JP2002125320A - Distributed power system - Google Patents

Distributed power system

Info

Publication number
JP2002125320A
JP2002125320A JP2000312287A JP2000312287A JP2002125320A JP 2002125320 A JP2002125320 A JP 2002125320A JP 2000312287 A JP2000312287 A JP 2000312287A JP 2000312287 A JP2000312287 A JP 2000312287A JP 2002125320 A JP2002125320 A JP 2002125320A
Authority
JP
Japan
Prior art keywords
power supply
power
circuit
polarity
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000312287A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kurio
信広 栗尾
Osamu Yoshida
修 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000312287A priority Critical patent/JP2002125320A/en
Publication of JP2002125320A publication Critical patent/JP2002125320A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To fully protect a load from a voltage drop by cutting off a system in a short time using a forced arc-extinguishing signal outputted from a power converter, even if disconnection causes system troubles. SOLUTION: An energy storage part 6 is provided on DC side of the power converter 5 which is connected between a system power supply 1 and a load 2 via an interconnection transformer 4. In the event of power failure of the system power supply 1, a system interconnection switch 7, interconnected between the system power supply 1 and the power converter 5 and having no self arc-extinguishing capability is turned off by the forced arc-extinguishing signal outputted from the power converter 5, and off status of the system interconnection switch 7 is detected by a control circuit 15. In this distributed power supply system which allows the power converter 5 to carry out self-driving by converting the power converter 5 from a current control mode to a voltage control mode, the control circuit 15 is provided with a zero-phase-voltage generation preventing circuit which forcibly causes the polarity of prescribed phase system current to be reversed, if wrong determination makes the polarity of the system current the identical for all the three phases in the event of power failure in the system power supply 1 caused by disconnection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は分散電源システムに
関し、詳しくは、負荷平準化用分散電源を系統電源に連
系させ、系統事故時に負荷への電力供給を継続するため
に分散電源を瞬時に系統から切り離し、その分散電源の
自立運転で負荷に電力供給する分散電源システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed power supply system, and more particularly, to linking a distributed power supply for load leveling to a system power supply and instantaneously switching the distributed power supply to maintain power supply to a load in the event of a system failure. The present invention relates to a distributed power supply system that is separated from a power system and supplies power to a load by independent operation of the distributed power supply.

【0002】[0002]

【従来の技術】例えば、負荷平準化用分散電源を系統電
源に連系させた分散電源システムでは、常に電力供給を
必要とする負荷(以下、重要負荷と称す)を停電などの
系統事故による瞬時電圧低下から保護するため、系統事
故時、分散電源を瞬時に系統から切り離し、その分散電
源の自立運転で重要負荷に電力供給する停電補償機能を
有する。
2. Description of the Related Art For example, in a distributed power supply system in which a distributed power supply for load leveling is connected to a system power supply, a load that always requires power supply (hereinafter referred to as an important load) is instantaneously caused by a system failure such as a power failure. In order to protect against voltage drop, in the event of a system failure, the distributed power supply is instantaneously disconnected from the system, and has a power failure compensation function for supplying power to important loads by independent operation of the distributed power supply.

【0003】図4は系統電源1と負荷2との間に分散電
源3を具備した分散電源システムの主回路構成例を示
す。この分散電源システムは、系統電源1と重要負荷2
との間に連系変圧器4を介して接続された電力変換器5
の直流側にエネルギー貯蔵部6を設けた概略構成を有す
る。前記系統電源1と電力変換器5との間には、系統事
故時に分散電源3を瞬時に系統から切り離すための系統
連系スイッチ7が設けられている。
FIG. 4 shows an example of a main circuit configuration of a distributed power supply system having a distributed power supply 3 between a system power supply 1 and a load 2. This distributed power supply system comprises a system power supply 1 and an important load 2
And a power converter 5 connected via an interconnecting transformer 4
And has a schematic configuration in which an energy storage unit 6 is provided on the DC side. A system interconnection switch 7 is provided between the system power supply 1 and the power converter 5 to instantaneously disconnect the distributed power supply 3 from the system in the event of a system failure.

【0004】前記電力変換器5は、インバータ機能と整
流機能を有する双方向形交直変換器で、系統電源1によ
る電力を直流変換してエネルギー貯蔵部6に充電する整
流運転と、エネルギー貯蔵部6に充電された直流電力を
交流変換して重要負荷2に電力供給するインバータ運転
とに切り換え制御される。また、エネルギー貯蔵部6と
しては、鉛電池などの充放電可能な二次電池が使用され
ている。さらに、系統連系スイッチ7としては、自己消
弧能力を持たない半導体素子であるサイリスタスイッチ
が使用されている。
[0004] The power converter 5 is a bidirectional AC / DC converter having an inverter function and a rectifying function. The control is switched to an inverter operation in which the DC power charged to the inverter is converted to AC and supplied to the important load 2. As the energy storage unit 6, a chargeable / dischargeable secondary battery such as a lead battery is used. Further, as the system interconnection switch 7, a thyristor switch, which is a semiconductor element having no self-extinguishing ability, is used.

【0005】系統電源1が正常なときは、負荷平準化を
目的として、系統電源1と分散電源3との間で電力の授
受を実行する連系運転が行われ、電力変換器5を電流制
御モードで動作させている。この系統電源1と分散電源
3との間での電力の授受は、前述したように電力変換器
5の整流運転により系統電源1の電力をエネルギー貯蔵
部6に充電し、また、そのエネルギー貯蔵部6に充電さ
れた電力を電力変換器5のインバータ運転により系統に
出力することにより行われる。
[0005] When the system power supply 1 is normal, an interconnection operation for executing power transfer between the system power supply 1 and the distributed power supply 3 is performed for the purpose of load leveling, and the power converter 5 is controlled by current. Operating in mode. The transmission and reception of power between the system power supply 1 and the distributed power supply 3 is performed by charging the power of the system power supply 1 to the energy storage unit 6 by the rectifying operation of the power converter 5 as described above. This is performed by outputting the electric power charged to 6 to the system by the inverter operation of the power converter 5.

【0006】このように負荷平準化を目的とする分散電
源3の連系運転では、例えば夜間の軽負荷時に系統電源
側から分散電源側へ充電が行われ、昼間の重負荷時に分
散電源側から系統電源側へ放電が行われ、これにより分
散電源3を所有する電力需要家の契約電力のピーク値を
カットし、電力需要家が消費する電力の基本料金を低減
化すると共に、電気料金の低い深夜電力の利用が可能と
なっている。
As described above, in the interconnection operation of the distributed power source 3 for load leveling, for example, charging is performed from the system power source to the distributed power source during a light load at night, and from the distributed power source during a heavy load during the day. Discharge is performed to the system power source side, thereby cutting the peak value of the contract power of the power consumer who owns the distributed power source 3, reducing the basic price of the power consumed by the power consumer, and reducing the electricity price. It is possible to use midnight power.

【0007】一方、系統事故により瞬時電圧低下が発生
したときには、系統電源1と重要負荷2との間に接続さ
れた系統連系スイッチ7を遮断することにより、分散電
源3を系統から切り離し、電力変換器5を電流制御モー
ドから電圧制御モードへ切り換えて動作させ、分散電源
3の自立運転に移行する。
On the other hand, when an instantaneous voltage drop occurs due to a system fault, the distributed power source 3 is disconnected from the system by shutting off the system interconnection switch 7 connected between the system power source 1 and the important load 2. The converter 5 is operated by switching from the current control mode to the voltage control mode, and shifts to the self-sustaining operation of the distributed power supply 3.

【0008】つまり、分散電源3の連系運転時の電流制
御モードは、インピーダンスが無限大に小さい電圧源、
つまり、系統電源1が存在する場合には有効であるが、
系統事故により系統連系スイッチ7を遮断すると、前記
系統電源1が切り離されることにより存在しなくなるの
で、この電流制御モードでは分散電源3を自立運転する
ことができずに電力変換器5が停止してしまうため、電
力変換器5を電圧制御モードに切り換えて分散電源3を
自立運転させる必要がある。
That is, the current control mode during the interconnection operation of the distributed power source 3 is a voltage source having an infinitely small impedance,
That is, it is effective when the system power supply 1 exists,
When the system interconnection switch 7 is cut off due to a system accident, the system power supply 1 is cut off and becomes inexistent. Therefore, in this current control mode, the distributed power supply 3 cannot operate independently and the power converter 5 stops. Therefore, it is necessary to switch the power converter 5 to the voltage control mode and operate the distributed power supply 3 independently.

【0009】前記系統事故で系統電圧が瞬時に低下した
ときには、その瞬時電圧低下を検出して分散電源3の連
系運転時の制御モードである電流制御モードを停止する
と共に、系統連系スイッチ7の点弧信号を停止する。
When the system voltage drops instantaneously due to the system fault, the instantaneous voltage drop is detected to stop the current control mode, which is the control mode during the interconnection operation of the distributed power source 3, and to switch the system interconnection switch 7 To stop the ignition signal.

【0010】ここで、系統連系スイッチ7は自己消弧能
力を持たないため、導通中にある系統連系スイッチ7に
流れる電流の極性を判定し、その判定結果に基づいてそ
の系統連系スイッチ7に流れる電流と逆極性、つまり、
導通中の系統連系スイッチ7に流れる電流を減ずる極性
の強制消弧信号を電力変換器5から出力し、その強制消
弧信号により、系統連系スイッチ7に流れる電流を強制
的に零とすることで系統連系スイッチ7をOFFする。
Here, since the system interconnection switch 7 has no self-extinguishing ability, the polarity of the current flowing through the system interconnection switch 7 which is conducting is determined, and based on the determination result, the system interconnection switch 7 is switched on. 7, the polarity opposite to the current flowing through
The power converter 5 outputs a forced arc extinguishing signal having a polarity for reducing the current flowing in the conducting system interconnection switch 7, and forcibly sets the current flowing in the system interconnection switch 7 to zero by the forced arc extinguishing signal. As a result, the system interconnection switch 7 is turned off.

【0011】この系統連系スイッチ7をOFFした上で
分散電源3の連系運転時の電力変換器5の電流制御モー
ドを電圧制御モードに切り換えて、分散電源3の自立運
転へ移行する。この分散電源3の自立運転により、分散
電源3による重要負荷2への電力供給を継続するように
している。
After the system interconnection switch 7 is turned off, the current control mode of the power converter 5 during the interconnection operation of the distributed power source 3 is switched to the voltage control mode, and the operation of the distributed power source 3 is shifted to the independent operation. By the self-sustained operation of the distributed power supply 3, the power supply to the important load 2 by the distributed power supply 3 is continued.

【0012】[0012]

【発明が解決しようとする課題】ところで、前述した系
統事故(図中A点)には、落雷や飛来物などによる短絡
事故と遮断器の故障による開放事故の二つの形態があ
る。系統事故が短絡事故の場合には、その短絡事故の発
生時、系統連系スイッチ7に電流が流れているため、前
述したように導通中にある系統連系スイッチ7に流れる
電流の極性を判定し、その判定結果に基づいてその系統
連系スイッチ7に流れる電流と逆極性の強制消弧信号を
電力変換器5から出力し、その強制消弧信号により、系
統連系スイッチ7に流れる電流を強制的に零とすること
で系統連系スイッチ7をOFFすることができる。
By the way, there are two types of the above-mentioned system accidents (point A in the figure), namely, a short-circuit accident due to a lightning strike or a flying object and an open accident due to a failure of a circuit breaker. When the system fault is a short-circuit fault, when the short-circuit fault occurs, a current flows through the grid connection switch 7, so that the polarity of the current flowing through the grid connection switch 7 that is conducting as described above is determined. Then, based on the determination result, a forced arc extinguishing signal having a polarity opposite to that of the current flowing through the system interconnection switch 7 is output from the power converter 5, and the current flowing through the system interconnection switch 7 is output by the forced arc extinguishing signal. By forcibly setting it to zero, the system interconnection switch 7 can be turned off.

【0013】従って、系統連系スイッチ7の強制消弧に
より分散電源3を系統から瞬時に切り離すことができ、
電力変換器5を電流制御モードから電圧制御モードへ切
り換えて分散電源3の自立運転へ迅速に移行することが
できる。
Therefore, the distributed power source 3 can be instantaneously disconnected from the system by the forced arc extinguishing of the system interconnection switch 7,
By switching the power converter 5 from the current control mode to the voltage control mode, it is possible to quickly shift to the independent operation of the distributed power supply 3.

【0014】しかしながら、系統事故が開放事故である
場合には、系統連系スイッチ7を流れる電流が零である
ため、その系統連系スイッチ7に流れる電流の極性を判
定することが困難となる。例えば、三相三線式交流の電
力系統では、通常発生しない電流極性パターン、つま
り、三相(u相、v相、w相)のすべてが同一極性とな
る零相パターンが誤判定結果として発生することが考え
られる。
However, when the system fault is an open fault, since the current flowing through the system connection switch 7 is zero, it is difficult to determine the polarity of the current flowing through the system connection switch 7. For example, in a three-phase three-wire AC power system, a current polarity pattern that does not normally occur, that is, a zero-phase pattern in which all three phases (u-phase, v-phase, and w-phase) have the same polarity occurs as an erroneous determination result. It is possible.

【0015】この場合、零相パターンの誤判定結果に基
づいて電力変換器5から零相の強制消弧信号を出力する
ことになる。ここで、電力変換器5の出力側に設けられ
ている連系変圧器4は零相電圧を系統側に出力すること
ができないため、前記電力変換器5から出力される零相
の強制消弧信号による系統連系スイッチ7の両端の差電
圧発生を確認することができない。
In this case, the power converter 5 outputs a zero-phase forced extinguishing signal based on the result of the erroneous determination of the zero-phase pattern. Here, since the interconnection transformer 4 provided on the output side of the power converter 5 cannot output the zero-phase voltage to the system side, forcibly extinguish the zero-phase output from the power converter 5. The generation of the difference voltage between both ends of the system interconnection switch 7 due to the signal cannot be confirmed.

【0016】その結果、系統連系スイッチ7のOFFを
瞬時に確認することができず、開放事故による電圧低下
が長引くことになり、重要負荷2を停電から保護するこ
とが困難になる。
As a result, the OFF of the system interconnection switch 7 cannot be confirmed instantaneously, the voltage drop due to the opening accident is prolonged, and it becomes difficult to protect the important load 2 from a power failure.

【0017】そこで、本発明は前記問題点に鑑みて提案
されたもので、その目的とするところは、系統事故が開
放事故の場合であっても、電力変換器から出力される強
制消弧信号により系統連系スイッチを短時間でOFF
し、重要負荷を瞬時電圧低下から確実に保護し得る分散
電源システムを提供することにある。
Therefore, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to provide a forced arc-extinguishing signal output from a power converter even when a system fault is an open fault. OFF the system interconnection switch in a short time
Another object of the present invention is to provide a distributed power supply system capable of reliably protecting an important load from an instantaneous voltage drop.

【0018】[0018]

【課題を解決するための手段】前記目的を達成するため
の技術的手段として、本発明は、系統電源と負荷との間
に連系変圧器を介して接続された電力変換器の直流側に
分散電源を設け、前記系統電源の停電時、系統電源と電
力変換器間に介設され、かつ、自己消弧能力を持たない
系統連系スイッチを、前記電力変換器から出力される強
制消弧信号によりOFFし、その系統連系スイッチのO
FFを制御回路により検出し、その制御回路からの出力
指令に基づいて前記電力変換器を電流制御モードから電
圧制御モードに切り換えて自立運転させることにより、
前記分散電源の直流電圧を電力変換器で電力変換して負
荷に供給する分散電源システムにおいて、前記制御回路
は、開放事故による系統電源の停電時、系統電流の極性
が三相すべて同一となると、任意の一相の系統電流の極
性を強制的に反転させる零相電圧発生防止回路を具備し
たことを特徴とする(請求項1)。
As a technical means for achieving the above object, the present invention provides a power converter connected between a system power supply and a load via an interconnection transformer on the DC side. A distributed power supply is provided, and in the event of a power failure of the system power supply, a system interconnection switch interposed between the system power supply and the power converter and having no self-extinguishing capability is forcibly extinguished by the power converter. It is turned off by the signal, and the O
FF is detected by a control circuit, and based on an output command from the control circuit, the power converter is switched from a current control mode to a voltage control mode to operate independently,
In a distributed power supply system for supplying a load by converting the DC voltage of the distributed power supply with a power converter and supplying the load to the load, the control circuit includes: A zero-phase voltage generation prevention circuit for forcibly inverting the polarity of an arbitrary one-phase system current is provided (claim 1).

【0019】本発明に係る分散電源システムでは、系統
電源の停電が開放事故による場合、系統連系スイッチに
流れる電流が零となっても、その系統連系スイッチの両
端に差電圧を発生させることが容易となる。
In the distributed power supply system according to the present invention, when a power failure of the system power supply is caused by an open accident, even if the current flowing through the system connection switch becomes zero, a differential voltage is generated at both ends of the system connection switch. Becomes easier.

【0020】つまり、開放事故により系統連系スイッチ
を流れる電流が零となり、系統電流の極性が三相すべて
同一となる零相パターンが誤判定結果として発生して
も、制御回路の零相電圧発生防止回路により、任意の一
相の系統電流の極性を反転させることで、所定の電圧値
を持つ強制消弧信号を生成することができ、その結果、
この電力変換器から連系変圧器を介して出力される強制
消弧信号により系統連系スイッチを瞬時にOFFするこ
とができる。
In other words, even if the current flowing through the grid connection switch becomes zero due to the opening accident and a zero-phase pattern in which the polarity of the system current is the same for all three phases occurs as an erroneous determination result, the zero-phase voltage generation of the control circuit occurs. By inverting the polarity of any one-phase system current by the prevention circuit, a forced arc extinguishing signal having a predetermined voltage value can be generated. As a result,
The system interconnection switch can be instantaneously turned off by a forced arc extinguishing signal output from the power converter via the interconnection transformer.

【0021】請求項1に記載した前記制御回路は、零相
電圧発生防止回路の前段に、零クロス比較回路により系
統電流の極性を判定する極性判定回路を具備したことを
特徴とする(請求項2)。
According to a first aspect of the present invention, the control circuit further comprises a polarity determination circuit for determining the polarity of the system current by a zero cross comparison circuit at a stage preceding the zero-phase voltage generation prevention circuit. 2).

【0022】開放事故による系統電源の停電時、この極
性判定回路の零クロス比較回路により、系統電流の極性
が三相すべて同一となる零相パターンが誤判定結果とし
て発生しても、その零クロス比較回路の後段にある零相
電圧発生防止回路により、任意の一相の系統電流の極性
を反転させることで、所定の電圧値を持つ強制消弧信号
を生成することができる。
When a power failure occurs in the system power supply due to an open accident, even if a zero-phase pattern in which the polarity of the system current is the same for all three phases is generated as an erroneous determination result by the zero-cross comparison circuit of the polarity determination circuit, the zero-cross A forced arc extinguishing signal having a predetermined voltage value can be generated by inverting the polarity of an arbitrary one-phase system current by a zero-phase voltage generation prevention circuit provided at a subsequent stage of the comparison circuit.

【0023】請求項2に記載した前記制御回路の極性判
定回路は、系統電流が微小であるときにその系統電流の
極性判定に際して増幅回路の零点を調整する自動オフセ
ット補正回路を有することを特徴とする(請求項3)。
According to a second aspect of the present invention, the polarity determination circuit of the control circuit has an automatic offset correction circuit that adjusts a zero point of the amplifier circuit when determining the polarity of the system current when the system current is small. (Claim 3).

【0024】この自動オフセット補正回路で増幅回路の
零点を調整することにより、系統電流が微小である場合
でも、その系統電流の極性判定精度を予め向上させた上
で、系統電流の極性が三相すべて同一となる零相パター
ンが誤判定結果として発生した場合のみ、任意の一相の
系統電流の極性を反転させることができる。
By adjusting the zero point of the amplifier circuit by this automatic offset correction circuit, even if the system current is minute, the polarity of the system current can be three-phase after the accuracy of the polarity judgment of the system current is improved in advance. Only when the same zero-phase pattern is generated as an erroneous determination result, the polarity of an arbitrary one-phase system current can be inverted.

【0025】なお、本発明における前記制御回路は、系
統連系スイッチの系統電源側と電力変換器側の両方に設
けられた二つの計器用変圧器により検出された系統電圧
の差電圧に基づいて、開放事故による系統電源の停電
時、系統連系スイッチのOFFを検出することを特徴と
する(請求項4)。
The control circuit according to the present invention is based on the difference voltage between the system voltages detected by two instrument transformers provided on both the system power supply side and the power converter side of the system interconnection switch. When a power failure occurs in a system power supply due to an opening accident, an OFF of a system interconnection switch is detected (claim 4).

【0026】系統電源の停電が開放事故による場合に
は、電力変換器から出力される系統連系スイッチの強制
消弧信号によりその系統連系スイッチがOFF状態にあ
れば、その系統連系スイッチの電力変換器側には前記強
制消弧信号による電圧が発生し、その系統電源側には開
放事故により電圧が発生しない。従って、この系統連系
スイッチの両端の差電圧を検出すれば、系統スイッチの
OFFを確認することができ、これに基づいて電力変換
器の電流制御モードを電圧制御モードへ切り換えて自立
運転へ移行させることができる。
When the power failure of the system power supply is caused by an open accident, if the system interconnection switch is in the OFF state by the forced arc extinguishing signal of the system interconnection switch output from the power converter, the power of the system interconnection switch is turned off. A voltage is generated on the power converter side by the forced arc extinguishing signal, and no voltage is generated on the system power supply side due to an open accident. Therefore, if the voltage difference between both ends of the system interconnection switch is detected, the OFF of the system switch can be confirmed, and based on this, the current control mode of the power converter is switched to the voltage control mode and the operation shifts to the self-sustaining operation. Can be done.

【0027】[0027]

【発明の実施の形態】本発明に係る分散電源システムの
実施形態を以下に詳述する。なお、図4と同一部分には
同一参照符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the distributed power supply system according to the present invention will be described in detail below. The same parts as those in FIG. 4 are denoted by the same reference numerals.

【0028】図1に示す実施形態の分散電源システム
は、系統電源1と重要負荷2との間に分散電源11を設
けた主回路構成を具備する。この分散電源システムは、
系統電源1と重要負荷2との間に連系変圧器4を介して
接続された電力変換器5の直流側にエネルギー貯蔵部6
を設けた概略構成を有する。前記系統電源1と電力変換
器5との間には、系統事故時に分散電源11を瞬時に系
統から切り離すための系統連系スイッチ7が設けられて
いる。また、系統母線に設けられた変流器12と、系統
連系スイッチ7の両端、つまり、系統電源側および電力
変換器側に設けられた二つの計器用変圧器13,14と
の検出信号Vs1,Vs2に基づいて電力変換器5を運転
制御する制御回路15を具備する。
The distributed power supply system of the embodiment shown in FIG. 1 has a main circuit configuration in which a distributed power supply 11 is provided between a system power supply 1 and an important load 2. This distributed power system
An energy storage unit 6 is provided on the DC side of the power converter 5 connected between the system power supply 1 and the important load 2 via the interconnection transformer 4.
Is provided. A system interconnection switch 7 is provided between the system power supply 1 and the power converter 5 to instantaneously disconnect the distributed power supply 11 from the system in the event of a system failure. Further, detection signals Vs from the current transformer 12 provided on the system bus and the two instrument transformers 13 and 14 provided at both ends of the system interconnection switch 7, that is, on the system power supply side and the power converter side. 1 and a control circuit 15 for controlling the operation of the power converter 5 based on Vs 2 .

【0029】前記電力変換器5は、インバータ機能と整
流機能を有する双方向形交直変換器で、系統電源1によ
る電力を直流変換してエネルギー貯蔵部6に充電する整
流運転と、エネルギー貯蔵部6に充電された直流電力を
交流変換して重要負荷2に電力供給するインバータ運転
とに切り換え制御される。また、エネルギー貯蔵部6と
しては、鉛電池などの充放電可能な二次電池が使用され
ている。さらに、系統連系スイッチ7としては、自己消
弧能力を持たない半導体素子であるサイリスタスイッチ
が使用されている。
The power converter 5 is a bidirectional AC / DC converter having an inverter function and a rectifying function. The power converter 5 performs a rectification operation of converting the electric power from the system power supply 1 into a direct current and charging the energy storage unit 6. The control is switched to an inverter operation in which the DC power charged to the inverter is converted to AC and supplied to the important load 2. As the energy storage unit 6, a chargeable / dischargeable secondary battery such as a lead battery is used. Further, as the system interconnection switch 7, a thyristor switch, which is a semiconductor element having no self-extinguishing ability, is used.

【0030】系統電源1が正常なときは、制御回路15
からの点弧信号Paにより系統連系スイッチ7がONし
た状態にあり、負荷平準化を目的として、系統電源1と
分散電源11との間で電力の授受を実行する連系運転が
行われ、制御回路15からの出力指令refに基づいて
電力変換器5を電流制御モードで動作させている。この
系統電源1と分散電源11との間での電力の授受は、前
述したように電力変換器5の整流運転により系統電源1
の電力をエネルギー貯蔵部6に充電し、また、そのエネ
ルギー貯蔵部6に充電された電力を電力変換器5のイン
バータ運転により系統に出力することにより行われる。
When the system power supply 1 is normal, the control circuit 15
The grid connection switch 7 is in the ON state by the ignition signal Pa from the system, and the interconnection operation for executing power transfer between the system power supply 1 and the distributed power supply 11 is performed for the purpose of load leveling, The power converter 5 is operated in the current control mode based on the output command ref from the control circuit 15. The transfer of power between the system power supply 1 and the distributed power supply 11 is performed by the rectification operation of the power converter 5 as described above.
Is stored in the energy storage unit 6, and the power stored in the energy storage unit 6 is output to the system by the inverter operation of the power converter 5.

【0031】このように負荷平準化を目的とする分散電
源11の連系運転では、例えば夜間の軽負荷時に系統電
源側から分散電源側へ充電が行われ、昼間の重負荷時に
分散電源側から系統電源側へ放電が行われ、これにより
分散電源11を所有する電力需要家の契約電力のピーク
値をカットし、電力需要家が消費する電力の基本料金を
低減化すると共に、電気料金の低い深夜電力の利用が可
能となっている。
As described above, in the interconnection operation of the distributed power supply 11 for the purpose of load leveling, for example, charging is performed from the system power supply to the distributed power supply during a light load at night and from the distributed power supply during a heavy load during the day. Discharge is performed to the system power supply side, thereby cutting the peak value of the contract power of the power customer who owns the distributed power source 11, reducing the basic price of power consumed by the power customer, and lowering the power price. It is possible to use midnight power.

【0032】一方、系統事故(図中A点)により系統電
圧が瞬時に低下したときには、制御回路15内に設けら
れた電圧低下検出回路(図示せず)により瞬時電圧低下
を検出して分散電源11の連系運転時の制御モードであ
る電流制御モードを停止すると共に、系統連系スイッチ
7の点弧信号Paを停止する。
On the other hand, when the system voltage drops instantaneously due to a system fault (point A in the figure), the instantaneous voltage drop is detected by a voltage drop detection circuit (not shown) provided in the control circuit 15 and the distributed power The current control mode which is the control mode at the time of the interconnection operation 11 is stopped, and the firing signal Pa of the system interconnection switch 7 is stopped.

【0033】系統事故が短絡事故の場合には、その短絡
事故の発生時、系統連系スイッチ7に電流が流れている
ため、導通中にある系統連系スイッチ7に流れる電流I
sを変流器12により検出し、その電流Isの極性を制
御回路15の極性判定回路16(図2参照)で判定す
る。なお、図1は単相回路を示すが、図2は三相回路
(u相、v相、w相)を示す。
When the system fault is a short-circuit fault, when the short-circuit fault occurs, a current flows through the grid-connecting switch 7.
s is detected by the current transformer 12, and the polarity of the current Is is determined by the polarity determination circuit 16 of the control circuit 15 (see FIG. 2). 1 shows a single-phase circuit, while FIG. 2 shows a three-phase circuit (u-phase, v-phase, and w-phase).

【0034】この極性判定回路16は、図2に示すよう
に増幅回路17、自動オフセット補正回路18および零
クロス比較回路19から構成され、前記変流器12によ
り検出された電流Is-u,v,wを増幅回路17で増
幅し、その増幅回路17の出力に基づいて零クロス比較
回路19により電流の極性を判定する。ここで、自動オ
フセット補正回路18により、系統電流が微小である場
合でも、増幅回路17の零点を調整することにより極性
判定精度を向上させることが可能である。
As shown in FIG. 2, the polarity judging circuit 16 comprises an amplifying circuit 17, an automatic offset correcting circuit 18 and a zero cross comparing circuit 19, and the currents Is-u, v detected by the current transformer 12. , W are amplified by the amplifier circuit 17, and the polarity of the current is determined by the zero-cross comparison circuit 19 based on the output of the amplifier circuit 17. Here, the polarity determination accuracy can be improved by adjusting the zero point of the amplifier circuit 17 even when the system current is very small by the automatic offset correction circuit 18.

【0035】この極性判定回路16から出力される判定
結果C-u,v,wに基づいてその系統連系スイッチ7
に流れる電流と逆極性の強制消弧信号Pb-u,v,w
を制御指令信号ref-u,v,wに重畳させた上で電
力変換器5に出力指令ref(-u’,v’,w’)と
して送出される。
Based on the judgment results Cu, v, w output from the polarity judgment circuit 16, the system interconnection switch 7
Arc extinguishing signals Pbu, v, w having polarities opposite to the current flowing through
Is superimposed on the control command signal ref-u, v, w and sent to the power converter 5 as an output command ref (-u ', v', w ').

【0036】このようにして電力変換器5から出力され
る強制消弧信号Pb-u,v,wにより、系統連系スイ
ッチ7に流れる電流を強制的に零とすることで系統連系
スイッチ7をOFFする。なお、この短絡事故の場合に
は、極性判定回路16から出力される強制消弧信号Pb
-u,v,wはそのままの状態で後述の零相電圧発生防
止回路20から出力される。
As described above, the current flowing through the system interconnection switch 7 is forcibly reduced to zero by the forced arc extinguishing signal Pbu-v, v, w output from the power converter 5, whereby the system interconnection switch 7 Is turned off. In the case of this short circuit accident, the forced arc extinguishing signal Pb output from the polarity determination circuit 16
-u, v, w are output as they are from a zero-phase voltage generation prevention circuit 20, which will be described later.

【0037】従って、系統連系スイッチ7の強制消弧に
より系統を遮断することにより、分散電源11を系統か
ら瞬時に切り離し、電力変換器5を電流制御モードから
電圧制御モードへ切り換えて分散電源11の自立運転へ
移行する。この分散電源11の自立運転により、分散電
源11による重要負荷2への電力供給を継続する。
Accordingly, the system is cut off by forcibly extinguishing the system interconnection switch 7, whereby the distributed power source 11 is instantaneously disconnected from the system, and the power converter 5 is switched from the current control mode to the voltage control mode to switch the distributed power source 11 Shifts to independent operation. By the independent operation of the distributed power supply 11, the power supply to the important load 2 by the distributed power supply 11 is continued.

【0038】一方、系統事故が開放事故である場合に
は、系統連系スイッチ7を流れる電流が零であるため、
その系統連系スイッチ7に流れる電流の極性を誤判定す
ることがある。すなわち、制御回路15の極性判定回路
16では、変流器12から検出された電流が零である
と、零クロス比較回路19から出力される判定結果C-
u,v,wとして、例えば、通常発生しない電流極性パ
ターン、つまり、三相(U相、V相、W相)のすべてが
同一極性となる零相パターンが発生することがある。
On the other hand, when the system fault is an open fault, the current flowing through the grid connection switch 7 is zero.
The polarity of the current flowing in the system interconnection switch 7 may be erroneously determined. That is, in the polarity determination circuit 16 of the control circuit 15, when the current detected from the current transformer 12 is zero, the determination result C−
For example, a current polarity pattern that does not normally occur, that is, a zero-phase pattern in which all three phases (U-phase, V-phase, and W-phase) have the same polarity may occur as u, v, and w.

【0039】この場合、零相パターンの誤判定結果に基
づいて電力変換器5から零相の強制消弧信号Pb-u,
v,wをそのまま出力すると、連系変圧器4が零相電圧
を系統側に出力することができないことから、前記電力
変換器5から出力される零相の強制消弧信号Pb-u,
v,wによる系統連系スイッチ7の両端の差電圧を確認
することができず、その結果、系統連系スイッチ7のO
FFを確認することができないことになる。
In this case, the zero-phase forced extinguishing signal Pbu-u,
If v and w are output as they are, the interconnection transformer 4 cannot output the zero-phase voltage to the system side, so the zero-phase forced arc extinguishing signal Pbu, u output from the power converter 5 is output.
The difference voltage between both ends of the system interconnection switch 7 cannot be confirmed by v and w.
The FF cannot be confirmed.

【0040】そのため、極性判定回路16の後段に設け
られた零相電圧発生防止回路20では、前記極性判定回
路16から、系統電流の極性が三相すべて同一となる零
相パターンが誤判定結果として出力された場合、任意の
一相の系統電流の極性を反転させることで、所定の電圧
値を持つ強制消弧信号Pb-u,v,wを生成する。
Therefore, in the zero-phase voltage generation prevention circuit 20 provided at the subsequent stage of the polarity determination circuit 16, the zero-phase pattern in which the polarity of the system current is the same for all three phases is obtained from the polarity determination circuit 16 as an erroneous determination result. When the signal is output, the polarity of the arbitrary one-phase system current is inverted to generate a forced arc extinguishing signal Pbu-v, v, w having a predetermined voltage value.

【0041】この零相電圧発生防止回路20は、図3
(a)に示すように第1および第2のAND回路21,
22および第1および第2のOR回路23,24からな
る論理回路で構成され、同図(b)に示すような真理値
表に基づいて(C-u、C-v、C-w)=(0、0、
0)又は(1、1、1)となる零相パターンが入力され
た場合であっても、(Pb-u、Pb-v、Pb-w)=
(0、0、1)又は(0、1、1)のように任意の一相
の系統電流の極性を反転させた出力が得られる。
This zero-phase voltage generation preventing circuit 20 is similar to that shown in FIG.
As shown in (a), the first and second AND circuits 21,
22 and first and second OR circuits 23 and 24, and based on a truth table as shown in FIG. 3B, (Cu, Cv, Cw) = (0,0,
(Pb-u, Pb-v, Pb-w) = even when the zero-phase pattern of (0) or (1, 1, 1) is input.
An output in which the polarity of an arbitrary one-phase system current is inverted, such as (0, 0, 1) or (0, 1, 1), is obtained.

【0042】この系統連系スイッチ7の強制消弧信号P
b-u,v,wを制御指令信号ref-u,v,wに重畳
させた上で電力変換器5に出力指令ref(-u’,
v’,w’)を送出する。開放事故の場合、系統連系ス
イッチ7の電力変換器側には前記強制消弧信号Pb-
u,v,wによる電圧が発生し、その系統電源側には開
放事故により電圧が発生しない。従って、この系統連系
スイッチ7の両端の差電圧を、系統連系スイッチ7の両
端に設けられた二つの計器用変圧器13,14により検
出することにより、系統連系スイッチ7のOFFを確認
することができ、これに基づいて電力変換器5の電流制
御モードを電圧制御モードへ確実に切り換えて自立運転
へ迅速に移行させることができる。
The forced arc extinguishing signal P of the system interconnection switch 7
bu, v, w are superimposed on the control command signal ref-u, v, w, and the output command ref (-u ',
v ', w'). In the event of an open accident, the forced arc-extinguishing signal Pb-
Voltages due to u, v, and w are generated, and no voltage is generated on the system power supply side due to an open accident. Therefore, by detecting the voltage difference between both ends of the system interconnection switch 7 by the two instrument transformers 13 and 14 provided at both ends of the system interconnection switch 7, the OFF state of the system interconnection switch 7 is confirmed. Based on this, it is possible to reliably switch the current control mode of the power converter 5 to the voltage control mode and quickly shift to the self-sustaining operation.

【0043】[0043]

【発明の効果】本発明によれば、系統電源の停電が開放
事故による場合、系統連系スイッチに流れる電流が零と
なっても、その系統連系スイッチに流れる電流の極性を
判定することが容易となる。つまり、開放事故により系
統連系スイッチを流れる電流が零となり、系統電流の極
性が三相すべて同一となる零相パターンが誤判定結果と
して発生しても、制御回路の零相電圧発生防止回路によ
り、任意の一相の系統電流の極性を反転させることで、
所定の電圧値を持つ強制消弧信号を生成することがで
き、その結果、この電力変換器から連系変圧器を介して
出力される強制消弧信号により系統連系スイッチのOF
Fを瞬時に確認することができる。このように系統事故
が開放事故の場合であっても、電力変換器から出力され
る強制消弧信号により系統を短時間で遮断し、負荷を電
圧低下から確実に保護することができて信頼性の高い分
散電源システムを提供することができる。
According to the present invention, when the power failure of the system power supply is caused by an open accident, even if the current flowing through the system interconnection switch becomes zero, the polarity of the current flowing through the system interconnection switch can be determined. It will be easier. In other words, even if the current flowing through the grid connection switch becomes zero due to an open accident and a zero-phase pattern in which the polarity of the system current is the same for all three phases occurs as a misjudgment result, the zero-phase voltage generation prevention circuit of the control circuit , By inverting the polarity of any one-phase system current,
A forced arc-extinguishing signal having a predetermined voltage value can be generated. As a result, the OF of the system interconnection switch is turned on by the forced arc-extinguishing signal output from the power converter via the interconnection transformer.
F can be confirmed instantaneously. In this way, even if the system accident is an open accident, the system can be shut down in a short time by the forced arc extinguishing signal output from the power converter, and the load can be reliably protected from voltage drop and reliability can be improved. , A distributed power supply system with a high power supply can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る分散電源システムの実施形態を示
す主回路構成図である。
FIG. 1 is a main circuit configuration diagram showing an embodiment of a distributed power supply system according to the present invention.

【図2】図1の制御回路内の極性判定回路および零相電
圧発生防止回路を示すブロック図である。
FIG. 2 is a block diagram showing a polarity determination circuit and a zero-phase voltage generation prevention circuit in the control circuit of FIG. 1;

【図3】(a)は零相電圧発生防止回路を構成する論理
回路例を示すブロック図であり、(b)は(a)の論理
回路例における真理値表である。
FIG. 3A is a block diagram illustrating an example of a logic circuit constituting a zero-phase voltage generation prevention circuit, and FIG. 3B is a truth table of the example of the logic circuit of FIG.

【図4】分散電源システムの従来例を示す主回路構成図
である。
FIG. 4 is a main circuit configuration diagram showing a conventional example of a distributed power supply system.

【符号の説明】[Explanation of symbols]

1 系統電源 2 負荷 4 連系変圧器 5 電力変換器 6 エネルギー貯蔵部 7 系統連系スイッチ 11 分散電源 15 制御回路 16 極性判定回路 18 自動オフセット補正回路 19 零クロス比較回路 20 零相電圧発生防止回路 DESCRIPTION OF SYMBOLS 1 System power supply 2 Load 4 Interconnection transformer 5 Power converter 6 Energy storage unit 7 System interconnection switch 11 Distributed power supply 15 Control circuit 16 Polarity judgment circuit 18 Automatic offset correction circuit 19 Zero cross comparison circuit 20 Zero phase voltage generation prevention circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 系統電源と負荷との間に連系変圧器を介
して接続された電力変換器の直流側にエネルギー貯蔵部
を設け、前記系統電源の停電時、系統電源と電力変換器
間に介設され、かつ、自己消弧能力を持たない系統連系
スイッチを、前記電力変換器から出力される強制消弧信
号によりOFFし、その系統連系スイッチのOFFを制
御回路により検出し、その制御回路からの出力指令に基
づいて前記電力変換器を電流制御モードから電圧制御モ
ードに切り換えて自立運転させることにより、前記エネ
ルギー貯蔵部の直流電圧を電力変換器で電力変換して負
荷に供給する分散電源システムにおいて、 前記制御回路は、開放事故による系統電源の停電時、系
統電流の極性が三相すべて同一となると、任意の一相の
系統電流の極性を強制的に反転させる零相電圧発生防止
回路を具備したことを特徴とする分散電源システム。
1. An energy storage unit is provided on the DC side of a power converter connected between a system power supply and a load via an interconnection transformer, so that a power supply between the system power supply and the power converter is provided during a power outage of the system power supply. Is turned off by the forced arc-extinguishing signal output from the power converter, and the control circuit detects that the system interconnection switch is OFF, The power converter is switched from the current control mode to the voltage control mode based on an output command from the control circuit and is operated independently to convert the DC voltage of the energy storage unit into a power and supply it to the load. In a distributed power supply system, the control circuit forcibly reverses the polarity of an arbitrary one-phase system current when all three phases have the same polarity at the time of a system power failure due to an open accident. Distributed power system characterized by comprising a zero-phase voltage prevention circuit cell.
【請求項2】 前記制御回路は、零相電圧発生防止回路
の前段に、零クロス比較回路により系統電流の極性を判
定する極性判定回路を具備したことを特徴とする請求項
1に記載の分散電源システム。
2. The dispersion control method according to claim 1, wherein the control circuit includes a polarity determination circuit for determining the polarity of the system current by a zero cross comparison circuit at a stage preceding the zero-phase voltage generation prevention circuit. Power system.
【請求項3】 前記制御回路の極性判定回路は、系統電
流が微小であるときにその系統電流の極性判定に際して
増幅回路の零点を調整する自動オフセット補正回路を有
することを特徴とする請求項2に記載の分散電源システ
ム。
3. The control circuit according to claim 2, wherein the polarity determination circuit includes an automatic offset correction circuit that adjusts a zero point of the amplifier circuit when determining the polarity of the system current when the system current is very small. A distributed power supply system according to claim 1.
【請求項4】 前記制御回路は、系統連系スイッチの系
統電源側と電力変換器側の両方に設けられた二つの計器
用変圧器により検出された系統電圧の差電圧に基づい
て、開放事故による系統電源の停電時、系統連系スイッ
チのOFFを検出することを特徴とする請求項1乃至3
のいずれかに記載の分散電源システム。
4. The system according to claim 1, wherein the control circuit is configured to open an accident based on a difference voltage between system voltages detected by two instrument transformers provided on both a system power supply side and a power converter side of the system interconnection switch. 4. The system according to claim 1, wherein when a power failure of the system power supply occurs, an OFF of the system interconnection switch is detected.
A distributed power supply system according to any one of the above.
JP2000312287A 2000-10-12 2000-10-12 Distributed power system Withdrawn JP2002125320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000312287A JP2002125320A (en) 2000-10-12 2000-10-12 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000312287A JP2002125320A (en) 2000-10-12 2000-10-12 Distributed power system

Publications (1)

Publication Number Publication Date
JP2002125320A true JP2002125320A (en) 2002-04-26

Family

ID=18791914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000312287A Withdrawn JP2002125320A (en) 2000-10-12 2000-10-12 Distributed power system

Country Status (1)

Country Link
JP (1) JP2002125320A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060832A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Distributed power supply system
JP2009177961A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Uninterruptible power supply device
CN102623994A (en) * 2012-04-25 2012-08-01 广东电网公司珠海供电局 Substation area control method and system of microgrid operation mode
CN102723735A (en) * 2012-06-29 2012-10-10 京东方科技集团股份有限公司 Island detection method and system
CN104333038A (en) * 2014-11-05 2015-02-04 株洲时代装备技术有限责任公司 Method and device for recovering mixed regenerative energy of urban railway power supply system
CN106208147A (en) * 2016-08-30 2016-12-07 天津理工大学 A kind of energy storage inverter off-network seamless switching control method
CN117895584A (en) * 2024-03-15 2024-04-16 浙江日风电气股份有限公司 Soft start method and device of converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060832A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Distributed power supply system
JP2009177961A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Uninterruptible power supply device
CN102623994A (en) * 2012-04-25 2012-08-01 广东电网公司珠海供电局 Substation area control method and system of microgrid operation mode
CN102723735A (en) * 2012-06-29 2012-10-10 京东方科技集团股份有限公司 Island detection method and system
CN104333038A (en) * 2014-11-05 2015-02-04 株洲时代装备技术有限责任公司 Method and device for recovering mixed regenerative energy of urban railway power supply system
CN106208147A (en) * 2016-08-30 2016-12-07 天津理工大学 A kind of energy storage inverter off-network seamless switching control method
CN117895584A (en) * 2024-03-15 2024-04-16 浙江日风电气股份有限公司 Soft start method and device of converter
CN117895584B (en) * 2024-03-15 2024-06-07 浙江日风电气股份有限公司 Soft start method and device of converter

Similar Documents

Publication Publication Date Title
JP4125601B2 (en) A system that supplies reliable power to important loads
TW201921825A (en) Power supply system
JP4466516B2 (en) Uninterruptible power system
WO2020021925A1 (en) Power supply system
JP2002125320A (en) Distributed power system
JP4251287B2 (en) Power supply method for self-supporting load in fuel cell power generator
JPH1070853A (en) Uninterruptive power supply system
JP3319264B2 (en) Solar power system
JP2000092720A (en) Distributed power supply device
JP2000184601A (en) System interconnection power unit
WO2019012588A1 (en) Power conditioner, power system, and reactive power supressing method for power system
JP2951141B2 (en) Method of improving unbalance in single-phase three-wire line and power supply device used therefor
JP3817921B2 (en) Grid interconnection device
JPH1051959A (en) Decentralized power system
JPH11266540A (en) System linkage breaking method with inverter equipment for distributed power source
WO1999009631A1 (en) System interconnecting device and decentralized power supply equipped with the same and having instantaneous voltage drop preventing function
JP2002252928A (en) Distributed power supply system, and control/protection device for the same
JP2860740B2 (en) Grid connection protection detector
EP4290736A1 (en) Devices and methods for disconnecting a grid power source from an electrical distribution system
JPS5812815B2 (en) gear
JP2607500B2 (en) Spot network power receiving substation protection device
JPH10257678A (en) Individual operation prevention device of inverter for coordinating system
JPS6347052B2 (en)
JPH026292B2 (en)
JPH09233680A (en) Power failure detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108