触媒
成分のなかでも、PtとMnの酸化物のように活性が異なる
金属を用いた場合には、実質的に有効な触媒成分量が変
わってくる。例えば、出口付近の実質的に有効な触媒成
分量は入口付近の触媒成分量に対し、通常約5〜100
倍、好ましくは約10〜80倍、例えば約50倍となる
ように勾配を持たせて塗布するのが好ましいが、これに
限定されない。
In another embodiment of the present invention, the coating is performed with a gradient from the raw gas inlet 10 to the raw gas outlet 11 such that the effective catalyst component amount increases substantially. The substantially effective amount of the catalyst component depends on the point at which the reaction substantially occurs, that is, the number of catalytically active sites. Therefore, when a metal having a different activity such as an oxide of Pt and Mn is used among the catalyst components, the effective amount of the catalyst component changes substantially. For example, the substantially effective amount of the catalyst component near the outlet is usually about 5 to 100 with respect to the amount of the catalyst component near the inlet.
It is preferable to apply the coating with a gradient so as to make the application time, preferably about 10 to 80 times, for example, about 50 times, but is not limited to this.

【0018】本発明の他の形態を図4に示す。この実施
形態においては、原料ガスの流れの前流部に比較的触媒
活性の低いMn、Ni、Co等の酸化物を用いた触媒部15
が、後流部に比較的触媒活性の高いPd、Pt触媒部14が
塗布されたコート構造を有する。このように塗布するこ
とで、原料ガス入口10付近で反応が完結することがな
く、より活性点が多く存在する原料ガス出口11付近ま
で反応物である水素が到達して反応が生じる。
FIG. 4 shows another embodiment of the present invention. In this embodiment, a catalyst section 15 using an oxide such as Mn, Ni, Co or the like having relatively low catalytic activity in the upstream of the flow of the raw material gas.
However, it has a coat structure in which a Pd and Pt catalyst portion 14 having relatively high catalytic activity is applied to a downstream portion. By applying in this manner, the reaction is not completed in the vicinity of the raw material gas inlet 10, and the hydrogen as a reactant reaches the vicinity of the raw material gas outlet 11 where more active points exist, and the reaction occurs.

【0019】本発明のさらに別の形態である酸化触媒の
コート構造を図5に示す。図5に示す触媒のコート構造
構造おいては、ガス流れ方向に沿って、原料ガス入口1
0からMn、Ni、Co等の酸化物を用いた触媒部15と、P
d、Pt触媒部14とを交互に設けるように構成する。こ
の場合、図1に示すコート構造について説明したのと同
様の理由で、活性の高い触媒と低い触媒が交互に配置さ
れることによって、図3に示したような熱の分布がみら
れる。なお、触媒の種類はこれらに限定されることな
く、比較的活性の高い触媒と低い触媒を交互に設けるこ
とで同様の効果を達成することができる。比較的活性の
高い触媒としては、例えばPt、Pd等の金属あるいは酸化
物等、比較的活性の低い触媒にはMnO2、CoO、La2O3等を
用いることができる。
FIG. 5 shows a coating structure of an oxidation catalyst according to still another embodiment of the present invention. In the catalyst coat structure shown in FIG. 5, the raw material gas inlet 1 extends along the gas flow direction.
0 to a catalyst portion 15 using an oxide of Mn, Ni, Co, etc .;
d, the Pt catalyst section 14 is provided alternately. In this case, for the same reason as described for the coat structure shown in FIG. 1, the distribution of heat as shown in FIG. 3 is observed by alternately arranging the high-activity catalyst and the low-activity catalyst. The type of the catalyst is not limited to these, and the same effect can be achieved by alternately providing a relatively high activity catalyst and a low activity catalyst. As a relatively active catalyst, for example, a metal or oxide such as Pt or Pd can be used, and for a relatively low active catalyst, MnO 2 , CoO, La 2 O 3 or the like can be used.

【0020】次に、本発明に係る触媒のコート構造を有
する触媒一体型熱交換器を用いたPEFC装置につい
て、その実施の形態を説明する。図6は、本発明に係る
触媒のコート構造を有する触媒一体型熱交換器が好適に
適用されるPEFC装置の一実施の形態に関し、その概
要を説明するブロック図である。このPEFC装置1
は、蒸発器2、メタノール改質器3、燃料電池4を含
む。その機能を個々の装置の概要と共に説明する。
Next, an embodiment of a PEFC device using a catalyst-integrated heat exchanger having a catalyst coat structure according to the present invention will be described. FIG. 6 is a block diagram illustrating an outline of an embodiment of a PEFC device to which a catalyst-integrated heat exchanger having a catalyst coat structure according to the present invention is suitably applied. This PEFC device 1
Includes an evaporator 2, a methanol reformer 3, and a fuel cell 4. The function will be described together with the outline of each device.

【0021】蒸発器2には、本発明に係る触媒のコート
構造を有する触媒一体型熱交換器5が含まれている。供
給される水およびメタノールは、触媒一体型熱交換器5
の熱により気化し、メタノール改質器3に送られる。
The evaporator 2 includes a catalyst-integrated heat exchanger 5 having a catalyst coating structure according to the present invention. The supplied water and methanol are supplied to the catalyst-integrated heat exchanger 5.
And is sent to the methanol reformer 3.

【0022】メタノール改質器3では、メタノール改質
触媒によって、メタノール改質を行うための装置であ
り、メタノールと水の供給を受け、メタノールから水素
を得る。
The methanol reformer 3 is a device for performing methanol reforming with a methanol reforming catalyst, and receives supply of methanol and water to obtain hydrogen from methanol.

【0023】得られた水素は、燃料電池4に送られる。
燃料電池4は、アノード電極においてアノード電極触媒
による反応によって生じるH+が拡散する。一方、カソ
ード電極においてカソード電極触媒による反応によって
2Oが生成する。これらの反応を合わせて電池反応が
構成され、起電力を得ることができる。
The obtained hydrogen is sent to the fuel cell 4.
In the fuel cell 4, H + generated by the reaction of the anode electrode catalyst at the anode electrode diffuses. On the other hand, H 2 O is generated at the cathode electrode by the reaction of the cathode electrode catalyst. A battery reaction is configured by combining these reactions, and an electromotive force can be obtained.

【0024】燃料電池4からの水素を含むオフガスは蒸
発器2に送られ、オフガス中に20%程度含まれる水素
を燃焼触媒により燃焼して、水、メタノールをガス化す
る機能を果たしている。
The off-gas containing hydrogen from the fuel cell 4 is sent to the evaporator 2 and functions to gasify water and methanol by combusting about 20% of hydrogen contained in the off-gas with a combustion catalyst.

【0025】図7に上記PEFC装置で使用される、触
媒一体型熱交換器5を含む蒸発器2の斜視図を示す。蒸
発器2は多数のフィンが平行に並んだ構造をしており、
図8に示すように一枚一枚のフィン17が触媒一体型熱
交換器5となっている。このフィン17の間に水素を含
んだ原料ガス9が供給され、上記水素の酸化燃焼反応が
生じる。また、蒸発器2には水、メタノールを含む蒸発
用液流れ16が供給され、燃焼反応で生じた反応熱によ
りこれらを蒸発させる。
FIG. 7 is a perspective view of the evaporator 2 including the catalyst-integrated heat exchanger 5 used in the PEFC apparatus. The evaporator 2 has a structure in which many fins are arranged in parallel,
As shown in FIG. 8, each fin 17 constitutes a catalyst-integrated heat exchanger 5. The source gas 9 containing hydrogen is supplied between the fins 17, and the oxidative combustion reaction of the hydrogen occurs. Further, the evaporator 2 is supplied with an evaporating liquid stream 16 containing water and methanol, and evaporates them by reaction heat generated in the combustion reaction.

【0026】本発明に係る酸化触媒のコート構造を設け
た触媒一体型熱交換器をPEFC装置に使用した場合、
水素の酸化燃焼反応が熱交換器の伝熱面上で均一に生じ
るため、従来のものに比べて熱効率を上昇させることが
できる。また、伝熱面に均一に熱が供給されるため、応
力による装置の破損等の問題もなくなる。以下に本発明
の実施例を挙げ、本発明をさらに詳細に説明するが、こ
れは本発明を制限する意図ではない。
When the catalyst-integrated heat exchanger provided with the oxidation catalyst coat structure according to the present invention is used in a PEFC device,
Since the oxidative combustion reaction of hydrogen occurs uniformly on the heat transfer surface of the heat exchanger, the thermal efficiency can be increased as compared with the conventional one. Further, since heat is uniformly supplied to the heat transfer surface, there is no problem such as breakage of the device due to stress. Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention, but this is not intended to limit the present invention.

【0027】[0027]

【実施例】[実施例1 触媒の調製] (1)ZrO2-Al2O3担体の調製 オキシ塩化ジルコニウム8水和物106gをイオン交換水に
溶解し、pH=2になるようにイオン交換水を加える。次に
γアルミナ365gを加え、3時間撹拌後、アンモニア水を
pH=9になるまで滴下した。1時間そのまま撹拌後、沈殿
物をろ過、洗浄した。さらに乾燥機で一昼夜乾燥後、電
気炉で500℃、5時間焼成してZrO2-Al2O 3担体(ZrO2:A
l2O3=10:90重量比)を調製した。
EXAMPLES Example 1 Preparation of Catalyst (1) ZrOTwo-AlTwoOThreePreparation of carrier 106 g of zirconium oxychloride octahydrate in ion-exchanged water
Dissolve and add ion-exchanged water to pH = 2. next
After adding 365 g of γ-alumina and stirring for 3 hours,
It was added dropwise until pH = 9. After stirring for 1 hour, precipitate
The material was filtered and washed. After drying with a dryer all day and night,
Bake at 500 ° C for 5 hours in an air furnace and ZrOTwo-AlTwoO ThreeCarrier (ZrOTwo: A
lTwoOThree= 10: 90 weight ratio).

【0028】(2)PdO-Pt-La2O3/ZrO2-Al2O3触媒の調
製 上記(1)で調製した担体100gを硝酸パラジウム(Pd(N
O3)2 Mw 230.4)、ジニトロジアミン白金(Pt(NO2)2(NH
3)2 Mw 321.0)硝酸溶液および硝酸ランタン(La(NO3)3
・6H2O Mw432.9)水溶液に浸漬、120℃で乾燥、500℃で
3時間焼成し、PdOを11.5 wt%、Ptを5 wt%およびLa2O3
を5wt%担持した触媒を調製した。
(2) Preparation of PdO—Pt—La 2 O 3 / ZrO 2 —Al 2 O 3 Catalyst 100 g of the carrier prepared in the above (1) was charged with palladium nitrate (Pd (N
O 3 ) 2 Mw 230.4), dinitrodiamine platinum (Pt (NO 2 ) 2 (NH
3 ) 2 Mw 321.0) nitric acid solution and lanthanum nitrate (La (NO 3 ) 3
・ 6H 2 O Mw 432.9) Immersion in an aqueous solution, drying at 120 ° C., calcination at 500 ° C. for 3 hours, 11.5 wt% of PdO, 5 wt% of Pt, and La 2 O 3
Was prepared at 5 wt%.

【0029】[実施例2 触媒のコート構造]実施例1
により調製した触媒粉末100gに水500g、無機バインダー
15gを混ぜ、ボールミルで5h混合し、平均触媒径約10μm
のスラリーを調製した。なお、熱交換器へのスラリー溶
液に触媒塗布部を浸漬するか、触媒含有スラリーをミス
ト状にして触媒コート部に吹き付けるウォッシュコート
により実施した。部分的にコートする場合にはコートし
ない部分にマスキング処理した。
Example 2 Catalyst Coating Structure Example 1
500g of water to 100g of catalyst powder prepared by
Mix 15g, mix with ball mill for 5h, average catalyst diameter about 10μm
Was prepared. In addition, the catalyst application part was immersed in the slurry solution to a heat exchanger, or the catalyst containing slurry was made into the mist form, and it carried out by the wash coat which sprays on a catalyst coating part. In the case of partial coating, the uncoated portion was masked.

【0030】[0030]

【発明の効果】上記のように原料ガス流れ方向に対して
触媒成分量に分布を持たせて、触媒成分および触媒担体
成分からなる酸化触媒を伝熱面に塗布した触媒のコート
構造を用いて反応することにより、ガス流れ方向に沿っ
て反応量を均一化することが可能になる。また、本発明
の触媒のコート構造を触媒一体型熱交換器の伝熱面に設
けることにより、熱を均一に供給し、熱交換器の高効率
化を達成することができる。
As described above, the amount of the catalyst component is distributed with respect to the flow direction of the raw material gas, and the oxidation catalyst comprising the catalyst component and the catalyst carrier component is applied to the heat transfer surface by using a catalyst coating structure. By reacting, it is possible to make the reaction amount uniform along the gas flow direction. Further, by providing the catalyst coat structure of the present invention on the heat transfer surface of the heat exchanger with integrated catalyst, heat can be uniformly supplied, and the efficiency of the heat exchanger can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、触媒コート部と触媒非コート部を交互
に設けた触媒一体型熱交換器の断面図である。
FIG. 1 is a cross-sectional view of a catalyst-integrated heat exchanger in which a catalyst coat portion and a catalyst non-coat portion are provided alternately.

【図2】図2は、触媒コート部と触媒非コート部を交互
に設けた触媒一体型熱交換器の平面図である。
FIG. 2 is a plan view of a catalyst-integrated heat exchanger in which a catalyst coat portion and a catalyst non-coat portion are provided alternately.

【図3】図3は図1、図2に示す触媒一体型熱交換器で
発生する熱量を伝熱面の温度で模式的に示したグラフで
ある。
FIG. 3 is a graph schematically showing the amount of heat generated in the catalyst-integrated heat exchanger shown in FIGS. 1 and 2 using the temperature of a heat transfer surface.

【図4】図4は、実質的に有効な触媒成分量の少ない触
媒を前流部に、多い触媒を後流部に塗布した触媒一体型
熱交換器の断面図である。
FIG. 4 is a cross-sectional view of a catalyst-integrated heat exchanger in which a catalyst having a substantially less effective amount of a catalyst component is applied to a upstream portion and a catalyst having a large amount is applied to a downstream portion.

【図5】図5は、実質的に有効な触媒成分量の異なる触
媒を交互に塗布した触媒一体型熱交換器の断面図であ
る。
FIG. 5 is a cross-sectional view of a catalyst-integrated heat exchanger in which catalysts having substantially different effective catalyst component amounts are alternately applied.

【図6】図6は、本発明の触媒一体型熱交換器を含む蒸
発器を構成要素とする、PEFC装置の一実施の形態の
概要を説明するブロック図である。
FIG. 6 is a block diagram illustrating an outline of an embodiment of a PEFC device having an evaporator including a catalyst-integrated heat exchanger of the present invention as a component.

【図7】図7はPEFC装置で使用される蒸発器の斜視
図である。
FIG. 7 is a perspective view of an evaporator used in a PEFC device.

【図8】図8は、図7に示す蒸発器のフィン部分の拡大
図である。
FIG. 8 is an enlarged view of a fin portion of the evaporator shown in FIG. 7;

【図9】図9は、従来型の触媒一体型熱交換器の断面図
である。
FIG. 9 is a cross-sectional view of a conventional catalyst-integrated heat exchanger.

【図10】図10は、従来型の触媒一体型熱交換器で発
生する熱量を伝熱面の温度で模式的に示したグラフであ
る。
FIG. 10 is a graph schematically showing the amount of heat generated by a conventional catalyst-integrated heat exchanger by the temperature of a heat transfer surface.

【符号の説明】[Explanation of symbols]

1 PEFC装置 2 蒸発器 3 メタノール改質器 4 燃料電池 5 触媒一体型熱交換器 6 酸化触媒 7 伝熱面 8 熱交換器 9 原料ガス 10 原料ガス入口 11 原料ガス出口 12 触媒コート部 13 触媒非コート部 14 Pd、Pt触媒部 15 Mn、Ni、Co等の酸化物を用いた触媒部 16 蒸発用液流れ 17 フィン DESCRIPTION OF SYMBOLS 1 PEFC apparatus 2 Evaporator 3 Methanol reformer 4 Fuel cell 5 Catalyst integrated heat exchanger 6 Oxidation catalyst 7 Heat transfer surface 8 Heat exchanger 9 Raw material gas 10 Raw material gas inlet 11 Raw material gas outlet 12 Catalyst coat part 13 Catalyst non-catalyst Coating part 14 Pd, Pt catalyst part 15 Catalyst part using oxides of Mn, Ni, Co, etc. 16 Evaporation liquid flow 17 Fin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/04 H01M 8/06 A 5H027 8/06 8/10 8/10 B01J 23/56 301M (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA02 EA06 EB03 EB44 4G069 AA01 AA03 AA08 BA01A BA01B BA02A BA04A BA05A BA05B BB06A BB06B BC42A BC42B BC62A BC65A BC67A BC69A BC72B BC75B CC32 DA06 FA02 FB16 FB17 FB18 4G075 AA03 AA62 BA06 BD14 CA45 CA54 DA02 EA05 EE03 FB02 FB04 4G140 EA02 EA06 EB03 EB44 5H026 AA06 5H027 AA06 BA09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/04 H01M 8/06 A 5H027 8/06 8/10 8/10 B01J 23/56 301M (72) Inventor Masanao Yonemura 4-2-2 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory F-term (reference) 4G040 EA02 EA06 EB03 EB44 4G069 AA01 AA03 AA08 BA01A BA01B BA02A BA04A BA05A BA05B BB06A BB06A BC42 BC BC65A BC67A BC69A BC72B BC75B CC32 DA06 FA02 FB16 FB17 FB18 4G075 AA03 AA62 BA06 BD14 CA45 CA54 DA02 EA05 EE03 FB02 FB04 4G140 EA02 EA06 EB03 EB44 5H026 AA06 5H027 AA06 BA09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原料ガス流れ方向に対して触媒成分量に
分布を持たせて、該触媒成分および触媒担体成分からな
る酸化触媒を伝熱面に塗布することを特徴とする酸化触
媒のコート構造。
1. A coating structure for an oxidation catalyst, wherein an oxidation catalyst comprising the catalyst component and a catalyst carrier component is applied to a heat transfer surface with a distribution in the amount of the catalyst component in the flow direction of the raw material gas. .
【請求項2】 原料ガス入口から出口までの間に、触媒
コート部と触媒非コート部とを交互に設けることを特徴
とする請求項1に記載の酸化触媒のコート構造。
2. The oxidation catalyst coating structure according to claim 1, wherein catalyst coating portions and catalyst non-coating portions are provided alternately between a raw material gas inlet and an outlet.
【請求項3】 原料ガス流れ方向に対して前流部は触媒
塗布量を少なくし、後流部になるに従い触媒塗布量を多
くすることを特徴とする、請求項1に記載の酸化触媒の
コート構造。
3. The oxidation catalyst according to claim 1, wherein the amount of the applied catalyst is reduced in the upstream portion with respect to the flow direction of the raw material gas, and the applied amount of the catalyst is increased in the downstream portion. Coat structure.
【請求項4】 上記酸化触媒の触媒成分が第8族の元
素、あるいはMn、Co、Laを含む元素の酸化物であること
を特徴とする、請求項1〜3のいずれかに記載の酸化触
媒のコート構造。
4. The oxidation according to claim 1, wherein a catalyst component of the oxidation catalyst is an oxide of an element belonging to Group 8 or an element containing Mn, Co, and La. Catalyst coating structure.
【請求項5】 上記酸化触媒の触媒担体成分がAl2O3、Z
rO2、TiO2、若しくはSiO2、またはそれらの混合物であ
ることを特徴とする、請求項1〜4のいずれかに記載の
酸化触媒のコート構造。
5. The catalyst carrier component of the oxidation catalyst is Al 2 O 3 , Z
and rO 2, TiO 2, or wherein the SiO 2, or mixtures thereof, coated structure of the oxidation catalyst according to claim 1.
【請求項6】 請求項1〜5のいずれかに記載の酸化触
媒のコート構造を表面に有することを特徴とする触媒一
体型熱交換器。
6. A catalyst-integrated heat exchanger having a coating structure of the oxidation catalyst according to claim 1 on a surface thereof.
JP2000320138A 2000-10-20 2000-10-20 Oxidation catalyst coat structure Pending JP2002126525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320138A JP2002126525A (en) 2000-10-20 2000-10-20 Oxidation catalyst coat structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320138A JP2002126525A (en) 2000-10-20 2000-10-20 Oxidation catalyst coat structure

Publications (1)

Publication Number Publication Date
JP2002126525A true JP2002126525A (en) 2002-05-08

Family

ID=18798469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320138A Pending JP2002126525A (en) 2000-10-20 2000-10-20 Oxidation catalyst coat structure

Country Status (1)

Country Link
JP (1) JP2002126525A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126002A (en) * 1993-10-29 1995-05-16 Aqueous Res:Kk Fuel-reforming device
JPH10148402A (en) * 1996-11-18 1998-06-02 Nippon Soken Inc Catalytic combustion heater
JPH10160130A (en) * 1996-11-25 1998-06-19 Nippon Soken Inc Catalyst combustion heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126002A (en) * 1993-10-29 1995-05-16 Aqueous Res:Kk Fuel-reforming device
JPH10148402A (en) * 1996-11-18 1998-06-02 Nippon Soken Inc Catalytic combustion heater
JPH10160130A (en) * 1996-11-25 1998-06-19 Nippon Soken Inc Catalyst combustion heater

Similar Documents

Publication Publication Date Title
US7732084B2 (en) Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
EP0968958B1 (en) Reformer
JP6439190B2 (en) Power generation apparatus using ammonia as fuel and power generation method using the power generation apparatus
CN102600720B (en) The method of the perovskite-based catalyst applied, catalyst combination and process gas stream
US20100221667A1 (en) Catalyst For Microelectromechanical Systems Microreactors
JP2003512150A (en) Nitrogen oxide conversion in the presence of a catalyst supported on a mesh-like structure
JP2002511383A (en) Fuel gas reformer with catalyst wall
KR100823477B1 (en) Reformer used in fuel cell, and fuel cell system comprising same
JPWO2010122855A1 (en) Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
JP2001232203A (en) Methanol modifying catalyst and methanol modifying method
EP0665047B1 (en) New three-way catalysts with PT, RH and PD, each supported on a separate support
WO2016114214A1 (en) Fuel cell system, power generation method, and power generation device
Huang et al. NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells
CN1223402C (en) Carbon monoxide selective oxidation catalyst under hydrogen-rich condition and preparing method thereof
JP2002126525A (en) Oxidation catalyst coat structure
JPH1085586A (en) Functional material, oxidizing catalyst, combustion catalyst, methanol modified catalyst and electrode catalyst
JP4029575B2 (en) Fuel reformer
CN112673125B (en) Metal porous body, steam reformer including the same, and method of manufacturing the metal porous body
JP2002265202A (en) Reforming apparatus and its scavenging method
JP2000007304A (en) Reforming reactor
CN101257126B (en) Reformer for fuel cell and fuel cell system comprising the same
JP3948170B2 (en) Electrochemical catalyst for exhaust gas purification
US20150030945A1 (en) Fuel cell system and its use
US20210046457A1 (en) Exhaust gas purification catalyst
JP4535095B2 (en) Nitrogen oxide decomposition catalyst, nitrogen oxide decomposition apparatus including the same, and nitrogen oxide decomposition method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100618